Preparation and Applications of Functionalized Organozinc Compounds

Paul Knochel, Ludwig-Maximilians-Universität München Butenandstr, München, Germany Nicolas Millot, Ludwig-Maximilians-Universität München Butenandstr, München, Germany Alain L. Rodriguez, Ludwig-Maximilians-Universität München Butenandstr, München,

Germany

Charles E. Tucker, DSM Catalytica Pharmaceuticals, Inc., Mountainview, USA

1. Introduction

Organozinc compounds have been known for more than 150 years. (1, 2) With the exception of zinc enolates (Reformatsky reagents) (3-6) and iodomethylzinc derivatives (Simmons-Smith, (6-10) Furukawa, (11, 12) and Sawada (13) reagents), their synthetic potential has only been recently recognized. (14-19) This is certainly due to their low reactivity and to the absence of general methods of preparation. Although the carbon-zinc bond in diethylzinc has a dissociation energy of 34.5 kcal/mol, (20) it has, because of the similar electronegativities of zinc and carbon, a highly covalent character (ca. 85 %), (21) which is comparable to a carbon-tin bond. The carbon-zinc bond is therefore inert to moderately polar electrophiles such as aldehydes, ketones, esters, or nitriles. On the other hand, the presence of empty low-lying *p* orbitals at the zinc center allows transmetallations with a number of transition metal complexes (Eq. 1). This is favored for both kinetic and thermodynamic

$$RZnY + XML_n \longrightarrow YZn \xrightarrow{R} ML_n \longrightarrow RML_n + ZnXY$$
(1)

reasons. (20) The availability of *d* orbitals at the metal center in these compounds allows for new reaction pathways with electrophilic reagents that were not available for the corresponding zinc reagents. This reactivity has been exploited for the formation of new carbon-carbon bonds and efficient cross-coupling reactions between organozinc derivatives and unsaturated organic halides, as Negishi has demonstrated using catalytic amounts of palladium(0) salts (Eq. 2). (22-28) Similar catalytic processes have been reported with copper(I) and titanium(IV) complexes, which can mediate numerous reactions of organozinc reagents with organic electrophiles. (14)

$$R^{1}X \xrightarrow{PdL_{2}} \begin{bmatrix} X \\ R^{1}PdL \\ L \end{bmatrix} \xrightarrow{R^{2}ZnY} \begin{bmatrix} R^{2} \\ R^{1}PdL \\ L \end{bmatrix} \longrightarrow R^{1}R^{2}$$
(2)

The scope and synthetic applications of zinc organometallics were greatly extended when it was found that these species can accommodate a wide range of functional groups. They are ideally suited for the construction of polyfunctional organic molecules without the use of multiple protection and deprotection steps. Although some functionalized organozinc compounds bearing ester groups such as 1, (29) 2, (30-34) or 3 (30-34) had been reported, it was only recently that systematic studies have shown the synthetic potential of these reagents. (14-18) This chapter

describes methods for the preparation of functionalized organozinc halides, diorganozincs, and organozincates and their reactions with electrophilic reagents in the presence of transition metal catalysts, as well as synthetic applications demonstrating their synthetic utility for natural product synthesis. Only the preparation and reactivity of zinc organometallics bearing relatively reactive functional groups are covered. Thus, the chemistry of organozinc compounds bearing an ether, acetal, ketal, trialkylsilyl, or polyfluoroalkyl group is, in general, not covered.

2. Mechanism and Stereochemistry

Several methods are available for preparing alkylzinc organometallics. Thus, alkylzinc halides are obtained either by transmetallations from other organometallics, typically organolithium or magnesium derivatives, or by the direct insertion of zinc metal into a carbon-halogen bond. Diorganozincs are prepared by transmetallations, iodine-zinc exchange reactions, or boron-zinc exchange reactions (Eq. 3).

RX
$$Zn$$
 RI Et_2Zn
 $RI \xrightarrow{Et_2Zn}$ RZnX $R_3B \xrightarrow{Et_2Zn}$ R_2Zn (3)
RM $1/2 ZnX_2$ or i -Pr₂Zn

The mechanism of formation of zinc organometallics from the corresponding alkyl iodides has not been studied in detail, and only partial information is available. There is no general method for producing secondary alkylzinc halides with a well-defined configuration starting from a chiral alkyl lodide. The insertion of zinc dust into secondary alkyl iodides proceeds nonselectively, certainly via a SET mechanism to afford a mixture of stereoisomers. Thus, pure *trans*-1-acetamido-2-iodocyclohexane (4) affords, after zinc insertion, transmetallation with CuCN· 2LiCl, and allylation, the allylated product **5** as a 1:1 mixture of diastereomers (Eq. 4). (35) Nevertheless, in the case of strained and sterically

hindered alkyl iodides such as 6, zinc insertion occurs with complete retention of configuration. Interestingly, the zinc organometallic species formed is further transmetallated with CuCN· 2LiCl with retention of configuration and is quenched with trimethyltin chloride with retention of configuration (Eq. 5). (35)

Similarly, the organozinc reagent derived from β -iodoester **7** reacts with an acid chloride in the presence of catalytic amounts of $(Ph_3P)_2PdCl_2$ and provides only products derived from the *cis*-zinc reagent **8** (Eq. 6). (36-38) Although the configurational

stability of acyclic organozinc derivatives has not been investigated for preparative applications, ¹H NMR studies have shown that secondary dialkylzincs such as dineohexylzinc have high configurational stability, and the activation energy for inversion has been estimated to be ~26 kcal/mol. (39) As shown in Eq. 5, the transmetallation of a secondary organozinc lodide with CuCN· 2LiCl occurs with retention of configuration. Similarly it has been shown that the transmetallation from zinc(II) to palladium(II)-species occurs with retention of configuration. (40) At present, the data available indicate that transmetallation of secondary organozinc reagents to at least organocoppers or organopalladiums occurs with retention of configuration. Tentatively, this is best explained by assuming a four-center mechanism (Eq. 1). No comprehensive study is available showing that this stereoselectivity for transmetallation is general. Interestingly, the preparation of chiral secondary organozinc derivatives via a boron-zinc exchange reaction also occurs with high retention of configuration, making this reaction the best suited for the preparation of chiral secondary dialkylzincs.

Starting from 1,1-bimetallic reagents of magnesium and zinc of type **9**, it is possible to perform a selective deuterolysis of the reactive carbon-magnesium bond followed by iodolysis of the organozinc intermediate **10** leading to the product **11** as a 60:40 mixture of stereoisomers. Starting with α -deuterated bimetallic compound **9** and performing a protonation with MeOH followed by

iodolysis furnishes the primary alkyl lodide **11** as a 34:66 mixture of diastereoisomers, showing that some open-chain primary organozinc halides can retain their configuration (Eq. 7). (41)

The best and most general method for preparing configurationally stable secondary diorganozincs involves a boron-zinc exchange reaction. (40, 42) Thus, the hydroboration of phenylcyclopentene **12** with monoisopinocampheylborane [(–)–lpcBH₂; 99% ee] (43) provides, after recrystallization, the chiral borane **13** with 94% ee. Treatment of **13** with diethylborane to remove the lpc group (50°, 16 hours) followed by the addition of *i*-Pr₂Zn provides the configurationally stable mixed diorganozinc reagent **14**, which in the presence of CuCN· 2LiCl and allyl bromide furnishes the alkylated product **15** (Eq. 8). (44)

Interestingly, this reaction sequence can be extended to open-chain olefins.

The *Z*-styrene (*Z*-16) furnishes the *anti* product (*anti*-17) with high diastereoselectivity (*syn:anti* = 8:92) under these conditions. The enantioselectivity of the asymmetric hydroboration of these open-chain organoboranes lies between 46 and 74% ee (Eq. 9). (44) Several other electrophiles react with the intermediate zinc-copper reagents with retention of configuration. (44a)

It is also possible to perform stereoselective palladium(0)-catalyzed cross-coupling reactions. Thus, the palladium(0)-catalyzed alkenylation of 1-methylindene (**18**) via the hydroboration–boron-zinc exchange sequence provides *trans*-indane derivative **19** with 99:1 *trans:cis* selectivity (Eq. 10). Similarly, the palladium(0) catalyzed acylation of styrene *Z*-**16** furnishes the *anti*-ketone **21** (*anti:syn* ratio = 90:10; 88% ee) via the zinc reagent *anti*-**20** (Eq. 11).

3. Scope and Limitations

3.1. Preparation Methods

3.2. Direct Insertion of Zinc Metal into Organic Halides

The insertion of zinc dust into organic halides is the most general method for preparation of functionalized organozinc halides. The reaction is sensitive to the reaction conditions (solvent, concentration, temperature), to the nature of the organic halide, and to the method of zinc activation. Whereas several solvent systems have been used in the past, (2) performing the reaction in THF as first described by Gaudemar (45) is the most convenient. Thus, the addition of a primary alkyl lodide as a 2.5–3.0 M solution in THF to zinc dust previously activated by 1,2-dibromoethane and chlorotrimethylsilane (46, 47) leads to rapid formation of the corresponding alkylzinc lodide (35–40°, 2 hours). Secondary alkyl iodides react even faster (room temperature, 1-2 hours) and provide the secondary alkylzinc iodides in high yields without the formation of elimination products. Most importantly, this modified procedure of Gaudemar (45) can be performed with a variety of polyfunctional iodides and gives unique access to polyfunctional alkylzinc halides. Functional groups such as ester, (47-74) ether, (50, 51, 66) acetate, (50-57, 59, 60, 63, 64, 68) ketone, (47-49) cyano, (47-57, 63, 65-76) halide, (47, 48, 57, 64, 67, 73) N. N-bis(trimethylsilyl)amino, (76) primary and secondary amino, (77) amide and phthalimide, (35, 78-80) trialkoxysilyl, (81) sulfoxide, (82) sulfide, (83) sulfone, (82, 83) thioester, (83) boronic ester, (61, 62, 64, 67, 84-86) enone, (54, 87-89) and phosphate (53, 90) can be present during formation of the organozinc reagent (Eq. 12). (14)

FG-RX + Zn $\xrightarrow{\text{THF}}$ FG-RZnX (>85%)

X = I, Br;

(12) $FG = CO_2R$, enoate, CN, halide, (RCO)₂N, (TMS)₂N, RNH, NH₂, RCONH, (RO)₃Si, (RO)₂PO, RS, RSO, RSO₂, PhCOS R = alkyl, aryl, benzyl, allyl

The presence of highly acidic protons of alcohols, phenols, some N-heterocycles (imidazole, adenine, uracil), diamines (1,2-diaminobenzene) or ethyl acetoacetate is very disadvantageous. (78) However, the preparation of primary alkylzinc iodides tolerates the presence of a wide range of primary or secondary amines. (78) Primary amines even enhance the rate of zinc

insertion into the alkyl lodide. Organozinc derivatives bearing relatively acidic protons, such as (22–25), can be prepared under standard conditions. (35, 78), (91–102) Functional groups like nitro or azide, which can readily accept an electron from the zinc surface, inhibit organozinc formation.

Whereas alkyl iodides in THF insert zinc dust between 20–40°, more reactive benzylic or allylic halides react with zinc powder under even milder conditions. (45) With these substrates, the formation of Wurtz-coupling products can be a problem. However, zinc insertion usually leads to smaller amounts of reductive coupling in these cases than does the corresponding insertion of magnesium or lithium. Therefore, allylzinc halides are the reagents of choice for performing nucleophilic allylation reactions. (45) The presence of electron-donating substituents in the benzylic or allylic halide enhances the Wurtz-coupling byproducts, and with benzylic bromide **26a** only the homocoupling product **27** is obtained (THF, 0°). By using the corresponding phosphate **26b** and performing the reaction in dimethyltetrahydropyrimidinone (DMPU) in the presence of Lil, the desired benzylic zinc reagent **28** is obtained without any self-coupling byproduct (Eq. 13). (103) Similarly, allylic phosphates are smoothly converted to the corresponding allylzinc reagents under these conditions. These reagents in the polar solvent

Zn, LiI (cat.) DMPU, 50°, 12 h $X = OP(O)(OEt)_2$ 26a, X = Br 26b, X = OP(O)(OEt)_2 Zn, THF, 0°, 2 h X = Br X = Br

DMPU react with allylic bromides from the most substituted end of the allylic anion, leading to a branched product such as the trienic ester **29** (Eq. 14). (103)

Not only primary alkyl iodides can serve as substrates for the preparation of alkylzinc derivatives, but also primary alkyl phosphates, mesylates, chlorides, bromides, and tosylates likewise react with zinc dust in dimethylacetamide (DMAC) or DMPU under mild conditions in the presence of lithium, sodium, or cesium iodides and provide access to various functionalized zinc reagents (Eq. 15). (103) The preparation of alkylzinc iodides can also be performed in

mixtures of benzene and DMAC or hexamethylphosphoramide (HMPA) using zinc-copper couple. (80, 104, 105) Polyfluorinated organozinc iodides have also been prepared by the insertion of zinc metal in THF or dioxane (Eq. 16). (106-115)

$$n-C_4F_9I \xrightarrow{\text{Zn}(\text{Cu}), \text{ dioxane}} n-C_4F_9\text{ZnI} (70\%)$$
(16)

A complex reaction occurs when difluorodihalomethanes such as CF_2Cl_2 or CBr_2F_2 are subjected to zinc insertion in dimethylformamide (DMF), producing a mixture of bis(trifluoromethyl)zinc and trifluoromethylzinc halide in excellent yield (Eq. 17). (116, 117) The insertion of zinc dust into primary alkyl bromides in

$$Zn + CF_2X_2 \xrightarrow{DMF, rt} CF_3ZnX + (CF_3)_2Zn \quad (80-95\%)$$
(17)
$$X = Cl, Br$$

THF is possible only if activated zinc is used. (46) Iodinated nucleosides can be converted to the corresponding zinc reagents under mild conditions using either DMAC or THF as solvent depending on the solubility of the substrate. After a palladium(0) catalyzed cross-coupling reaction with an aryl Iodide, arylated nucleosides are obtained in satisfactory yields (Eq. 18). (118, 119)

An especially active zinc powder can be generated by reducing zinc chloride with lithium naphthalenide in THF. This activated zinc reacts with alkyl bromides (THF, room temperature) in a few hours and with aromatic bromides in THF at reflux, affording alkylzinc and arylzinc bromides. This procedure tolerates the presence of various functional groups (i.e. ester, nitrile, aromatic ketone or halide) (Eq. 19). (120-127)

$$ZnCl_2 \xrightarrow{\text{Li Naphthalenide}} Zn^* \xrightarrow{\text{FG-RX}} FG-RZnX X = Cl, Br, I (19)$$

Secondary and tertiary alkyl bromides react even more readily, leading to the desired zinc reagents under mild conditions. (128-131) Thus, remarkable chemoselectivity is observed with a dibromoalkane such as **30** that bears both a primary and a tertiary alkyl bromide function. Only zinc insertion into the tertiary carbon-bromine bond is observed, which after transmetallation to an intermediate copper species and Michael addition leads to product **31** in 65% yield (Eq. 20). (132) Functionalized secondary zinc reagents are obtained from secondary bromides in this way. (131)

A related procedure based upon reaction of the graphite intercalation compound C_8K with a slurry of zinc chloride and silver acetate (10 mol %) produces a zinc-silver couple deposited on graphite which reacts with aromatic and heteroaromatic iodides at room temperature (Eq. 21). (133)

Interestingly, secondary alkyl bromides have such high reactivity that a direct insertion using moderately active zinc deposited on titanium dioxide is sufficient to provide the corresponding secondary organozinc compound. (134) In general, zinc insertion into an sp^2 C – I bond is far more difficult than into an sp^3 C-I bond and requires either the use of polar solvents (48, 135) or the use of highly activated zinc. (136-142) A potentially promising preparation of diarylzincs is the direct reaction of aryl bromides with lithium metal and zinc chloride under sonication. (143-149) The resulting diarylzincs are quite reactive and undergo Michael additions to enones in the presence of nickel(II) salts (Eq. 22). (143)

The substituents attached to the aromatic ring or to the double bond of an

alkenyl lodide greatly influence the rate of insertion of zinc. Electron-withdrawing substituents facilitate zinc insertion. Also, the presence of a heteroatom (S, N, O) at the position γ to the carbon-iodine bond has a positive effect. Thus, 3-iodo-2-cyclohexenone is converted to the corresponding zinc derivative **32** under mild conditions (THF, 25–50°, 0.5 hour; >85 % yield). (87, 88)

Similarly, 2-bromotrifluoropropene reacts with the Zn(Ag) couple in the presence of N, N, N, N -tetramethylethylenediamine (TMEDA), leading to the zinc reagent **33** in 93 % yield (THF, 60°, 9 hours). (150-154) Electrochemical methods (155) using sacrificial zinc anodes in the presence of nickel 2,2 -bipyridyl provide an excellent alternative to the preparation of functionalized arylzinc halides (Eq. 23). (156-159) The method can be applied to heterocyclic compounds like 2- and 3-chloropyridine or 2- and 3-bromothiophene. (159, 160)

FG-ArX

$$X = Cl, Br$$

$$\xrightarrow{e^{-}(0.15 \text{ A}), DMF, ZnBr_{2}}_{Bu_{4}NBr (cat.), Ni^{2+} (cat.)} FG-ArZnX (60-70\%)$$
(23)

Zinc metal containing catalytic amounts of zinc formed by electroreduction of ZnX_2 (X = Br, Cl) is very reactive toward α -bromoesters and allylic or benzylic bromides. (161, 162)

3.3. Halide-Zinc Exchange

Diorganozincs are important reagents because they are more reactive than organozinc halides, and they have been used extensively in asymmetric synthesis. (14, 163) Until a few years ago, the preparation of diorganozincs had been limited to nonfunctionalized reagents since they were obtained by transmetallation of organolithiums or organomagnesium halides with zinc salts. (2) An iodine-zinc exchange reaction is a practical way for preparing polyfunctional diorganozincs $(FG-R)_2Zn$ (Eq. 24). Diiodomethane reacts readily with diethylzinc to provide ethyl(iodomethyl)zinc (34) and ethyl lodide via an iodine-zinc exchange reaction (Eq. 25). (11, 12) Recently, it was found that a wide range of polyfunctional primary alkyl iodides

FG-RCH₂I + Et₂Zn
$$\frac{1. Cu(I)X (0.3 mol \%)}{2. 50^{\circ}, 0.1 mm Hg} (FG-RCH2)_2Zn$$
(24)

$$ICH_2I + Et_2Zn \xrightarrow{\text{THF}, -40^{\circ}} ICH_2ZnEt + CH_3CH_2I$$

$$34, (>90\%)$$
(25)

undergo this exchange if treated neat with diethylzinc in the presence of a catalytic amount of copper(I) lodide or copper(I) cyanide. (64, 164) In the absence of copper salts, the reaction requires a large excess of diethylzinc (3-5 equivalents) and longer reaction times. A possible mechanism for the catalytic effect of the copper salt is given in Scheme 1. The reaction of diethylzinc with copper(I) iodide generates ethylcopper, which decomposes at 50° to an ethyl radical and copper(0). A copper mirror is observed at the end of the reaction. The ethyl radical undergoes radical substitution with the primary alkyl iodide to provide the radical (R·), which adds to diethylzinc. A mixed alkyl(ethyl)zinc and an ethyl radical are produced after fragmentation. The ethyl radical initiates a new catalytic cycle. (164) This method provides general access to functionalized dialkylzincs such as 35-37. Because of the higher reactivity of dialkylzincs compared to alkylzinc halides, functional groups such as ketones or terminal acetylenes are not tolerated in these reagents. Besides copper(I) salts, a variety of transition metal salts catalyze the halide-zinc exchange.

Scheme 1.

Especially interesting is the palladium(II)- or nickel(II)-catalyzed exchange reaction. In these cases, the product is not a dialkylzinc but rather an alkylzinc iodide (Eq. 26). (165–166a) The mechanism almost certainly involves radical intermediates. Treatment of the unsaturated iodide **38** with diethylzinc produces the cyclopentylmethylzinc iodide **39**, which can be subsequently trapped with an electrophile (Eq. 27). (165-167)

$$n-C_{8}H_{17}I \xrightarrow{\text{Et}_{2}Zn, \text{ Cul } (0.3 \text{ mol } \%)}_{\text{Et}_{2}Zn, \text{ THF, rt, 2 h}} (n-C_{8}H_{17})_{2}Zn (80\%)$$
(26)

This radical cyclization leading to zinc organometallics can also be performed with secondary alkyl iodides and proceeds with high stereoselectivity with the appropriate substituents (Eq. 28). (166) The preparation of polycyclic molecules via tandem cyclization is also possible. (168) Applications of the method to the synthesis of (+)-methyl jasmonate, (169) (–)-methyl curcurbate, (169) and (–)-methylenolactocin (170, 171) using a nickel-catalyzed carbozincation have been reported.

Finally, this method can be applied to the preparation of benzylic zinc reagents. (165, 172) Mixed metal catalysis using manganese(II) bromide and copper(I) chloride allows bromine-zinc exchange to occur with functionalized primary alkyl bromides in the polar solvent (173-175) DMPU under very mild conditions (room temperature, 4–10 hours; Eq. 29). (176)

$$FG-RCH_2Br + Et_2Zn \xrightarrow{MnBr_2 (5 \text{ mol }\%)}_{CuCl (3 \text{ mol }\%)} FG-RCH_2ZnBr + CH_2=CH_2 + EtH (29)$$

$$DMPU$$

The direct insertion of zinc metal into primary alkyl bromides does not proceed

in THF and is slow in DMPU. (103) Interestingly, the iodine-zinc exchange reaction can be light-initiated. (177) A favorable equilibrium occurs in solution at room temperature with only 1 equivalent of Et_2Zn when a solution of the alkyl iodide in CH_2Cl_2 is irradiated at >280 nm, allowing a faster synthesis of the dialkylzinc compared to the thermal copper-catalyzed reaction. The halide-zinc exchange can be performed with *i*– Pr_2Zn . This reagent needs to be salt-free if configurationally well-defined reagents are to be prepared. (16-18) However, if the configuration of the zinc organometallics is not relevant, then the in situ generation of *i*– Pr_2Zn from *i*-PrMgBr and $ZnBr_2$ (0.5 equivalent) is a convenient method for preparing complex secondary diorganozincs (Eq. 30). (178)

Mixed diorganozincs of the type $RZnCH_2SiMe_3$ allow selective transfer of the group R. (179, 180) The Me_3SiCH_2 group is too unreactive to be transferred and plays the role of a dummy ligand. These mixed reagents avoid the waste of a precious organic group R in the reaction of diorganozincs with electrophiles (Eq. 31). (180)

3.4. Transmetallation Reactions

3.4.1. Lithium-Zinc Exchange

Alkyllithiums are too reactive to tolerate most functionalities. (21, 181-183) However, alkenyl- and aryllithiums are significantly less reactive than their alkyl counterparts and therefore at very low temperatures tolerate the presence of several functional groups (i.e., halide, (184-188) sulfone, (189) epoxide, (190) ester, (191-202) or cyano (198) groups). (203-208) The stability of these functionalized lithium derivatives can be greatly improved by performing a transmetallation with zinc salts to give the corresponding aryl- or alkenyl-zinc halide (Eq. 32). (209, 210) Whereas 1,2,2-trifluoroethenyllithium (40) is a very unstable carbenoid

reagent, the addition of zinc(II) salts leads to an organozinc reagent **41**, which is stable at room temperature and can be used for the formation of carbon-carbon bonds with a large number of electrophiles (Eq. 33). (154, 211-215) Similarly,

$$CF_2 = CFCI \qquad \xrightarrow{THF:Et_2O(3:2)}_{BuLi, -100^{\circ}} \qquad \begin{bmatrix} CF_2 = CFLi \end{bmatrix} \xrightarrow{ZnX_2}_{-100^{\circ}} \qquad CF_2 = CFZnX \quad (33)$$

the perfluorinated 2-propenyllithium **42** can be stabilized by transmetallation with zinc iodide, leading to **43** (Eq. 34). (114, 151-153) This method allows the preparation of functionalized organozinc reagents not available by other methods.

$$\begin{array}{c} CF_3 \\ -78^{\circ} \end{array} \xrightarrow{LDA} \begin{bmatrix} CF_3 \\ -78^{\circ} \end{array} \xrightarrow{CF_2} \\ Li \\ 42 \end{bmatrix} \xrightarrow{ZnI_2} \xrightarrow{CF_3} \\ IZn \\ 43 \end{array}$$
(34)

The presence of an azide function in an alkenyl iodide such as 44 completely inhibits zinc insertion. However, treatment of 44 with butyllithium (216-220) at low temperature followed by addition of a THF solution of zinc iodide leads to the desired alkylzinc iodide 45, which can be further transmetallated with CuCN· 2LiCl and added to ethyl propiolate (Eq. 35). (209)

Direct lithiation of vinyl carbamate **46** with *s*-BuLi furnishes an alkenyllithium which, after transmetallation with zinc bromide, leads to the functionalized alkenylzinc **47**, which can undergo a palladium(0) catalyzed reaction with an aryl triflate (Eq. 36). (221) Interestingly, zinc enolates generated from the corresponding lithium enolates undergo a smooth intramolecular carbometallation to pyrrolidine derivatives (Eq. 37). (222-226) Similarly, amide, ester or hydrazone zinc enolates are able to add to reactive double bonds, even in an intermolecular fashion. (227, 228)

3.4.2. Magnesium-Zinc Exchange

Since the carbon-magnesium bond is more covalent than the carbon-lithium bond, it is possible to prepare functionalized arylmagnesium halides using an iodine-magnesium exchange reaction. (229) Thus, treatment of an aryl iodide bearing an electron-withdrawing group with *i*– Pr_2Mg or *i*-PrMgBr in THF at -40° leads to a fast and quantitative iodine-magnesium exchange that affords the corresponding magnesium reagent. After addition of a zinc(II) salt, the corresponding organozinc reagent undergoes nickel-catalyzed cross-coupling

with an alkyl iodide in the presence of *p*-trifluoromethylstyrene as promoter (Eq. 38). (230) The role of the promoter is believed to lower electron density at the nickel center thereby facilitating reductive elimination to the cross-coupling product.

This iodine-magnesium exchange can be extended to the preparation of polyfunctional pyridylmagnesium derivatives. (230a-231) Also, some alkenyl iodides bearing a coordinating heteroatom in close proximity to the carbon-iodine bond undergo a smooth iodine-magnesium exchange leading to polyfunctional alkenylmagnesium compounds with retention of the double bond configuration. (232)

3.4.3. Boron-Zinc Exchange

Triorganoboranes readily undergo transmetallation reactions with dialkylzincs (Eq. 39). (2) The driving force for the reaction is formation of volatile boranes such as trimethylborane ($R^1 = CH_3$). The reaction has

$$3 R_{2}^{1}Zn + 2 R_{3}^{2}B \implies 3 R_{2}^{2}Zn + 2 R_{3}^{1}B$$
 (39)

proven to be very useful for the preparation of allyl or benzylzinc reagents as well as chiral secondary zinc reagents. (233-235), (40), (44) The transmetallation of alkenylboranes proceeds under especially mild conditions, leading to mixed alkenyl(alkyl)zincs in almost quantitative yield. (236, 237) Interestingly, the alkenyl moiety attached to zinc is more reactive than the alkyl group and is selectively transfered to an organic electrophile. Functionalized alkenylzinc derivatives are available by this method. (238) Similarly, functionalized trialkylboranes are transmetallated to dialkylzincs (Eq. 40). (239, 240)

$$\begin{array}{c} \searrow O_{O} \\ \bigcirc O \\ O \end{array} \xrightarrow{(O)} B \xrightarrow{(O)} 0 \\ (95\%) \end{array} \xrightarrow{(O)} B \xrightarrow{(O)} 0 \\ (95\%) \end{array} \xrightarrow{(D)} B \xrightarrow{(D)} 0 \\ (D) \\ (D)$$

The use of diethylborane in hydroborations (241) leads to the desired boranes in excellent yields and avoids the use of a large excess of diethylzinc for transmetallation (Eq. 40). This hydroboration reagent can be conveniently prepared by mixing the borane-methyl sulfide complex and triethylborane in the appropriate stoichiometry (1:2). The regioselectivity of hydroboration is often excellent. (241) The procedure allows for the preparation of zinc organometallics not available from the corresponding organic halides. Thus, stilbene is cleanly converted to the secondary benzylic zinc reagent 48, which after transmetallation with copper cyanide-lithium chloride complex adds smoothly to diethyl benzylidenemalonate (Eq. 41). (240) The mild conditions required for performing the boron-zinc exchange make this method one of the simplest, most general, and highest yielding syntheses of polyfunctional diorganozincs.

This procedure has great synthetic potential and is the most general and versatile method for preparation of functionalized diorganozincs. Remarkably, substrates bearing acidic hydrogens, like primary nitroalkanes or alkylidenemalonates, are readily hydroborated and undergo smooth boron-zinc exchange. After a copper catalyzed allylation, the expected allylated products are obtained in high yields (Eq. 42). (242) The boron-zinc exchange proceeds under significantly milder conditions (0° instead of 50°) for primary alkyl derivatives, and requires only a few minutes compared to the several hours that are necessary in the iodine-zinc exchange. Nevertheless,

the boron-zinc exchange reaction using Et_2Zn has some drawbacks and does not proceed rapidly with hindered secondary

alkyldiethylboranes. Also, a 1:1 mixture of diastereomeric zinc reagents is obtained with diastereomerically pure alkylboranes. As described above, these problems can be solved by using i-Pr₂Zn instead of Et₂Zn, thereby allowing the synthesis of secondary dialkylzincs. (40, 44)

3.4.4. Mercury-Zinc Exchange

Owing to the weak carbon-mercury bond, organomercurials readily undergo reductive transmetallation with zinc metal. (243) This method can be applied to functionalized organomercurials [(FG–R)₂Hg] leading to a range of functionalized dialkylzincs (FG = ester, nitrile, chloride). (67) The transmetallation rate can be enhanced by zinc salts. In such a case, the reaction is complete within a few hours at 60°, whereas a temperature of 110° is required in the absence of ZnX₂. (67) Polyfunctional (*E*)-alkenylzinc halides with high stereoisomeric purity can be prepared (Eq. 43). (67) The required diorganomercurials

are obtained by various methods such as (1) the reaction of functionalized alkylzinc halides with mercury(I) chloride (67) (Eq. 44), (2) the substitution reaction between bis(iodomethyl)mercury and copper-zinc organometallics (FG-RCu(CN)ZnI, Eq. 45), (67) or (3) the transmetallation of alkenylboronic esters

2 FG-RZnI
$$\xrightarrow{\text{Hg}_2\text{Cl}_2, \text{THF}}_{-50 \text{ to } -20^\circ}$$
 (FG-R)₂Hg + 2 ZnX₂ + Hg(0) (44) (61-89\%)

FG-RCu(CN)ZnI + (ICH₂)₂Hg
$$\xrightarrow{\text{DMF, THF}}$$
 (FG-RCH₂)₂Hg (74-98%) (45)

obtained by the hydroboration of alkynes with pinacolborane. (67, 244) Polyfluorinated zinc reagents can be prepared by the transmetallation of bis(trifluoromethyl)mercury with dimethylzinc in pyridine. (245, 246)

3.4.5. Zirconium-Zinc Exchange

Transition alkenyl organometallics such as alkenylzirconium **49** undergo a smooth transmetallation to the corresponding alkenylzinc compound **50** by the treatment with Me₂Zn at -65° . The reaction is complete within a few minutes and a smooth reaction with aldehydes furnishes the corresponding allylic alcohols. The starting alkenylzirconium reagents are readily prepared from alkynes by hydrozirconation with Cp₂Zr(H)Cl (Eq. 46). (247)

3.5. Insertion Reactions Using ICH₂ZnX

Zinc carbenoids such as (iodomethyl)zinc iodide (248, 249) have been used principally for cyclopropanation reactions. (7-12, 250-265) However, these reagents have recently been used for the homologation of organocopper derivatives to provide new zinc-copper species (Eq. 47). (266-271)

$$FG-RCu + ICH_2ZnI \longrightarrow \begin{bmatrix} FG-R \\ f_1 \\ F_2C \end{bmatrix} \xrightarrow{I} FG-RCH_2Cu \cdot ZnI_2$$
(47)

The scope of the reaction is relatively broad. Copper enolates of nitriles, ketones, or aldehydes can be used, thus providing a route to homoenolates (Eq. 48). (65, 266, 270) Especially interesting are alkenyl- and alkynylcopper reagents

51 and **52**, which after methylene homologation afford highly reactive allylic and propargylic copper-zinc compounds **53** and **54**. By performing the reaction with iodomethylzinc iodide in the presence of a carbonyl compound, the resulting organometallics **53** and **54** are trapped by this electrophile (Eqs. 49 and 50). (266-271) Several polyfunctional allylic zinc reagents such as (**55–57**) can be generated in situ by this method. (270) The addition of functionalized copper-zinc compounds to acetylenic compounds produces functionalized alkenylcoppers, which after homologation with ICH₂ZnI lead to allylic zinc-copper compounds **57**. These are efficiently trapped with carbonyl compounds to produce α -methylene- γ -butyrolactones with excellent stereoselectivity (Eq. 51). (270, 271)

$$= -CO_{2}Et \quad \frac{1.Cl}{2.ICH_{2}ZnI, PhCOMe} \begin{bmatrix} CO_{2}Et \\ M \\ Cl + Ph \\ - O \\ - O$$

An intramolecular version of this process allows the construction of bicyclic γ -butyrolactones **58** (Eq. 52). (270, 271) Intramolecular trapping of methylene homologated alkenylcoppers provides new cyclization products (Eq. 53). (270)

Higher homologs of ICH_2ZnX can also be used for homologation reactions. For example, the addition of lithium carbenoid **59** to dibutylzinc furnishes an intermediate zincate **60**, which after 1,2-migration gives the zinc-silicon 1,1-bimetallic compound **61** (Eq. 54). (272, 273)

Zincates undergo the halide-zinc exchange reaction with various

1,1-dibromides to form zinc carbenoids, which undergo 1,2-migration (274-282) to give mixed dialkylzincs. (283-288) Only a few functional groups are tolerated under these reaction conditions. A related 1,2-migration delivers allenylzinc derivatives starting from propargylic mesylates. The trapping of allenylzincs with aldehydes provides homopropargylic alcohols with high diastereoselectivity (Eq. 55). (288)

diastereoselectivity 98:2

Polymethylene homologations are generally performed in the presence of an excess of ICH₂ZnX. After the first methylene homologation of an alkynylcopper, zinc-copper species are produced with reactivities different from the starting organometallics, so that very clean polymethylene homologation reactions can be achieved. Thus, treatment of an alkynylcopper 62 with an excess of (iodomethyl)zinc iodide produces the dienylcopper 63, which can be trapped by *tert*-butyl α -(bromomethyl)acrylate to form unsaturated ester 64 (Scheme 2). (268) The first step is a methylene insertion leading to propargylzinc-copper intermediate 65, which is in equilibrium with the allenylcopper 66. The reaction of 66 with another equivalent of iodomethylzinc iodide produces allylcopper-zinc reagent 67 that is in equilibrium with the dienyl organometallic 68.

Scheme 2.

Further reaction of 68 with iodomethylzinc iodide leads to the reactive allylic reagent 69, which readily inserts a new methylene unit to give the unsaturated alkylcopper-zinc species 63, which, under mild reaction conditions (-80 to 0°) does not undergo further insertion reactions and can be trapped by an allylic bromide. The copper-zinc species 63 is especially unreactive. This is explained by the presence of large amounts of zinc salts, which form mixed zinc-copper clusters in which the organic moiety has a high probability of being attached to zinc. The degree of polymethylene homologation also depends on the reactivity of the electrophile added. Thus, the metallated propargylic ether 70 reacts with benzaldehyde after a single methylene homologation. However, in the presence of the less reactive cyclopentanone, three methylene homologations occur first to generate a very reactive allylzinc-copper reagent, which is subsequently trapped by the ketone (Eq. 56). (270) Polyfluorinated zinc-copper reagents can be prepared by double insertion of difluoromethylene units brought about by reaction of a phenylcadmium halide with a trifluoromethylzinc derivative in the presence of CuBr (Eq. 57). (289)

Recently, the Simmons-Smith reagent ICH₂ZnI has found renewed interest for the conversion of β -keto esters to γ -keto esters (290) or for stereoselective cyclopropanation of allylic alcohols. (291-291a) In the presence of the chiral dioxaborolane ligand **71**, chiral polycyclopropane compounds **72** have been prepared with high enantiomeric excess (Eq. 58). (292, 293) Substituted zinc carbenoids like (CH₃CHI)₂Zn

effect diastereoselective and enantioselective cyclopropanations of allylic alcohols under these reaction conditions. (294) An elegant epoxide synthesis starting from an aldehyde and using an intermediate zinc carbenoid has been reported (Eq. 59). (295)

3.6. Fragmentation of Homoallylic Zinc Alcoholates

Substituted or functionalized allylic zinc reagents are difficult to prepare by direct zinc metal insertion because of extensive formation of Wurtz-homocoupling products. This problem has been solved by performing a fragmentation of zinc homoallylic alcoholates. Thus, conversion of alcohols **73a-b** to the corresponding zinc alcoholates leads to a fragmentation reaction with formation of a polyfunctional allylic zinc reagent that adds to benzaldehyde leading to the alcohols **74a-b** (Eq. 60). (296, 297) Remarkably, this reaction is highly diastereoselective.

Thus, ketone **75** is converted to an allylic zinc alcoholate by the addition of *n*-BuLi followed by zinc chloride in the presence of an aldehyde, leading to the homoallylic alcohol **76** in 76% yield as one diastereoisomer (*syn:anti* > 2:98, Eq. 61). (297, 298) The generation of highly substituted allylic zinc reagents has also been exploited in intramolecular ene reactions (Eq. 62). (299)

3.7. Reactivity of Functionalized Organozincs

3.8. Uncatalyzed Reactions

Diorganozincs and organozinc halides display only moderate reactivity toward most organic electrophiles. However, several powerful electrophilic reagents react directly with zinc organometallics. Thus, the bromination or iodination of zinc derivatives proceeds in excellent yield. (2) Direct oxidation of organozinc reagents with oxygen allows efficient access to hydroperoxides. (2) Whereas most organometallic reagents (RM) react rapidly with oxygen, the resulting metal hydroperoxides (ROOM) are often reactive enough to oxidize the starting organometallic species, leading to a mixture of metal hydroperoxide and alkoxide (ROM). The moderate reactivity of zinc organometallics (300, 301) allows the preparation of hydroperoxides with good selectivity (Table I). The use of perfluorinated solvents leads to excellent results in these reactions, owing to the exceptionally high solubility of oxygen in these media. With perfluorohexane (302) as solvent, functionalized hydroperoxides can be obtained with excellent selectivity. (303-303a) Functionalized organozincs prepared by hydrozincation, carbozincation, or by boron-zinc exchange can be oxidized directly in a selective manner to the corresponding functionalized alcohols or hydroperoxides, depending on the reaction conditions. Pseudohalogens such as tosyl cyanide also react with a range of polyfunctional aryl-, alkenyl-, alkynyl-, and alkylzinc halides to provide the corresponding nitriles (Eq. 63 and Table I). (304) An interesting regioselectivity is observed with

$$(EtO)_{3}Si \longrightarrow I \xrightarrow{Zn, THF} (EtO)_{3}Si \longrightarrow ZnI \xrightarrow{TsCN, THF} (EtO)_{3}Si \xrightarrow{CN} (63)$$

$$(67\%)$$

benzylic organometallics. Whereas the reaction of tosyl cyanide with benzylzinc bromide selectively provides 2-methylbenzonitrile (76%) via an allylic rearrangement, reaction of the corresponding copper-zinc reagent leads to benzyl cyanide (80%; Eq. 64). (304) Diorganozincs rapidly react with chromium(0) pentacarbonyl. THF complex to give an intermediate organochromium(0) salt, (305-307) which under

one atmosphere of carbon monoxide undergoes an insertion reaction producing an acylmetallate that can be trapped with the Meerwein reagent to furnish functionalized Fischer-carbene **77** (Eq. 65). (308) Interestingly, immonium salt **78** reacts with organozinc derivatives leading to diallylamines of type **79**, which can be readily deprotected (Eq. 66). (309)

The relatively polar chlorodiorganophosphines react with organozinc halides and diorganozincs to furnish polyfunctional phosphines in high yield. (310) The preparation of chiral phosphines is possible starting from terpenes. The hydroboration of β -pinene with BH₃·Me₂S gives tris(myrtanyl)borane, which after a boron-zinc exchange with Et₂Zn gives bis(myrtanyl)zinc in quantitative yield. Its reaction with chlorophosphines provides chiral phosphines of

potential interest as ligands for catalytic asymmetric reactions (Eq. 67). (311) The preparation of

polyfunctional chlorophosphines **81** can be achieved by the reaction of Et_2NPCl_2 with organozinc compounds. After protection with BH_3 , the corresponding aminophosphine-borane complexes **80** are obtained. Treatment with HCl in ether provides the borane-protected chlorophosphine **81** (Eq. 68). (312)

The reactivity of organozinc compounds can be increased by using polar solvents. Thus, in DMF functionalized diarylzincs **82** add to the reactive Schiff base **83** leading to the amino acid derivative **84** (Eq. 69). (313) Similarly, in NMP-THF

mixtures and in the presence of TMSCI, diorganozincs efficiently add to enones, unsaturated nitriles, and nitroolefins to afford the desired Michael adducts. (314-314a)

3.9. Reactions Mediated by Copper(I) Salts

For most synthetic applications of organozincs, transmetallation to a more reactive organometallic species is required. Of special interest for synthetic applications is the transmetallation of organozinc reagents to the mixed copper-zinc reagents tentatively represented as RCu(CN)ZnX. These reagents are obtained by treating either an organozinc halide or a diorganozinc with the THF-soluble complex of copper(I) cyanide and lithium chloride (CuCN· 2LiCI). (47) The resulting copper species display a similar, but somewhat reduced, reactivity compared with organocopper compounds prepared from magnesium or lithium organometallics. (315-318) Only the opening of epoxides cannot be performed with copper-zinc reagents. All other reactions that lithium and magnesium cuprates normally undergo can be performed with zinc-copper organometallics. The structure of these mixed zinc-copper reagents is not known, but EXAFS spectroscopy indicates that the cyanide ligand is coordinated to the copper center. (319) They display high thermal stability and can be heated in solvents such as 1,2-dimethoxyethane or DMPU at 60-85° for several hours without appreciable decomposition. (14)

3.9.1. Substitution Reactions

Normally, zinc- or zinc-copper organometallics do not react with organosilicon halides such as TMSCI efficiently. However under certain conditions, the reaction proceeds, as in the case of the zincated uracil derivative **85**, which gives the corresponding silylated heterocycle **86** at 50° (Eq. 70). (320) Triorganotin halides react more readily, and a stannylated phosphabenzene

has been obtained by the direct reaction of triphenylchlorostannane with the heteroaromatic zinc derivative **87** (Eq. 71). (321) The copper-zinc reagents **88** are stannylated much more readily and afford polyfunctional stannanes in excellent yields (Eq. 72; Table II). (90)

Allylation of copper-zinc organometallics with allylic chlorides, bromides, or phosphates proceeds under mild conditions and usually in excellent yield. The substitution reactions show a very high $S_N 2$ selectivity (120, 139-141, 322-324) (Eq. 73 and Tables III-V). (141)

$$EtO_2C \underbrace{CO_2Me}_{2. Br} \underbrace{CO_2Me}_{2. Br} \underbrace{CO_2Me}_{2. CO_2Me} \underbrace{EtO_2C}_{2. CO_2Me} \underbrace{CO_2Me}_{2. CO_2Me} \underbrace{CO_2Me} \underbrace{CO_2Me}_{2. CO_2Me} \underbrace{CO_2Me}_{2. CO_2Me} \underbrace{CO_2Me}_{$$

In the presence of chiral ferrocenylamine **89** or related amines, an enantioselective substitution reaction can be performed with an enantioselectivity up to 98% ee (Eq. 74). (325-325a) In contrast, in the presence of nickel(0) or palladium(0) complexes, the S_N2 substitution product is preferentially obtained. (75, 324)

Similarly, the in situ-generated copper carbenoid iodomethylcopper reacts with geranyl bromide with high $S_N 2$ selectivity (Eq. 75). (58) The allylation procedure can be applied to the preparation of isocarbocyclins. (324) The reaction of copper-zinc reagents with propargylic halides or tosylates provides allenes (Table VI). (94, 141)

A range of cationic unsaturated metal complexes such as pentadienyliron and pentadienylmolybdenum complexes readily add functionalized zinc-copper reagents to afford the corresponding cyclohexadienyl metal complexes (Table VII). (68-73) This reaction can be used for the construction of fused bicyclic ring systems (Eq. 76). (73)

Alkylation of tropylium ion chromium carbonyl complex **90** with a functionalized alkylzinc iodide furnishes chromium complex **91**, which is a key intermediate in a cedrene synthesis (Eq. 77). (326)

The cross-coupling reaction with unactivated alkynyl, alkenyl or alkyl iodides occurs under well-defined experimental conditions (Table VIII). Thus, the highly reactive alkynyl iodides and bromides react with copper-zinc organometallics at –60° to provide polyfunctional alkynes (55) (Table IX and Eq. 78). (327) Performing this coupling at higher temperatures with 1-iodoalkynes leads to the formation of

copper acetylides as byproducts (iodine-copper exchange reaction). (55) Cross-coupling with alkenyl iodides occurs readily if the alkenyl halide bears an electron-withdrawing substituent (such as nitro, ester, or keto) in the β position. In these cases, the substitution reaction certainly occurs via an addition-elimination mechanism. Thus, the addition of zinc-copper reagents to diethyl [(phenylsulfonyl)methylene]malonate (92) gives β -substituted alkylidenemalonates **93** (Eq. 79). (57, 328) These products do not react with the excess zinc-copper organometallics under the mild reaction conditions used. (57, 328)

Similarly, the addition of α -alkoxyalkyl zinc-copper derivatives to (*E*)-2-(ethylsulfonyl)-1-nitroethylene (94) provides a simple access to *trans*- γ -acetoxynitroalkenes 95 (Eq. 80). (60) A range of other polyfunctional pure (*E*)-nitroalkenes can be prepared by this method. (63, 74) The addition of β -iodoenones proceeds particularly well and furnishes substituted enones (Table VIII). (209)

$$EtO_{2}S \longrightarrow NO_{2} + C_{5}H_{11} \longrightarrow Cu(CN)ZnBr} \xrightarrow{THF} C_{5}H_{11} \longrightarrow NO_{2} (80\%)$$
94
94
(80)

Squaric acid derivatives, which are of interest for pharmaceutical applications and for the preparation of new materials, can be obtained by a double addition-elimination of zinc-copper compounds to 3,4-dichlorocyclobutene-1,2-dione (96). If the first organometallic is sufficiently bulky, a selective addition of two different zinc-copper reagents can be performed (Eq. 81). (329)
The coupling reaction with unactivated alkenyl iodides requires harsh reaction conditions. (330) However, the cross-coupling reaction occurs with retention of configuration of the alkenyl moiety and allows the preparation of polyfunctional alkenes (Table X). (330) Alkylation reactions with primary alkyl halides and benzylic halides proceed well with diorganozincs treated with one equivalent of a magnesium dimethylcyanocuprate [Me₂Cu(CN)(MgCl)₂] in DMPU. The alkylation tolerates a range of functionalities (ester, cyanide, halide, nitroalkane), and transfer of the methyl group is not observed under these reaction conditions (Eq. 82). (331)

Recently, a promising nickel–catalyzed cross-coupling reaction between dialkylzincs and primary alkyl halides was reported. (332, 333) In the presence of *m*-trifluoromethylstyrene as promoter, dialkylzincs undergo a smooth cross-coupling reaction with functionalized primary alkyl iodides. (332) This cross-coupling allows the coupling of functionalized arylzincs with functionalized primary alkyl iodides, leading to polyfunctional aromatic compounds (Eq. 83). (230) The scope of the reaction appears to be broad.

The substitution of ferrocenyl acetates with various alkylzinc halides or

allylzinc bromides in the presence of $BF_3 \cdot OEt_2$ proceeds with high retention of configuration, furnishing polyfunctional ferrocenes in optically pure or highly enriched form. These compounds can be readily converted into useful chiral ligands for asymmetric catalysis (Eq. 84). (334-336)

The uncatalyzed reaction of acid chlorides with organozincs is sluggish and inefficient. In the presence of catalytic (10 mol %) or stoichiometric amounts of copper cyanide-lithium halide complex in THF (–20 to 0°, 6–12 hours), a clean reaction occurs to produce ketones in excellent yields (Table XI). The acylation reaction can be applied to dizinc organometallics (Eq. 85). (120)

Especially interesting is the benzoylation of the 1,3-dizincapropane **98** obtained by boron-zinc exchange from the 1,3-diborane **97** (Eq. 86). (337, 338) Allylic

zinc reagents react readily with acid chlorides and anhydrides; however, a double addition of the allylic moiety usually occurs, (45, 339) leading to tertiary

alcohols. The double addition can be avoided by using a nitrile as the acylating agent under Barbier conditions (340-343) (Eq. 87). (341)

3.9.2. Addition Reactions

Allylic, and to some extent propargylic, organozinc reagents add to aldehydes and ketones (Table XII). (344, 345) Thus, 2-carbethoxyallylzinc bromide (99), (346, 347) which is readily prepared by reaction of ethyl α -(bromomethyl)acrylate (348, 349) with zinc powder (30 mesh) in THF (17–20°, 0.5 hour), reacts with a variety of aldehydes and imines to provide a direct entry to α -methylene- γ -butyrolactones and lactams. (346) Chiral lactams can be prepared by using amino acid derived imines (350, 351) (Eq. 88). (351) Unsymmetrically substituted

allylic zinc reagents react with carbonyl compounds at the more substituted end of the allylic system. (344, 345, 347) The use of allylic zinc reagents functionalized in position 2 allows for the preparation of various carbo- and heterocycles (352-359) (Eq. 89). (355)

The addition of propargylic zinc derivatives to aldehydes or ketones often provides a mixture of homopropargylic and allenic alcohols. (360-364) With

silylated propargylic zinc reagents **100**, only *anti*-homopropargylic alcohols are obtained (Eq. 90). (365) Interestingly, alkenylzinc halides seem to possess high reactivity, and a direct addition of ethenylzinc chloride to a protected α -aminoaldehyde has been reported. (366)

Alkylzinc derivatives do not easily add to aldehydes or ketones. (2) However, in the presence of Lewis acids like titanium alkoxides, (135, 367) TMSCI, (368) or BF_3 ·OEt₂, (54) the reaction occurs smoothly (Table XIII and Eq. 91). (368)

By using either TMSCI or BF₃·OEt₂, it is possible to direct the reaction with α , β -unsaturated aldehydes toward either the 1,4- or the 1,2-adduct. Thus the treatment of cinnamaldehyde with the functionalized zinc-copper reagent **101** in the presence of BF₃·OEt₂ produces only the allylic alcohol **102**. Conversely, performing the same reaction in the presence of TMSCI produces only the Michael adduct **103** (Eq. 92). (54)

Whereas unsaturated aldehydes react directly with alkylzinc halides in the presence of $BF_3 \cdot OEt_2$, the less reactive aliphatic aldehydes require transmetallation to the corresponding zinc-copper species. In a noncomplexing solvent such as CH_2Cl_2 , alkylzinc iodides react directly with polyfunctional aldehydes leading to alcohols with excellent diastereoselectivity in the "matched" case (Eq. 93). (369)

Like organotitanium reagents, (370) the addition of functionalized zinc-copper reagents to α -chiral aldehydes proceeds with good Cram selectivity. (54) Polyoxygenated metabolites of unsaturated fatty acids have been prepared by the addition of functionalized zinc-copper reagents in the presence of BF₃·OEt₂ (Eq. 94). (371)

Functionalized 2-bromomethyloxazoles insert zinc under the conditions typical for benzylic halides (THF, 0°), and the resulting zinc reagents react with

aldehydes and ketones in the absence of a Lewis acid to provide a range of polyfunctional oxazoles in excellent yields (Eq. 95). (372)

Dialkylzincs undergo formal substitution with 4-acetoxy-6-alkyl-1,3-dioxanes **104** in the presence of trimethylsilyl triflate (TMSOTf), leading to the corresponding *trans*-4,6-dialkyl-1,3-dioxanes **105** with excellent diastereoselectivity (Eq. 96). (373, 374)

With Barbier conditions and sonication, polyfluorinated alkyl iodides can be added to chiral aryl aldehyde-chromium complexes, leading to perfluoroalkyl arylcarbinols in 30–66% ee after removal of the tricarbonylchromium moiety. (374a)

Since the direct addition of dialkylzincs to aldehydes is rather slow, use of a chiral catalyst in many cases allows the preparation of chiral secondary alcohols. This strategy has been widely developed with mostly diethylzinc or higher dialkylzincs. (163, 375, 376) An important extension in which a chiral titanium catalyst is used allows the catalytic enantioselective addition of functionalized dialkylzincs to aldehydes. This type of reaction is discussed in detail later.

Ketones, except for some aryl ketones, do not add alkylzinc derivatives even in the presence of a Lewis acid catalyst. Similarly, nonactivated imines do not react with alkylzinc compounds. However, 1,2-diimines add dialkylzincs to give alkylated amine derivatives. This allows the preparation of fused heterocycles. (377-379) Activated imines bearing an electron-withdrawing group at nitrogen are more reactive, and *N*-diphenylphosphinoylimines add dialkylzincs in the presence of a chiral β -amino alcohol providing, after acidic hydrolysis, chiral amines with excellent enantioselectivity (75–98% ee). (339, 380, 381) The in situ activation of imines by formation of an acyliminium salt has been used to activate pyridines and related heterocycles (382-386) (Eq. 97 (382)). Organozinc derivatives have also been added

to iminium ions generated from α -aminothioethers, (387-390) cyclic γ -alkoxyenamines, (391) or α -cyanodihydropyridines. (392) Dialkylzincs add to imines in the presence of titanium tetrachloride in satisfactory yields. (393)

One of the most important synthetic properties of classical organocopper reagents is their ability to undergo 1,4-addition reactions with high regioselectivity. (315-320, 394, 395) In the same manner, copper-zinc organometallics prepared by the reaction of an organozinc halide or a diorganozinc with the THF-soluble complex copper cyanide-lithium chloride (47) react with β -monosubstituted enones in the presence of TMSCI (396-407) to furnish the Michael adducts in excellent yields (Eq. 98). (47) The addition to β -disubstituted enones under these conditions does not

proceed well. However, by performing the reaction in HMPA, addition to β -disubstituted enones or to methyl acrylate occurs with satisfactory yields (Eq. 99). (142)

A Lewis-acid activation with BF₃·OEt₂ allows the addition of functionalized zinc-copper reagents to β -disubstituted enones. (52) Interestingly, trialkylsilyl triflates promote the conjugate addition of alkynylzinc compounds to α , β -unsaturated enones, affording acetylenic silyl enol esters (Eq. 100). (408) Polyfunctional

alkenylzincates can be generated in situ from alkenylzirconium derivatives and added to enones in excellent overall yields (Eq. 101). (409) Intramolecular Michael additions have also been described, (65, 270) some under Barbier conditions

(Eq. 102). (89) Mechanistic studies of intramolecular addition reactions performed under Barbier conditions show that a small part of the cyclization product is formed through a radical mechanism, whereas the predominant reaction pathway proceeds via an organometallic intermediate. (89) Arylzinc halides generated by electrochemical reduction from the corresponding aromatic chloride or bromide using a sacrificial zinc electrode, after transmetallation with the copper bromidemethyl sulfide complex, undergo Michael additions with enones (Eq. 103). (156) The conjugate addition of functionalized zinc-copper reagents has been successfully applied to the synthesis of prostaglandins and related molecules (Eq. 104). (410-412)

Remarkably, in the presence of catalyst **106** and $Cu(OTf)_2$ (2 mol%), it is possible to add polyfunctional diorganozincs to cyclic enones to form the 1,4-addition products with very high enantioselectivities (Eq. 105). (413, 414)

Nickel(II) salts catalyze the 1,4-addition of diorganozincs to enones. (415) However, the scope of the reaction is narrow compared to the corresponding copper(I) mediated reactions. In the presence of chiral ligands, both the nickel(II)- (416-427) and copper(I)- (428, 429) catalyzed reactions lead to optically active conjugate addition products. (416-429) The addition to α , β -unsaturated esters is difficult. However, zinc-copper organometallics readily add to alkylidenemalonates (59, 60, 210) or related doubly activated Michael acceptors (59, 60) in high yields (Eq. 106). (210)

Nitroolefins undergo conjugate addition of a number of nucleophiles to give functionalized nitroalkanes, which are important intermediates and can be readily converted to amines by reduction or to carbonyl compounds by a Nef reaction. (430-434) The addition of organometallic nucleophiles to nitroolefins is less straightforward and often requires carefully chosen reaction conditions in order to avoid multiple additions of the metallic nitronate to the remaining nitroolefin. (435-437) Thus, addition of lithium or magnesium cuprates to nitrostyrene does not occur cleanly. (438-440) In contrast, copper reagents derived from functionalized organozinc halides (56, 63, 74) or diorganozincs (64) add to nitroolefins in high yields. Nitroolefins with a leaving group in the β -position, such as 1-acetoxy-2-nitro-2-propene (107), are especially reactive, and polyfunctional 2-nitroalkenes can be prepared by this method (Eq. 107). (56, 74) A similar high reactivity is observed

$$\frac{NO_2}{OAc} + EtO_2C \underbrace{Cu(CN)ZnI}_{3} \xrightarrow{THF}_{-55^\circ, 10 \text{ min}} EtO_2C \underbrace{V_3}_{NO_2} (107)$$
107
(92%)

with (2-phenylsulfonyl)nitroethylene (**108**) and related molecules. They react with zinc-copper reagents at -60° providing pure (*E*)-nitroolefins via an addition-elimination mechanism (Eq. 108). (63, 74) The addition to

2,2-bis(methylthio)-1-nitroethylene (**109**) gives β -disubstituted nitroolefins, (74) which are not readily prepared by a nitroaldol reaction since the reaction of nitroalkanes with ketones is reversible. By using a dimetallic zinc-copper species, *exo*-(methylene)cycloalkanes are obtained (Eq. 109). (74) An alternative preparation of

 β -disubstituted nitroolefins can be performed by adding zinc-copper reagents to nitroolefins and quenching the resulting zinc nitronates with phenylselenyl bromide. The resulting nitroselenides can be oxidized with hydrogen peroxide to afford *E*/*Z* mixtures of β -disubstituted nitroalkenes (Table XVI and Eq. 110). (441)

Ph
$$NO_2$$
 + EtO₂C $U(CN)ZnI$
 $2. PhSeBr, 0^{\circ}$
 $3. H_2O_2, rt$ Ph (85%)
 NO_2 $64\% Z$ (110)

Aliphatic nitroolefins with no additional activating groups react with zinc-copper organometallics at -20° , whereas nitrostyrene derivatives or functionalized nitroolefins require several hours at 0° for complete addition. (56, 74) The intermediate zinc nitronates can be directly submitted to an oxidative Nef reaction with ozone to afford polyfunctional ketones in good overall yields (Eq. 111). (74)

$$\begin{array}{c} & & & \\ & &$$

The *syn* addition of zinc-copper organometallics to acetylenic esters is an excellent method for the preparation of α , β -unsaturated esters of defined stereochemistry (Table XVII). Thus, the addition of polyfunctional zinc-copper reagents to ethyl propiolate at –60 to –50° produces the *syn* addition product after a low temperature protonation. By allowing the reaction mixture to warm up in the presence of excess TMSCI, an equilibration occurs leading to a *C*-silylated unsaturated ester (Eq. 112). (55) Dimethyl acetylenedicarboxylate (78, 140) and propiolamide (110) react in a similar way. The acidic hydrogens of the amido group do not interfere with the addition reaction (Eq. 113). (78)

With other acetylenic esters bearing alkyl substituents in the β position, the addition occurs less readily and requires increasing the temperature to -30° or -20° , which leads to partial isomerization of the intermediate alkenyl organometallic and to a mixture of (*E*) and (*Z*)- α , β -unsaturated esters. (55) The addition of bis-(2-carbethoxyethyl)zinc to acetylenic esters in the presence

of copper(I) bromide-methyl sulfide complex and in a solvent mixture containing HMPA produces 2-carboalkoxycyclopentenone derivatives. (442-444) This efficient formal [3 + 2] cycloaddition has been used to prepare a precursor of (±)-bilobalide (Eq. 114). (444)

The addition of organometallics to unactivated alkynes and alkenes represents a unique method for stereospecifically preparing (*E*)- or (*Z*)-trisubstituted alkenes, (445, 446) although only a few types of zinc derivatives are reactive enough to add to alkynes. Thus, allylic zinc halides add to a range of alkynes. (445, 446) The intramolecular addition of the functionalized allylic zinc bromide **111** to a triple bond produces the bicyclic diene **112** after a palladium(0)-catalyzed allylation (Eq. 115). (447) The addition of allylic zinc halides to 1-trimethylsilylalkynes, (448, 449)

 α , β -unsaturated acetals, (450) and cyclopropenes (451) has been reported. Alkylzinc derivatives do not add readily to unactivated alkenes. (445) However, dialkylzincs and alkylzinc halides can be added to terminal alkynes with moderate regioselectivity and to internal alkynes in the presence of diiodozirconocene. (452) The addition of di-*tert*-butylzinc to terminal alkenes (453-456) and phenylacetylene (454) occurs under harsh conditions.

Alkynes or functionalized allylic zinc reagents have been added to alkenylmagnesium derivatives, (457-466) and this reaction has been applied to

the preparation of aldol products obtained after oxidation of the intermediate α -trialkylstannylalkylzinc halides with oxygen (Eq. 116). (467)

The intramolecular carbozincation of some primary and secondary unsaturated iodides has been performed by generating the zinc reagent using Rieke-zinc (5, 127-132) or diethylzinc, (64) leading to functionalized cyclopentane derivatives with modest diastereoselectivity. (468, 469) In contrast, performing the carbozincation with diethylzinc in the presence of a catalytic amount of a palladium(II) or nickel(II) (165-168) complex leads to cyclopentylmethyl derivatives with high diastereoselectivity, allowing stereochemical control of three adjacent chiral centers (Eq. 28). (166)

The reaction proceeds via a radical mechanism: the palladium(0) or nickel(0) complex converts the alkyl iodide to an alkyl radical which undergoes ring closure, leading to a cyclopentylmethyl radical. It is trapped by a palladium(I) or nickel(I) halide, leading to a cyclopentylmethyl palladium (or nickel)(II) halide, which undergoes transmetallation with diethylzinc to give a cyclopentylmethylzinc derivative. The reaction can be applied to a variety of substrates (Table XVIII) and provides a new highly diastereoselective preparation of fused bicyclic tetrahydrofuran derivatives (Eq. 117). (470)

Organozinc derivatives treated with lithium dimethylcyanocuprate add to 1-alkylthioalkynes (*syn* addition), leading to tri- or tetrasubstituted olefins after trapping the intermediate alkenylcopper with an electrophile (Eq. 118). (471)

$$NC \underbrace{\swarrow}_{3}^{Cu(CN)ZnI} + n-Bu = SMe \xrightarrow{n-Bu} SMe \xrightarrow{n$$

Unactivated alkynes do not add primary zinc-copper organometallics under these conditions. However, the addition of secondary zinc-copper compounds proceeds easily (Eq. 119). (471) An intramolecular carbometallation is more facile and allows

$$EtO_2C \xrightarrow{ZnI}_{C_5H_{11}-n} + \equiv \underbrace{\begin{array}{c} 1. \operatorname{Me}_2Cu(CN)Li_2 \\ -45^\circ, 3 h \\ \hline 2. I_2 \end{array}}_{n-C_5H_{11}} \xrightarrow{EtO_2C} \underbrace{I}_{n-C_5H_{11}} \xrightarrow{I} (66\%) (119)$$

the preparation of polyfunctional *exo*-alkylidenecyclopentanones (Eq. 120). (471) Interestingly, zinc malonates and related compounds are sufficiently reactive to add to alkynes, leading to β , γ -unsaturated malonates (Eq. 121). (472)

3.10. Reactions Catalyzed by palladium(0) or Nickel(0) Complexes

Organozincs undergo a variety of cross-coupling reactions with alkenyl or aryl halides in the presence of catalytic amounts of palladium(0) complexes (20-26) or nickel salts. (473, 474) These coupling reactions have found numerous applications owing to the broad functional group tolerance and the wide range of unsaturated substrates that can be used(Tables XIX and XX). These

cross-coupling reactions can be performed with a range of polyfunctional organozinc halides (475-491) bearing a silylated acetylene, (477) alkenylsilane, (479) allylsilane, (488) 1-alkoxyacetylene, (480) polythiophene, (481) substituted aromatic (123, 482, 489) and heterocyclic rings, (483-487) ester, (27, 120, 159, 209, 490) nitrile, (120, 209) ketone, (138) protected ketone, (483) protected α -aminoester, (91, 92, 98, 102) stannane, (491) or boronic ester. (62, 84-86) The coupling of homoenolates with aromatic or alkenyl halides in the presence of catalytic amounts of nickel or palladium(II) complexes provides a range of γ -unsaturated esters, with bis(tris-*o*-tolylphosphine)palladium dichloride being an exceptionally efficient catalyst in these reactions (Eq. 122). (27) Various polyfunctional biphenyl derivatives can be prepared using the cross-coupling between an arylzinc halide and an aryl iodide (Eq. 123). (120) The use of alkenyl (138) or aryl (489) triflates instead of

the corresponding iodides or bromides can be advantageous. New α -amino acids in optically pure form have been prepared by the palladium-catalyzed coupling of unsaturated halides and a zinc reagent derived from serine (91, 92, 98-100, 102), or glutamic acid (97, 101) (Eq. 124). (98) Starting from the corresponding alkyl iodides derived from protected glutamic and aspartic acids, β - and γ -amino acids have also been prepared by using the intermediate zinc reagents, which were coupled with aromatic iodides in the presence of a palladium catalyst. (99), (a)

$$\begin{array}{c|c} & & & \\ \hline & & \\ N & Br \end{array}^{+} & & IZn & & \\ \hline & & \\ CO_2Bn \end{array} \xrightarrow{\text{NHBoc}} & & \\ \hline & & C_6H_6, \text{ DMAC}, 40^\circ, 1 \text{ h} \end{array} \xrightarrow{\text{CO}_2Bn} & \\ \hline & & \\ N & \\$$

The coupling of alkynylzinc halides or fluorinated alkenylzinc halides with fluorinated alkenyl iodides allows the preparation of a range of fluorinated dienes or enynes. (150, 154, 211-215) Coupling reactions between polyfunctional alkenyl halides and (dialkylboryl)methylzinc iodide **113** provide allylic boronates, which are versatile precursors for cyclization reactions (84-86) (Eq. 125). (86) In some cases, reduction (172, 492-494) or a halide-zinc exchange (165) is observed instead of the expected coupling reaction.

Acylation of organozincs with acid chlorides is efficiently catalyzed by palladium(0) complexes. (25, 26, 105, 120) Many functional groups are tolerated in this reaction. Thus, the coupling of 3-carbethoxypropylzinc iodide (114) with an unsaturated acid chloride provides a useful access to polyfunctional enones (105, 495) (Eq. 126). (495) Acylation of a serine- (91, 93, 98) or glutamic acid- (97) derived zinc species

catalyzed by palladium(0) provides chiral γ -keto α -amino acid derivatives in good to excellent yield. The acylation of zinc reagents with phenyl chloroformate or the direct treatment of an organozinc reagent with carbon monoxide under sonication in the presence of catalytic bis(triphenylphosphine)palladium(0) dichloride provides products **115**, corresponding formally to the double acylation by phosgene (Eq. 127). (95) In a related reaction, organozinc halides are treated with carbon monoxide and an allylic benzoate in the presence of a catalytic amount of a palladium(0) complex to provide δ -ketoesters (Eq. 128). (496)

The reaction of *syn*- or *anti*-3-iodo-2-methylbutanamide **116** with zinc powder furnishes the same reagent **117**. Acylation of **117** with benzoyl chloride in the presence of a palladium(0) catalyst gives the C2-C3-*syn* product **118** (Eq. 129). (497)

Functionalized heterocyclic zinc reagents are useful building blocks that readily react in Pd-catalyzed cross couplings (Eq. 130). (498) A selective cross-coupling reaction of (Z)-2,3-dibromopropenoate **119** with organozinc compounds allows the preparation of highly functionalized enoates **120** (Eq. 131). (499) Alkenylzinc

reagents obtained by a titanium(IV)-catalyzed hydrozincation undergo palladium catalyzed cross-couplings with aryl or alkenyl iodides. (500) Bis(iodozinc)ethane undergoes two sequential couplings with electrophiles with successive palladium catalysis and copper catalysis with excellent overall yields (Eq. 132). (501)

3.11. Reactions Catalyzed by Titanium(IV) Complexes

Oguni (502-504) has shown that chiral aminoalcohols catalyze the addition of diethylzinc to aldehydes. (163, 375, 376) Yoshioka and Ohno, (505-507) as well as Seebach, (508-514) have found that a chiral titanium catalyst leads to a very fast addition reaction, allowing extension of the addition reactions to other

diorganozincs (Table XXI). Thus, the transmetallation of alkylmagnesium halides with zinc chloride in ether followed by the addition of 1,4-dioxane constitutes a convenient method for preparing higher salt-free dialkylzincs. (512) A few functionalized dialkylzincs have been prepared in this way and added to aldehydes with good enantioselectivity using 2,2-dimethyl- α , α , α ', α -tetraaryl-1,3-dioxolane-4,5-dimethanol (TADDOL) (121) as the chiral ligand attached to titanium (Eq. 133). (512) Of special interest is

TADDOL: 121a, Ar = Ph121b, Ar = 2-naphthyl

the addition of dialkyzincs to α , β -acetylenic aldehydes in the presence of TADDOL (Ar = 2–naphthyl), since it provides functionalized propargylic alcohols in high optical purity (511, 514) (Eq. 134). (514)

The iodine-zinc (64) and the boron-zinc exchange exchange reactions (239, 240, 515) are general methods for preparing polyfunctional dialkylzincs. Zinc reagents obtained by both methods are suitable for performing catalytic asymmetric additions to aldehydes in the presence of *trans*-(1*R*,2*R*)-bis(trifluoromethanesulfonamido)cyclohexane (122); (505-507) (8 mol %) and titanium tetraisopropoxide (2 equivalents). The addition to aliphatic or aromatic aldehydes proceeds with good enantioselectivity. (64) Unsaturated aldehydes add under especially mild conditions. The presence of

an α substituent in the aldehyde is important for obtaining high enantioselectivities. (164) Thus, the addition of bis(5-acetoxypentyl)zinc to (*E*)-2-hexenal produces the allylic alcohol **123a** (R = H) with 83% ee, whereas by using (*Z*)-2-bromo-2-hexenal the alcohol **123b** is obtained with 94% ee (Eq. 135). (164) Interestingly, replacing titanium(IV) isopropoxide with a more

bulky titanium alkoxide such as titanium(IV) *tert*-butoxide leads to higher enantioselectivity. (516) This enantioselective preparation of allylic alcohols has been applied to the prostaglandin side chain. (517-522) The addition of a dialkylzinc to the γ -alkoxyaldehyde **124** (523) followed by simple functional group interconversions and addition of the same dialkylzinc reagent in the presence of **122** leads to *C*₂-symmetrical 1,4-diols with excellent diastereoselectivity (Eq. 136). (164, 524) A similar approach has been used to prepare a *C*₃-symmetrical triol. (525)

Aldol adducts can also be obtained by the catalytic enantioselective addition of functionalized dialkylzincs to 3-triisopropylsilylpropionaldehyde followed by a protection-deprotection and oxidation sequence, with an excellent stereoselectivity. (526) The method can be used to prepare lipoic acid (125) in 91% ee (Eq. 137). (527, 528) Further applications to the synthesis of chiral polyoxygenated molecules (527, 529, 368) and to the natural product (–)-mucocin (530) have been reported. Epoxides are versatile chiral building blocks, and the asymmetric synthesis of this class of compounds is of special

importance. (531) The addition of dialkylzincs to α -alkoxyaldehydes provides a general approach to monoprotected 1,2-diols, which can be converted to epoxides (Eq. 138). (532) The absolute configuration of

all the optically active products can be predicted knowing the configuration of the catalyst used. (524) Interestingly, the configuration on the newly formed chiral center of the alcohol does not depend on the configuration of a chiral center already present in the molecule. Thus, by treating the γ -alkoxyaldehyde **126** with bis(3-pivaloyloxypropyl)zinc in the presence of **122** (8 mol %), the *C*₂-symmetrical diol is obtained (diastereoselectivity > 97:3). On the other hand by performing the asymmetric addition in the presence of catalyst **122** with the opposite configuration (e.g. **ent-122**), only the *meso*-diol is produced (512, 514, 524, 532) (diastereoselectivity > 97:3; Eq. 139). (524)

Most of the asymmetric syntheses shown are performed using dialkylzincs prepared via an iodine-zinc exchange. However, the boron-zinc exchange constitutes an outstanding method for the preparation of a range of functionalized zinc reagents. Diorganozincs prepared in this way can be added with high enantioselectivity to aldehydes. (240, 515) An elegant synthesis of (R)-(–)-muscone has been reported using the intramolecular enantioselective addition of an alkenylzinc to an aldehyde in the presence of chiral aminoalcohol **127** (Eq. 140). (533)

3.12. Reactions Catalyzed by Cobalt(II), Iron(III), or Manganese(II) Complexes

The reaction of transition metal salts with organolithiums or Grignard reagents often leads to sensitive transition metal organometallics that decompose readily if a β -hydrogen atom is present in the alkyl chain. Consequently, such

transmetallations have found only a few applications in organic synthesis. (534) Organozinc reagents are far less prone to transfer several organic groups to the transition metal and therefore lead to alkyl transition metal complexes displaying good or acceptable thermal stabilities. Thus, the reaction of cobalt(II) bromide with dialkylzincs in THF:NMP furnishes blue solutions of organocobalt intermediates that have a half-life of ca. 40 minutes at -10° . Similarly, from iron(III) chloride, a gray solution of an organocobalt(II) species undergo smooth carbonylations at room temperature to afford symmetrical ketones in satisfactory yields (Eq. 141). (535)

Cobalt(II) bromide also catalyzes the acylation of diorganozincs, affording unsymmetrical ketones. (536) Allylic chlorides react with zinc organometallics in the presence of cobalt(II) bromide (Eq. 142). (536)

In the presence of cobalt salts alkenyl iodides undergo a smooth cross-coupling reaction with organozinc derivatives with retention of the double bond geometry (Eq. 143). (537)

Although organozinc reagents do not undergo transmetallations with manganese(II) salts, the use of the mixed copper—manganese system formed from copper(I) chloride and manganese(II) bromide allows cyclization reactions with good to excellent stereoselectivities (Eq. 144). (538, 539)

3.13. Barbier Reactions

Barbier reactions (540) are performed under conditions in which the organic halide, the organic electrophile, and zinc dust are mixed without the preformation of an organozinc species. These reactions have found increasing applications in organic synthesis. The nature of the reactive intermediate is not clear. (541) The formation of a zinc organometallic reagent is unlikely, since many of these reactions are performed in water. (148, 542-544) The formation of a free radical, which in many cases is a reasonable reactive intermediate, has not been proven in the addition of an allylic bromide to an aldehyde in the presence of zinc using aqueous ammonium chloride and THF as solvent. Interestingly, a range of unprotected hydroxyaldehydes can be used in this reaction. (148, 542, 543) Functionalized allylic halides have been used. (545) Short syntheses of ipsdienol and ipsenol have been performed using a Barbier reaction (Eq. 145). (546) The use of a Michael acceptor instead

of an aldehyde as the electrophile allows an efficient three-component reaction (147, 547-553) (Eq. 146). (547) Functionalized halides bearing a hydroxy function can be used if the reaction is performed in aqueous medium (Eq. 147). (147) A zinc-promoted Barbier-reaction between

2-bromo-3,3,3-trifluoropropene and aldehydes allows the preparation of fluorinated allylic alcohols. (553)

$$\bigcirc CHO + I \bigcirc OH \qquad \xrightarrow{Zn(Cu)} \qquad \bigcirc OH \qquad (70\%) \qquad (147)$$

The zinc coupling of allyl bromides with allyl bromides and chlorotributyl-stannane or dichlorodibutylstannane allows for the preparation of allylstannanes in aqueous medium. (554) Unsymmetrical ketones can be prepared by palladium coupling between acid chlorides and alkyl iodides in the presence of a zinc-copper couple. (136) A new five-membered ring annulation of unsaturated ketones, ketonitriles, ketoximes, or keto aldehydes is mediated by zinc powder in the presence of TMSCI and 2,6-lutidine in THF. (555)

3.14. Comparison with Other Methods

The formation of new carbon-carbon bonds is a major synthetic goal in organic chemistry. Polar main-group organometallics of lithium, magnesium, and to some extent boron and aluminum, have shown their great utility for this purpose. (21) They possess high reactivity toward many organic electrophiles and often furnish high yields of products. In recent years, it has become increasingly important to control the regio- and stereochemistry of new carbon-carbon bond formation and, owing to the increasing complexity of target molecules, the chemoselectivity of reactions of organometallic reagents has become an important issue. Organomagnesium halides and organolithium compounds are often too reactive because of the polar nature of the carbon-metal bond, and display low chemo- and stereoselectivities. In contrast, transition metal organometallics of titanium, (370, 556, 557) copper, (315-320, 394) manganese, (557-562) and palladium (24, 563) are very selective reagents and have a broad range of synthetic applications. Unfortunately, although transition metal organometallics tolerate many organic functionalities, they were originally prepared from the corresponding highly reactive organolithiums or Grignard reagents, and thus very few functionalities could be present in these reactive intermediates. Consequently they were used only to transfer simple organic fragments. This limitation has been solved by using organozinc chemistry. (14) The low polarity of the carbon-zinc bond allows the preparation of organozinc compounds bearing a range of functional groups. Owing to the presence of two vacant p orbitals at the zinc center with the appropriate energy for interacting efficiently with the orbitals of many metal salts, a wide range of transmetallation reactions with transition metal halides can be performed. Their subsequent transmetallation with transition metal salts allows one to prepare reactive and functionalized transition metal organometallic intermediates in situ and therefore facilitates the rapid

synthesis of highly functionalized molecules. (14) Alternative methods for the preparation of the same polyfunctional compounds often require several protection-deprotection steps or several functional group interconversions. The use of highly functionalized nucleophilic organic molecules in the synthesis of complex molecules certainly constitutes one of the major advantages of organozinc chemistry.

The preparation of organozinc derivatives has been greatly improved over recent years. (2) Whereas the direct insertion of zinc into organic halides (45) allows the most general access to polyfunctional organozinc halides, (47) the preparation of functionalized diorganozincs is best performed by using an iodine-zinc (64) or boron-zinc exchange. (237, 239, 240) The latter utilizes milder conditions. (237, 240) Treatment of organozinc halides with the copper cyanide-lithium chloride complex (47) leads to copper-zinc species which are significantly less reactive than the corresponding copper derivatives prepared from lithium or magnesium organometallics, but which undergo the same reactions, usually in excellent yield. (14, 65, 120) Whereas conjugate additions to enones (47) or nitroolefins, (74) carbometallations, (471) additions to aldehydes, (54) and coupling reactions with alkyl iodides (329) are best performed with the stoichiometrically prepared zinc-copper species, other reactions such as allylations (47) or acylations (47) can be efficiently performed by using catalytic amounts of the copper cyanide-lithium chloride complex (10 mol %). The simple and general approach to polyfunctional diorganozincs is proving to be extremely useful for catalytic asymmetric additions to aldehydes in the presence of chiral catalysts 121, 122 and 127. The use of organozincs in many transition metal catalyzed reactions often gives better results than that using other main group organo-metallics. The moderate reactivity of zinc organometallics is sufficient to form the reactive transition metal intermediates but avoids the formation of various transition metalate species, which undergo side-reactions like homocouplings or fast β -hydride eliminations. Several methods are now available for preparing configurationally stable secondary alkylzinc reagents in high optical purity.

4. Experimental Conditions

The nature of zinc (dust, foil, shots) is important for the success of the formation of an organozinc halide by oxidative addition. Usually, the use of zinc dust (-325 mesh) from Aldrich or Riedel de Haen gives the best results (see list of suppliers). Procedures for activation may involve chiefly removal of inert oxide by washing several times with 5% hydrochloric acid and washing in turn with water, methanol, ether, and drying. (564) The preparation of functionalized alkylzinc halides is best performed by adding a THF solution of an alkyl iodide to zinc dust (2-3 equivalents) which has been successively activated with 1,2-dibromoethane (3–5 mol %) and TMSCI (1 mol %). (47) It is important to add the alkyl iodide as a concentrated solution (2.5–3 M) in THF in order to obtain a rapid zinc insertion. (79) Under these conditions, primary alkyl iodides undergo zinc insertion between 30 and 40°, whereas secondary alkyl iodides react more readily (15° to room temperature). Organozinc halide formation is usually complete after a few hours. The organometallic solution is diluted with THF (to a 1.5-1.0 M solution), and the excess zinc dust is allowed to settle. The clear, colorless supernatant liquid can be transferred with a syringe or cannula to a separate flask and used for further applications.

The titration of organozinc halides can be conveniently performed by GC analysis. This also constitutes the best method for following formation of the zinc species. Thus, an internal standard (dodecane or other inert alkane) is added to the alkyl iodide before the addition to the zinc slurry in THF. The ratio between the two compounds is determined by GC analysis. (79) At the end of the reaction, no more alkyl iodide should be present. A small reaction aliquot is then treated with a THF solution of iodine and the new ratio between the reformed alkyl iodide and the internal standard is determined, allowing a precise evaluation of the yield of the organozinc reagent. Determination of the volume of the organozinc solution using a separatory funnel allows calculation of the concentration of the zinc reagent. THF solutions of organozinc halides are not pyrophoric, but are rapidly decomposed by air or by humidity.

Benzylic zinc halides have to be prepared at 0° and the benzylic halide has to be added as a 1 M THF solution in order to avoid the formation of Wurtz-coupling byproducts. (50, 51, 53) If electron-rich benzylic systems have to be converted to the corresponding zinc reagents, the best method consists of preparing the corresponding phosphates, which insert zinc in DMPU without the formation of homocoupling byproducts. (103)

Whereas zinc dust gives the best results in all the above reactions, the preparation of allylic zinc reagents gives better yields if cut zinc foil (45) or granular zinc (30 mesh) (79) is used. Recently, a new fragmentation reaction

of homoallylic alcohols has allowed the preparation of highly substituted and functionalized allylic zinc reagents. (296-298) Similarly, only mediocre results are obtained if (iodomethyl)zinc iodide is prepared using zinc dust, but cut zinc foil gives excellent yields. (270) Aryl and alkenyl zinc halides cannot be prepared in THF with zinc dust; their synthesis requires the use of highly reactive zinc prepared by the reduction of zinc chloride with lithium naphthalenide. (120) This procedure even allows the use of aryl bromides as precursors. An alternative method consists of using zinc on graphite, (133) prepared by the reduction of zinc chloride with potassium-graphite in the presence of silver acetate. This second type of activated zinc is not as active as Rieke zinc and always requires the use of an aryl iodide. If the aromatic ring or alkenyl iodide bears an electron-withdrawing group, the direct insertion of zinc dust in DMAC (48) or even THF usually works very well. (88)

Since the insertion of metallic zinc into a carbon-halide bond proceeds via a radical mechanism, the configuration of an alkenyl iodide is lost. This isomerization can be avoided by performing an iodine-lithium exchange reaction at low temperature, in which the double bond geometry is retained, $(-100 \text{ to } -90^\circ)$ followed by transmetallation to the corresponding alkenyl zinc derivative using zinc iodide. (209)

When using diethylzinc (or diisopropylzinc) for either iodine-zinc (64) or boron-zinc exchanges, (238-240) it is important to maintain strictly the absence of moisture and air, because of the high reactivity of these reagents with water and oxygen. Special care has to be taken during subsequent removal of the excess diethylzinc. Diethylzinc is a highly flammable liquid and mixtures of diethylzinc and liquid oxygen are explosive (the condensation of oxygen into a trap containing diethylzinc must be strictly avoided). However, dilution of diethylzinc with acetone, toluene, or THF (~1 M solution) affords a solution that does not burn spontaneously in air.

List of suppliers :

Sigma-Aldrich Chemical Co. Ltd.

USA : PO Box 355, Milwaukee, WI 53201. Tel. 0414-2733850

UK: The Old Brickyard, New Road, Gillingham, Dorset SP8 4JL. Tel. 0800-717181.

Germany : Sigma-Aldrich Chemie GmbH, Grünwalder Weg 30, D-82091 Deisenhofen. Tel. 0800-5155 000.

France : L'Isle D'abeau Chesnes, BP 701, 38297 Saint-Quentin Fallavier Cedex. Tel. 0800 211408.

Japan : Sigma-Aldrich Japan K. K., 1-1-7 Higashi Nihonbashi, Chuo-Ku Tokyo 103-0012. Tel. 81—5821-3111.

Riedel de Haen.

Germany : Wunstorfer Strasse 40, Postfach, D-30926 Seelze. Tel. 05137-9990.

5. Experimental Procedures

5.1.1. 10-Nitro-9-phenyldecyl Acetate (Coupling of a Copper-Zinc Reagent with a Primary Alkyl Iodide) (331)

To 4-iodobutyl acetate (2.42 g, 10 mmol) and copper(I) cyanide (5 mg) was added diethylzinc (2.0 mL, 20 mmol), and the reaction mixture was stirred at 50° for 5 hours. The excess diethylzinc and newly formed ethyl iodide were removed under vacuum (0.1 mm Hg, 50°, 1.5 hours), and THF (5 mL) was added with stirring. The suspension was allowed to settle, and the supernatant liquid was transferred to a THF solution of Me₂CuCN(MgCl)₂ (5 mmol, 1 M solution) at -50° . The resulting solution was warmed to 0° and then cooled to -78°, and DMPU (5 mL) was added, followed by 6-iodo-1-nitro-2-phenylhexane (1.0 g, 3 mmol). The reaction mixture was allowed to warm to 0°, stirred for 2 hours, poured into a saturated aqueous ammonium chloride solution (50 mL) and extracted with ether (3 × 20 L). The combined organic phases were washed with brine, dried over magnesium sulfate, and filtered. The crude residue was purified by flash chromatography (ether:hexanes 1:4) yielding the desired product as a clear oil (0.80 g, 83 % yield). IR (neat): 1735, 1551, 1241 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.33-7.11 (m, 5 H), 4.50 (dd, J = 7.1, 4.5 Hz, 2 H), 3.99 (t, J = 6.7 Hz, 2 H) 3.47-3.33 (m, 1 H), 1.98 (s, 3 H), 1.68-1.49 (m, 4 H), 1.31 1.10 (m, 10 H). Anal. Calcd. for C₁₈H₂₇O₄: C, 67.26; H, 8.47. N, 4.36. Found: C, 67.05; H, 8.67; N, 4.09.

5.1.2. 3-(4-Pentynyl)-2-cyclohexenone (Coupling of a Zinc-Copper Reagent with an Activated Alkenyl Iodide) (78)

To a suspension of zinc dust (325 mesh, 3.27 g, 50 mmol) in THF (4 mL) activated as described above with 1,2-dibromoethane and TMSCI was added a THF solution (8 mL) of 4-pentynyl iodide (4.46 g, 23 mmol). The temperature was maintained below 40° during the addition. The reaction was complete after 0.5–1 hour of stirring at room temperature as indicated by GLC analysis of hydrolyzed reaction aliquots. After the addition of THF (10 mL), the excess zinc was allowed to settle, affording a colorless solution of 4-pentynylzinc iodide. One-half of this solution was transferred via syringe to a THF solution (10 mL) of copper(I) cyanide (900 mg, 10 mmol) and lithium chloride (840 mg, 20 mmol) at -20°. A dark red solution of the copper-zinc reagent formed immediately. The reaction mixture was cooled to -60° after 5 minutes, and 3-iodo-2-cyclohexenone (1.55 g, 7 mmol) was added. The reaction mixture was stirred one hour at -30°, slowly warmed to 0° (1-2 hours), and worked up by pouring into a saturated aqueous ammonium chloride solution (50 mL) and extracting with ether (3 × 30 mL). The combined organic phases were washed with brine (2 × 20 mL), dried over magnesium sulfate, filtered, and concentrated. The crude residue was purified by flash chromatography (dichloromethane:ether:hexane = 10:1:80) affording the desired product (1.0 g, 88% yield). IR (neat): 2115, 1672, 1623 cm⁻¹; ¹H NMR (CDCl₃) δ : 5.87 (s, 1 H), 2.35-2.17 (m, 8 H), 2.01-1.89 (m, 3 H), 1.76-1.66 (m, 2 H). Exact mass calcd. for C₁₁H₁₄O : 162.1045, obsd. 162.1031.

5.1.3. Ethyl 3-(4-Oxo-2-phenylpentyl)benzoate (Preparation of a Benzylic Zinc Reagent from a Benzylic Bromide and Conjugate Addition of the Corresponding Zinc-Copper Reagent to an Enone) (51)

To a suspension of zinc dust (325 mesh, 0.67 g, 10.5 mmol) in dry THF was added dropwise at 5° (ice bath) a THF (7 mL) solution of 3-(carbethoxy)benzyl bromide (1.69 g, 7 mmol; one drop each 5-10 seconds). The reaction mixture was stirred at 5° for two hours. The reaction mixture was allowed to stand for two hours in order to let the excess zinc settle. The supernatant solution of benzylic zinc reagent was transferred via syringe at -20° to a THF solution (5 mL) of copper cyanide (0.63 g, 7 mmol) and lithium chloride (0.60 g, 14 mmol). After being stirred 5 minutes, the reaction mixture was cooled to -70°, and a solution of trans-4-phenyl-3-buten-2-one (0.88 g, 6 mmol) and TMSCI (1.9 mL, 15 mmol) in THF (3 mL) was added over 5 minutes. The reaction mixture was allowed to warm slowly to -5° , poured into an aqueous saturated solution of ammonium chloride (10 mL), and was stirred for 10 minutes. The mixture was diluted with ether (50 mL), the aqueous phase was further extracted with ether (2 × 20 mL), and the combined organic phases were washed with an aqueous saturated ammonium chloride solution (2 × 20 mL), brine (20 mL), and dried over magnesium sulfate. The crude residue obtained after evaporation of the solvents was purified by flash chromatography (ether:hexane = 1:4), affording the desired product as a clear oil (1.71 g, 92% yield). IR (neat): 1719 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.87 (m, 2 H), 7.26-7.06 (m, 7 H), 4.33 (q, 2 H, J = 7.1 Hz), 3.46 (quint, 1 H, J = 8 Hz), 2.97-2.75 (m, 4 H), 2.01 (s, 3 H), 1.37 (t, 3 H, J = 7.1 Hz). Exact mass calcd. for C₂₀H₂₃O₃: 311.1647, obsd. 311.1654.

5.1.4. Ethyl (E)-4-[3,4-(Methylenedioxy)phenyl]but-2-enoate (Preparation of a Benzylic Zinc Reagent from a Benzylic Phosphate and Addition of the Corresponding Zinc-Copper Reagent to ethyl Propiolate) (103)

Diethyl 3,4-(methylenedioxy)benzyl phosphate (1.44, g, 5 mmol) and lithium iodide (0.13 g, 1 mmol) were added to a zinc dust suspension (300 mesh, 0.98 g, 15 mmol) in DMAC (4 mL) previously activated with 1,2-dibromoethane (4 mol%) and TMSCI (1 mol%). After 12 hours of stirring at 50°, formation of the zinc reagent was complete as shown by GLC analysis of hydrolyzed reaction aliquots. The reaction mixture was diluted with THF (5 mL) and was allowed to stand for 2 hours in order to let the excess zinc settle. The supernatant solution of benzylic zinc reagent was transferred via syringe at -20° to a THF solution (5 mL) of copper cyanide (0.45 g, 5 mmol) and lithium chloride (0.43 g 10 mmol). After stirring for 5 minutes, ethyl propiolate (0.39 g, 4 mmol) was added and the reaction mixture was warmed to 0°, stirred for 5 minutes, and poured into a saturated aqueous solution of ammonium chloride (50 mL). After successive extractions with ether (3 × 50 mL), the combined organic layers were washed with brine (2 × 20 mL), and dried over magnesium sulfate. The crude residue obtained after evaporation was purified by flash chromatography (hexane:ether 19:1), affording the pure (*E*)-ester (790 mg, 84% yield, >98% pure by GLC analysis). IR (neat): 1715, 1654 cm⁻¹; ¹H NMR (CDCl₃) δ : 7.04 (dt, 1 H, *J* = 16.4, 6.5 Hz), 6.75 (d, 1 H, *J* = 7.7 Hz), 6.63 (m, 2 H), 5.94 (s, 2 H), 5.78 (dt, 1 H, J = 15.5, 1.6 Hz), 4.17 (q, 2 H, J = 7.1 Hz), 3.42 (dd, 2 H, J = 6.7, 1.6 Hz), 1.27 (t, 3 H, J = 7.1 Hz). Exact mass calcd. for C₁₃H₁₄O₄: 234.0892; obsd. 234.0887.

CH₂I₂ Zn, THF, 25°, 4 h ICH₂ZnI

5.1.5. Iodomethylzinc Iodide (Methylene Homologation Reagent) (270)

To a suspension of cut zinc foil (ca. $1 \times 3 \times 0.5$ mm) in THF (4 mL) was added 1,2-dibromoethane (200 mg, 1 mmol), and the reaction mixture was heated to

reflux for one minute. The mixture was cooled to room temperature, TMSCI (0.1 mL, 0.8 mmol) was added, and the activated zinc was stirred for 5 minutes. A THF solution (15 mL) of diiodomethane (13.4 g, 50 mmol) was added via an addition funnel at room temperature within 15 minutes. After 4 hours at this temperature, the reagent was ready to use. A yield of ~85% by GLC analysis of an iodolyzed reaction aliquot and a concentration of ~1.4 M was determined.

$$\begin{array}{c} 3. n-C_5H_{11}CHO \\ \hline 3. n-C_5H_{11}CHO \\ \hline 3. n-C_5H_{11}CHO \\ \hline 3. n-C_5H_{11}CHO \\ \hline 0H Ph \\ \hline 1. Mg, THF, 35^\circ, 1h \\ \hline 2. CuI•2LiCl, THF, -50^\circ \\ \hline 0H Ph \\ \hline 1. Mg, THF, 35^\circ, 1h \\ \hline 0H Ph \\ \hline 1. Mg, THF, 35^\circ, 1h \\ \hline 0H Ph \\ \hline 1. Mg, THF, 35^\circ, 1h \\ \hline 0H Ph \\ \hline 1. Mg, THF, 35^\circ, 1h \\ \hline 0H Ph \\ \hline 1. Mg, THF, 35^\circ, 1h \\ \hline 0H Ph \\ \hline 1. Mg, THF, 35^\circ, 1h \\ \hline 0H Ph \\ \hline 1. Mg, THF, 35^\circ, 1h \\ \hline 0H Ph \\ \hline 1. Mg, THF, 35^\circ, 1h \\ \hline 0H Ph \\ \hline 1. Mg, THF, 35^\circ, 1h \\ \hline 0H Ph \\ \hline 1. Mg, THF, 35^\circ, 1h \\ \hline 0H Ph \\$$

5.1.6. 2-Phenyl-1-nonen-4-ol (Methylene Homologation of an Alkenylcopper with (lodomethyl)zinc lodide and Trapping with an Aldehyde) (270)

To a solution of copper(I) iodide (1.15 g, 6 mmol) and lithium iodide (1.33 g, 10 mmol) in THF (25 mL) was added a THF solution of 1-phenylvinylmagnesium bromide (11 mL, 6 mmol) at -50°. The reaction mixture was warmed to room temperature, leading to an orange suspension, which was cooled to -50°. A solution of hexanal (400 mg, 4 mmol) in THF (2 mL) was added, and the reaction mixture was warmed to -30° . A solution of (iodomethyl)zinc iodide (10 mmol) prepared as described above was added, and the reaction mixture was warmed to -20°, stirred for 15 minutes at this temperature, poured into a saturated aqueous solution of ammonium chloride (100 mL), and extracted with ether $(3 \times 50 \text{ mL})$. The combined organic phases were washed with water (2 × 30 mL), brine (2 × 20 mL), dried over magnesium sulfate, and concentrated. The crude residue was purified by flash chromatography (hexanes:ether 19:1), affording the pure allylic alcohol (825 mg, 3.70 mmol, 92% yield). IR (neat): 3410 cm⁻¹. ¹H NMR (CDCl₃) δ : 7.4–7.25 (m, 5 H), 5.4 (s, 1 H), 5.15 (s, 1 H), 3.7–3.6 (m, 1 H), 2.8 (dd, 1 H, J = 14.2, 3.8 Hz), 2.5 (dd, 1 H, J = 14.2, 9 Hz), 1.65 (s, 1 H), 1.5–1.4 (m, 2 H), 1.3–1.2 (m, 5 H), 0.9–0.8 (m, 3 H). Exact. mass calcd. for C₁₅H₂₂O : 218.1670, obsd. 218.1674.

5.1.7. 4-(3-Cyanopropyl)-4,5-dihydro-3-methylene-5-phenyl-2-(3H)-furan (One-Pot Preparation of an α -Methylene- γ -butyrolactone Using Methylene Homologation of an Alkenylcopper Bearing an ester Function) (270)

To a suspension of zinc dust (325 mesh, 1.3 g, 20 mmol) pretreated with 1,2-dibromoethane (0.3 g, 1.5 mmol) and TMSCI (0.1 mL) was added 4-iodobutyronitrile (1.38 g, 7.1 mmol) in THF (4 mL). An exothermic reaction occurred, and the mixture was stirred 1.5 hours at 40°. THF (4 mL) was added, and the reaction mixture was allowed to stand for 2 hours. The supernatant solution was added via syringe to a solution of copper(I) cyanide (635 mg, 7.1 mmol) and lithium chloride (600 mg, 14 mmol) in THF (8 mL) at -10°. After 5 minutes, the reaction mixture was cooled to -60°, and ethyl propiolate (588 mg, 6 mmol) was added. After 4 hours of stirring between -60 and -40°, a solution of benzaldehyde (530 mg, 6 mmol) in THF (2 mL) was added, followed by a freshly prepared solution of (iodomethyl)zinc iodide (ca. 16 mmol) in THF (10 mL). The reaction mixture was warmed to 0°, stirred for 30 minutes at this temperature, poured into a saturated aqueous ammonium chloride solution (100 mL), and extracted with ether (3 × 50 mL). The combined organic phases were washed with brine $(2 \times 20 \text{ mL})$, dried over magnesium sulfate, and concentrated. The residue was purified by flash chromatography (hexane:ethyl acetate 7:3), affording the lactone as a clear oil (cis: trans mixture (90:10); 900 mg, 75% yield). IR (neat): 1750, 1662 cm⁻¹. ¹H NMR $(CDCI_3) \delta$: 7.43-7.1 (m, 5 H), 6.38 (d, 1 H, J = 2.3 Hz), 5.67 (d, 1 H, J = 2.1 Hz), 5.58 (d, 1 H, J = 7.2 Hz), 3.35-3.32 (m, 1 H), 2.41–2.3 (m, 1 H), 2.15 (t, 2 H, J = 6.8 Hz), 1.75–1.5 (m, 1 H), 1.5–1.2 (m, 2 H), 1.2–1.05 (m, 1 H). Exact mass calcd for C₁₅H₁₅O₂N : 241.1102, obsd. 241.1085.

5.1.8. (E)-6-Chloro-2-hexenenitrile (Preparation of an Alkenylzinc lodide via an lodine-Lithium Exchange Followed by Transmetallation with Zinc lodide and Cyanation) (304)

A three-necked flask was charged with (E)-5-chloro-1-iodo-1-pentene (1.38 g, 6.0 mmol) in THF (5 mL) and cooled to -100° (liquid nitrogen/ether bath), and n-butyllithium (6.3 mmol, 1.6 M in hexane) was added over four minutes. The resulting colorless solution was stirred for three minutes at -100°, and a THF solution (5 mL) of zinc iodide (1.91 g, 6.0 mmol) was added. The mixture was warmed to 0° for two minutes and cooled back to -78°. p-Toluenesulfonyl cyanide (0.90 g, 5 mmol) in THF (5 mL) was added, and the reaction mixture was warmed to room temperature and stirred for three hours. The reaction mixture was poured into a saturated aqueous solution of ammonium chloride (10 mL) and extracted with ether (3 × 30 mL), washed with saturated aqueous ammonium chloride (2 × 20 mL), brine (20 mL), and dried over magnesium sulfate. The crude residue obtained after evaporation of the solvents was purified by flash chromatography (hexane:ether 10:1), affording the pure (E)- α , β -unsaturated nitrile (466 mg, 72% yield) as a clear oil. IR (film): 2230, 1630 cm⁻¹; ¹H NMR (CDCl₃) δ : 6.64 (dt, J = 8.2, 16.4 Hz, 1 H), 5.35 (d, J = 16.3 Hz, 1 H), 3.48 (t, J = 6.4 Hz, 2 H), 2.39–2.31 (m, 2 H), 1.91–1.82 (m, 2 H); Anal. Calcd. for C₆H₈CIN : C, 55.61; H, 6.22; N, 10.80. Found: C, 55.73; H, 6.19; N, 10.52.

5.1.9. Benzyl

2(S)-[(tert-Butoxycarbonyl)amino]-5-carbethoxy-4-pentynoate (Coupling of a Zinc-Copper Reagent with a 1-Bromoalkyne) (100)

A suspension of zinc (300 mg, 4.5 mmol) in dry THF (0.34 mL) and 1,2-dibromoethane (19.4 µL, 0.225 mmol) was heated under nitrogen to 60° for 3 minutes. After cooling the mixture to 35°, TMSCI (6 µL, 0.046 mmol) was added, and the mixture was stirred vigorously for 0.5 hour (alternatively, the reaction mixture was placed in an ultrasonic bath and sonicated for 0.5 hour). The reaction mixture was warmed to 35° and benzyl 2(R)-[(tert-butoxycarbonyl)amino]-3-iodopropionate (400 mg, 0.99 mmol) in THF (1.5 mL) was slowly added, and the mixture was stirred for 15–40 minutes until no starting material remained (as judged by TLC). The solution of zinc reagent was cooled to -10° , and a solution prepared from copper cyanide (67 mg, 0.75 mmol) and lithium chloride (64 mg, 1.5 mmol) in THF (1.5 mL) was added. The mixture was stirred at 0° for 10 minutes and then cooled to -78°, and ethyl bromopropiolate (177 mg, 1.0 mmol) in THF (2 mL) was added. After 3 hours at this temperature, the reaction mixture was diluted with ethyl acetate (50 mL) and washed with aqueous hydrochloric acid (20 mL; 0.1 M) and water (30 × 20 mL), followed by drying over sodium sulfate. Concentration under reduced pressure gave a crude product, which was purified by flash chromatography over silica gel (hexanes-ethyl acetate gradient) to afford the pure product (138 mg, 0.37 mmol, 49% yield); $[\alpha]^{25}_{D}$ + 11.1°(c 1.06, dichloromethane); IR (film) 2241, 1743 cm⁻¹; ¹H NMR (CCl₄) δ 7.35 (s, 5 H), 5.39 (bd, 1 H), 5.23 (d, 1 H, J = 12.1 Hz), 5.21 (d, 1 H, J = 12.1 Hz), 4.56 (m, 1 H), 4.20 (q, 2 H, J = 7.1 Hz), 2.90 (d, 2 H, J = 5.0 Hz), 1.44 (s, 9 H), 1.30 (t, 3 H, J = 7.1 Hz).

$$n-C_{5}H_{11} \xrightarrow{Br} \underbrace{1. Zn, THF, DMSO, 25^{\circ} \text{ to } 40^{\circ}}_{OAc} \xrightarrow{n-C_{5}H_{11}} \underbrace{ZnBr}_{OAc}$$

$$+ EtO_{2}S \xrightarrow{NO_{2}} \underbrace{2. CuCN \cdot 2LiCl, THF, 0^{\circ}, 5 \min}_{3. -78 \text{ to } -60^{\circ}, 0.5 \text{ h}} \xrightarrow{n-C_{5}H_{11}} \underbrace{NO_{2}}_{OAc} \xrightarrow{NO_{2}} (80\%)$$

5.1.10. (E)-3-Acetoxy-1-nitro-1-octene (Preparation of an α -Acyloxyalkylzinc Bromide and Conjugate Addition-Elimination of the Corresponding Zinc-Copper Compound to 2-(Ethylsulfonyl)nitroethylene) (74)

To a suspension of zinc dust (0. 98 g, 15 mmol) previously activated with 1,2-dibromoethane (0.1 mL) and TMSCI (0.05 mL) in a mixture of THF (3.5 mL)

and DMSO (1 mL) was slowly added 1-bromohexyl acetate (1.12 g, 5 mmol) at room temperature. The addition was exothermic and the temperature reached 40°. GLC analysis of a hydrolyzed reaction aliquot showed complete formation of the zinc reagent. THF (5 mL) was added and the mixture was allowed to stand while excess zinc settled. The resulting clear solution was slowly added to a solution of copper(I) cyanide (0.4 g, 4.5 mmol) and lithium chloride (0.38 g, 9 mmol) in THF (2 mL) at -40°, and warmed to 0° for 5 minutes. It was then cooled to -78°, and 2-(ethylsulfonyl)nitroethylene (0.58 g, 3.5 mmol) in THF (5 mL) was slowly added. The reaction mixture was stirred at -60° for 30 minutes, poured into a saturated aqueous solution of ammonium chloride (50 mL) and extracted with ether (3 × 25 mL). The combined organic layers were washed with brine (2 × 20 mL), dried over magnesium sulfate, filtered, and concentrated. The residual oil was purified by flash chromatography (hexane:ether 97:3) to afford the pure (E)-nitroolefin (0.52 g, 80% yield). IR (neat): 1658, 1513, 1354 cm⁻¹. ¹H NMR (CDCl₃) δ : 7.15 (dd, 1 H, J = 5.0, 13.3 Hz), 7.04 (d, 1 H, J = 13.4 Hz), 5.50 (m, 1 H), 2.11 (s, 3 H), 1.72 (m, 2 H), 1.30 (m, 6 H), 0.88 (t, 3 H, J = 6.7 Hz). Exact mass calcd. for $C_{10}H_{17}NO_4NH_4^+$ 233.1501, obsd. 233.1497.

5.1.11. 3-(3-Cyanopropyl)cyclohexanone (Preparation of a Dialkylzinc from a Functionalized Alkyl lodide via an lodine-Zinc Exchange and Conjugate Addition to an Enone) (64)

A Schlenk flask equipped with a septum cap and an argon outlet was charged with 4-iodobutyronitrile (1.20 g, 6 mmol) and diethylzinc (3.0 mL, 30 mmol). The reaction mixture was warmed to 50–55° and stirred for 12 hours at this temperature. GLC analysis of a hydrolyzed aliquot indicated completion of the reaction. The ethyl iodide formed and excess diethylzinc were removed under vacuum (50°, 2 hours; ~0.1 mm Hg). The resulting oily bis(3-cyanopropyl)zinc was dissolved in THF (3 mL) and added to a THF solution (6 mL) of copper(I) cyanide (270 mg, 3 mmol) and lithium chloride (255 mg, 6 mmol, dried 2 hours at 150° under 0.1 mm Hg) at -20° . The resulting light green solution was cooled to -78° , and TMSCI (0.8 g, 7 mmol) and 2-cyclohexenone (335 mg, 3.5 mmol) were successively added. The mixture was slowly warmed to -10°

overnight, poured into saturated aqueous ammonium chloride (25 mL), stirred for 5 minutes at room temperature, and extracted with ether (3 × 25 mL). The combined organic phases were washed with brine (2 × 10 mL), dried over magnesium sulfate, and concentrated. The crude residue was purified by flash chromatography (30% ethyl acetate in hexane) affording the pure product as a colorless oil (483 mg, 83% yield). IR (neat): 2245, 1708 cm⁻¹; ¹H NMR (CDCl₃) δ 2.48–2.22 (m, 5 H), 2.12–1.98 (m, 2 H), 1.96–1.88 (m, 1 H), 1.86–1.75 (m, 1 H), 1.74–1.6 (m, 3 H), 1.59–1.29 (m, 3 H). Exact mass calcd. for C₁₀H₁₅NO : 165.1153, obsd. 165.1140.

5.1.12. 1-Cyclopentyl-3,3-dimethyl-2-butanone (Intramolecular Conjugate Addition) (89)

A 50-mL, three-necked, round-bottomed flask equipped with an argon inlet, 10 mL pressure-equalizing addition funnel, and rubber septum was charged with lithium (32 mg, 4.61 mmol), naphthalene (615 mg, 4.80 mmol) and THF (3 mL). After 2.5 hours, a solution of zinc chloride (327 mg, 2.40 mmol) in THF (5 mL) was added over 15 minutes to the blue-green solution of lithium naphthalenide. A dark gray suspension of active zinc metal formed immediately. To this mixture was added a solution of (E)-2,2-dimethyl-9-iodo-4-nonen-3-one (294 mg, 1.0 mmol) in THF (4 mL). After one hour, the reaction mixture was guenched with an agueous 1 N HCI solution (10 mL) and diluted with diethyl ether (10 mL). The aqueous layer was separated and washed with diethyl ether (3 × 20 mL), and the combined organic layers were washed with aqueous saturated sodium sulfite (20 mL), brine (20 mL), dried over magnesium sulfate, filtered, and concentrated. Column chromatography on silica gel (elution with 0-50 % dichloromethane-hexane) provided the desired product as a colorless oil (101 mg, 60% yield). IR (film): 1704 cm⁻¹; ¹H NMR (CDCl₃) δ : 2.48 (d, J = 7 Hz, 2 H), 2.32–2.16 (m, 1 H), 1.85–1.74 (m, 2 H), 1.63–1.46 (m, 4 H), 1.09 (s, 9 H), 1.07-0.94 (m, 2 H).

5.1.13. 3-(1-Propyl-2-nitroethyl)-2-cyclohexen-1-one (Zinc Insertion into an Activated Iodoalkene and Conjugate Addition of the Corresponding Zinc-Copper Reagent to a Nitroolefin) (88)

To zinc dust was added a solution of 1,2-dibromethane (200 mg, 1 mmol) in THF (3 mL). The zinc suspension was heated to ebullition with a heat gun, allowed to cool, and heated again. This process

was repeated three times. TMSCI (0.15 mL, ~1.2 mmol) was added and after 10 minutes of stirring, a solution of 3-iodo-2-cyclohexen-1-one (2.22 g, 10 mmol) in THF (3 mL) was added dropwise over 15-20 minutes. During the addition, the reaction temperature reached 55°. The reaction mixture was stirred 1 hour at room temperature, THF (8 mL) was added, and the mixture was allowed to stand for 1-2 hours, leading to a colorless solution of the zinc reagent. GLC analysis of an aliquot indicated complete conversion of the alkenyl iodide to the zinc organometallic as well as formation of less then 8% of dimer. The solution of zinc reagent was transferred via cannula or syringe to a THF solution (10 mL) of copper(I) cyanide (900 mg, 10 mmol) and lithium chloride (850 mg, 20 mmol) at -30°. After 5 minutes of stirring, the reaction mixture was cooled to -60°, and 1-nitro-1-pentene (804 mg, 7 mmol) was added, and the mixture was allowed to warm to 0° within 3 hours. The mixture was cooled to -70° and a solution of acetic acid (1 mL) in THF (3 mL) was slowly added. The mixture was poured into a saturated aqueous ammonium chloride solution (50 mL) and extracted with ether (3 × 30 mL). The combined organic phases were washed with brine (2 × 25 mL), dried over magnesium sulfate, filtered, and concentrated. Flash chromatographic purification of the residue using ethyl acetate:hexane (1:5) as solvent afforded the desired product (1.13 g, 71% yield) as a colorless oil. IR (neat) 1706, 1668 cm⁻¹; ¹H NMR (CDCl₃) δ 5.87 (s, 1 H), 4.43 (d, 2 H, J = 6.7 Hz), 3.04 (quintet, 1 H, J = 6.9 Hz), 2.37 (t, 2 H, J = 6.4 Hz), 2.28 (t, 2 H, J = 6.2 Hz), 2.00 (quintet, 2 H, J = 6.0 Hz), 1.48 (m, 2 H), 1.28 (m, 2 H), 0.91 (t, 3 H, J = 7.1 Hz). Exact mass calcd. for C₁₁H₁₇NO₃: 211.1208, obsd. 211.1207.

5.1.14. 2-Carbethoxy-3-(1-trimethylsilyloxy-4-methyl-4-penten-1-yl)-2-cycl open-ten-1-one (Addition of a Zinc Homoenolate to an Acetylenic ester: A Formal [3 + 2] Cycloaddition) (443)

To a solution of [(1-ethoxycyclopropyl)oxy]trimethylsilane (4.8 mL, 24 mmol) in diethyl ether (18 mL) was added a diethyl ether solution of zinc chloride (18 mL, 18 mmol) at room temperature. The mixture was sonicated for 40 minutes and was stirred at room temperature for an additional 10 minutes. The heterogeneous mixture was cooled to 0°, and copper(I) bromide-dimethyl sulfide complex (308 mg, 1.5 mmol) and ethyl

4-hydroxy-7-methyl-oct-7-en-2-ynoate (980 mg, 5 mmol) in THF (18 mL) and hexamethylphosphoramide (HMPA, 4.2 mL, 24 mmol) were successively added. The mixture was stirred for 5 minutes at 0°, and then for 4 hours at room temperature. The reaction mixture was quenched with saturated aqueous ammonium chloride solution (25 mL), and the organic layer was washed with half-saturated ammonium hydroxide solution until no blue color appeared in the wash. The resulting organic layer was washed with water (2 × 25 mL) and brine (20 mL), dried over magnesium sulfate, and concentrated. The crude residue was purified by chromatography (10% ethyl acetate-hexanes) to give the trimethylsilyl-protected hydroxycyclopentenone (1.27 g, 86% yield). ¹H NMR (CDCl₃) δ 5.14 (dd, *J* = 9.5, 5.7 Hz, 1 H), 4.68 (bd, *J* = 13.3 Hz, 2 H), 4.27 (q, *J* = 7.6 Hz, 2 H), 2.72 (dt, *J* = 20.8, 5.7 Hz, 2 H), 2.43 (t, *J* = 5.7 Hz, 2 H), 2.2–1.56 (m, 4 H), 1.68 (bs, 3 H), 1.31 (t, *J* = 7.6 Hz, 3 H), 0.08 (s, 9 H).

5.1.15. 1-Butyl-1-(3-nitro-2-phenylpropyl)cyclopentane (Palladium-Catalyzed Diethylzinc-Mediated Cyclization of a 5-Hexenyl lodide Followed by Trapping the Cyclized Zinc-Copper Reagent with a Nitroolefin) (165)

A THF solution (5 mL) of

dichloro-[1,1¢-bis(diphenylphosphino)ferrocene]palladium(II) [PdCl₂(dppf)] (70 mg, 2 mol %) in THF (5 mL) was cooled to -78°. 5-Butyl-1-iodo-5-hexene (1.33 g, 5 mmol) and diethylzinc (1.0 mL, 1.23 g, 10 mmol) were added. The mixture was warmed to room temperature and stirred for 4 hours. The solvent and excess diethylzinc were evaporated (0.1 mm Hg, room temperature, 1 hour). After addition of THF (5 mL) and cooling to -40° , a solution of copper(I) cyanide (450 mg, 5 mmol) and lithium chloride (430 mg, 10 mmol) in THF (5 mL) was added and the reaction mixture was warmed to 0° (5 minutes) and cooled back to -78°. β -Nitrostyrene (1.12 g, 7.5 mmol) in THF (3 mL) was added and the reaction mixture was slowly warmed to 0° and stirred for 2 hours. The reaction mixture was poured into a solution of saturated aqueous ammonium chloride (50 mL) and extracted with ether (3 × 30 mL). The combined organic phases were washed with brine (2 × 20 mL), dried over magnesium sulfate, and concentrated. The crude residue was purified by flash chromatrography (ether:hexanes 1:9) to yield the desired product as a clear oil (1.16 g, 81% yield). IR (neat) 1555, 1385 cm⁻¹. ¹H NMR (CDCl₃) δ : 7.39–7.20 (m, 5 H), 4.73 (d, 2 H, J = 9.7 Hz), 4.66-4.51 (m, 2 H), 3.48 (q, 1 H, J = 7.6 Hz),2.00-1.93 (m, 4 H), 1.77-1.69 (m, 2 H), 1.47-1.17 (m, 8 H), 0.92 (t, 3 H, J = 6.0 Hz). Anal. Calcd. for C₁₈H₂₇NO₂: C, 74.70; H, 9.40; N, 4.84. Found: C, 74.86; H, 9.65; N, 4.70.

5.1.16. trans-4,5-Dihydro-4-(3-carbethoxy-3-butenyl)-5-isopropyl-2-(3H)-f uranone (Nickel(II)-Catalyzed Diethylzinc-Mediated Cyclization of an Allylic Iodoacetal Followed by Trapping the Cyclized Zinc-Copper Reagent with an Allylic Bromide) (470)

To a suspension of nickel(II) bis(acetylacetonate) (60 mg, 0.25 mmol), lithium iodide (160 mg, 1.25 mmol), and

1-bromo-2-ethoxy-4-isopropyl-3-oxa-5-hexene (1.25 g, 5.0 mmol) in THF (5 mL) was added diethylzinc (1.0 mL, 10 mmol). The reaction mixture was warmed to room temperature within an hour, leading to a black solution. The cyclization reaction was completed by heating the mixture at 40° for 12 hours. A THF solution (15 mL) of copper(I) cyanide (1.33 g, 15 mmol) and lithium chloride (1.26 g, 30 mmol) was added at –60°. The reaction mixture was stirred for 20 minutes at 0°, ethyl (2-bromomethyl)acrylate (2.95 g, 15 mmol) was added at –78°, and the reaction mixture was warmed to room temperature. After 5 minutes it was poured into a saturated aqueous ammonium chloride solution (50 mL) and extracted with ether (3 × 100 mL). The combined organic phases were washed with brine (2 × 20 mL), dried over magnesium sulfate, and concentrated to afford the crude THF derivative, which was converted directly to the lactone in the following way.

A solution of *m*-chloroperbenzoic acid (1.64 g, 9.6 mmol, purity 50%) in dichloromethane (10 mL) was dried with magnesium sulfate (~2 g). To this filtered solution were added successively at room temperature boron trifluoride etherate (0.2 mL, 1.58 mmol) and the previously obtained crude oil dissolved in dichloromethane (2–3 mL). After one hour of stirring, the mixture was diluted with ether (30 mL) and washed successively with a saturated aqueous solution of sodium thiosulfate (2 × 20 mL), a saturated aqueous solution of potasium carbonate (10 mL), and brine (2 × 20 mL). The organic layer was dried over magnesium sulfate, filtered, and concentrated. The crude product was purified by chromatography (hexanes:ether 4:1) to afford the *trans*- γ -butyrolactone (0.63 g, 50% overall yield). IR (neat) 1790, 1750 cm⁻¹. ¹H NMR (CDCl₃) δ 6.10

(s, 1 H), 5.48 (s, 1 H), 4.13 (q, 2 H, J = 7.1 Hz), 3.89 (dd, 1 H, J = 5.4 Hz), 2.62 (dd, 1 H, J = 19.8, 11.2 Hz), 2.20 (m, 4 H), 1.76 (m, 1 H), 1.6 (m, 1 H), 1.47 (m, 1 H), 1.24 (t, 3 H, J = 1.7 Hz), 0.90 (t, 6 H, J = 7.5 Hz). Anal. Calcd. for C₁₄H₂₂O₄: C, 66.40; H, 8.66. Found: C, 66.16; H, 8.92.

5.1.17. Isopropyl (4R*,5S*)-5-(Benzyloxy)-4-ethenyl-6-methylheptanoate (S_N2' -Allylation of a Zinc Homoenolate Prepared from a Cyclopropylacetal) (323)

To freshly fused zinc chloride (40.9 mg, 0.3 mmol) was added 1-isopropoxy-1-(trimethylsiloxy)cyclopropane (119 mg, 0.6 mmol) in ether (3 mL). After 3 hours at room temperature, copper(I) bromide-dimethyl sulfide complex (5 µmol, 1 mg) and 4-benzyloxy-5-methyl-2-hexenyl chloride (47.7 mg, 0.20 mmol) in DMF (2 mL) were added. The reaction was stirred for 15 hours at room temperature, and potassium fluoride (100 mg) in water (20 µL) was added. After stirring for one hour, the mixture was filtered through a short column of silica gel with ether to give the desired ester as an oil (48.2 mg, 73 % yield). IR (neat) 1735 cm⁻¹; ¹H NMR (CDCl₃) δ 7.49–7.20 (m, 5 H), 5.76 (ddd, *J* = 10.1, 10.1, 17.1 Hz, 1 H), 5.17–4.91 (m, 3 H), 4.60 (s, 2 H), 3.01 (dd, *J* = 2.5, 6.3 Hz, 1 H), 2.41–2.06 (m, 3 H), 1.94–1.66 (m, 3 H), 1.23 (d, *J* = 6.3 Hz, 6 H), 1.00 (d, *J* = 6.3 Hz, 3 H), 0.90 (d, *J* = 6.3 Hz, 3 H). Anal. Calcd. for C₂₀H₃₀O₃: C, 75.43; H, 9.50. Found: C, 75.51; H, 9.56.

5.1.18. Ethyl 4-(4-Cyanophenyl)benzoate (Palladium-Catalyzed Cross-Coupling with an Arylzinc lodide Prepared Using Rieke Zinc) (120) Two 50-mL two-necked flasks, A and B, were equipped with rubber septa, condensers trapped with argon inlets, and magnetic stir bars. Flask A was charged with freshly cut lithium (213 mg, 30.6 mmol) and naphthalene (3.99 g, 31.2 mmol). Flask B was charged with anhydrous zinc chloride (2.09 g, 15.4 mmol). Both of these operations were performed in a argon atmosphere drybox. The flasks were then transferred to the manifold system and the argon inlet fitted. Freshly distilled THF (15 mL) was added to both flasks. The lithium was consumed in about 2 hours, leading to a dark green solution. The zinc chloride solution was transferred dropwise to flask A over 15 minutes. (The active zinc was typically used at this point, but it could be washed with fresh solvent if naphthalene presents a problem with product isolation.) ethyl 4-iodobenzoate (1.93 g, 7.0 mmol) was added to the active zinc (~15.4 mmol) at room temperature. The reaction mixture was stirred for 3 hours, then the solution was allowed to stand while excess zinc settled from the dark brown organozinc iodide solution. The supernatant solution was then ready for further transformations. Thus (4-carbethoxyphenyl)zinc iodide (2.16 mmol in THF $(\sim 10 \text{ mL})$ was transferred via cannula to a THF solution of Pd(PPh₃)₄ (127 mg, 0.11 mmol) and 4-bromobenzonitrile (400 mg, 2.19 mmol) at room temperature. After 3 hours of stirring, the reaction mixture was poured into a saturated aqueous ammonium chloride solution (10 mL) and extracted with diethyl ether (3 × 10 mL). The combined organic layers were dried over calcium chloride. The resultant crude product was purified by flash chromatography on silica gel using a gradient elution (hexanes to remove napthalene first, then hexanes-ethyl acetate) to give pure ethyl 4-(4-cyanophenyl)benzoate (433 mg, 1.73 mmol, 80 % yield) as a crystalline solid, mp 114–115°. IR (CCl₄) 2231, 1722, 1608 cm⁻¹; ¹H NMR (CDCl₃) δ 8.21 – 7.60 (m, 8 H), 4.42 (q, J = 7.1 Hz), 2 H), 1.42 (t, J = 7.1 Hz, 3 H); Anal. Calcd. for C₁₆H₁₃NO₂: C, 76.48; H, 5.21; N, 5.57. Found: C, 76.25; H, 5.17; N, 5.31.

5.1.19. Ethyl 5-Oxo-6-methyl-6-heptenoate (palladium(0)-Catalyzed Acylation of an Alkylzinc lodide Prepared in DMAC and Benzene) (496)

To a 300-mL four-necked flask flushed with nitrogen and containing a zinc-copper couple (5.6 g, 85.5 mmol) in dry benzene (20 mL) were added ethyl 4-iodobutyrate (13.8 g, 57 mmol) in DMAC (9 mL) and benzene (70 mL) within 3 minutes at room temperature. The mixture was stirred for one hour at room temperature and was then heated at gentle reflux in an oil bath for 4.5 hours. After the reaction mixture was cooled to 60° , a solution of Pd(PPh₃)₄ (0.58 g, 0.5 mmol) in benzene (15 mL) was added over one minute. A solution of methacryloyl chloride (5.23 g, 50 mmol) in benzene (10 mL) was added over 5 minutes and stirring was continued for one hour. The reaction mixture was filtered though a Celite pad, and the filtrate was washed successively with aqueous 1 N ammonium chloride (50 mL), aqueous saturated sodium hydrogen carbonate (10 mL), and saturated aqueous sodium chloride (50 mL). The aqueous phases were extracted with diethyl ether (100 mL). The combined organic extracts were dried over magnesium sulfate and the solvents were removed to yield a deep brown oil. This product was purified by chromatography on silica gel using a hexane-diethyl ether gradient followed by a Kugelrohr distillation in the presence of hydroquinone (10 mg) to give the pure product as a colorless liquid (8.0–8.1 g, 87–88%), bp 185° (20 mm). IR (film) 1730, 1680 cm⁻¹; ¹H NMR (CDCl₃) δ 5.96 (s, 1 H), 5.77 (brs, 1 H), 4.13 (q, 2 H, J = 7.1 Hz), 2.76 (t, 2 H, J = 7.1 Hz), 2.35 (t, 2 H, J = 6.8 Hz),1.75–2.11 (m, 5 H), 1.25 (t, 3 H, J = 7.1 Hz).

5.1.20. (6S)-(+)-6-Hydroxy-7-triisopropylsilyloxyheptyl Pivalate (Enantioselective Addition of a Functionalized Dialkylzinc to an α -Alkoxyaldehyde Affording a Protected 1,2-Diol) (532) To 5-iodopentyl pivalate (7.40 g, 24 mmol), were added copper(I) iodide (ca. 14 mg, 0.3 mmol %) and diethylzinc (3.6 mL, 36 mmol). The reaction mixture was warmed to 55° and stirred for 12 hours. The flask was connected to a vacuum (0.1 mm Hg), and the resulting ethyl iodide and excess diethylzinc were distilled (ca. 4 hours). The resulting dialkylzinc was dissolved in toluene (8 mL). A second flask charged with (1*R*,

2*R*)-1,2-bis(trifluoromethanesulfonamido)cyclohexane (121 mg, 0.3 mmol) and Ti(OPr–*i*)₄ (2.4 mL, 8 mmol) in toluene (2 mL) was heated to 50° for 0.5 hour and then cooled to –40°. The toluene solution of the zinc reagent was added, followed by 2-triiso-propylsilyloxyethanal (0.86 g, 4 mmol). The reaction mixture was warmed to –20°, was stirred at this temperature overnight, and then poured into a saturated aqueous ammonium chloride solution (50 mL) and extracted with ether (3 × 40 mL). The combined organic phases were washed with brine (2 × 20 mL), dried over magnesium sulfate, and concentrated. The residue was purified by flash chromatography (hexane:ether 4:1) affording the desired alcohol as a clear oil (1.17 g, 75% yield, 93% ee); [α]²⁵_D = +0.64° (*c* 4.71, benzene). IR (neat) 1635 cm⁻¹. ¹H NMR (CDCl₃) δ 4.04 (t, *J* = 6.6 Hz, 2 H), 3.72–3.65 (m, 2 H), 3.50–3.44 (m, 1 H), 2.56 (bs, 1 H), 1.68–1.61 (m, 3 H), 1.48–1.37 (m, 6 H), 1.18 (s, 9 H), 1.14–1.02 (m, 21 H). Anal. Calcd. for C₂₁H₄₄O₄Si C, 64.91; H, 11.41. Found: C, 64.95; H, 11.60.

5.1.21. 1-(2-Hydroxy)phenyl-3-buten-1-ol (Barbier Reaction Performed in Aqueous Medium) (148)

A mixture of 2-hydroxybenzaldehyde (244 mg, 2 mmol), allyl bromide (492 mg, 4 mmol), zinc powder (260 mg, 4 mmol) in THF (1 mL), and saturated aqueous ammonium chloride (3 mL) was stirred at room temperature. An exothermic reaction proceeded, and the reaction was complete within 20 minutes. The reaction mixture was extracted with ether (3 × 25 mL), and the combined organic phases were washed with brine (10 mL), dried over magnesium sulfate, and purified by flash chromatography (hexane-ether). The product was the pure benzylic alcohol (330 mg, 75% yield). IR (neat) 3350, 1640 cm⁻¹; ¹H NMR (CDCl₃) δ 8.0 (brs, 1 H), 7.3–6.7 (m, 4 H), 6.1–5.6 (m, 1 H), 5.3–5.0 (m, 2 H), 4.8 (t, 1 H), 2.6 (t, 2 H).

5.1.22. N-Benzyl-6-(4-carbethoxyphenyl)purine (Palladium-Catalyzed Cross-Coupling Reaction of a Heteroaromatic Zinc Compound with a Functionalized Aryl Iodide) (118)

To a suspension of zinc dust (0.85 g, 13 mmol) in THF pretreated with 1,2-dibromoethane (0.15 g, 0.8 mmol) and TMSCI (0.1 g, 0.92 mmol) was added a solution of N-benzyl-6-iodopurine (0.75 g, 2.2 mmol) in THF (3 mL). The suspension was stirred for 4 hours at room temperature. Meanwhile, a two-necked flask equipped with an argon inlet was charged with palladium bis(dibenzylideneacetone) (15 mg, 0.026 mmol, 10 mol %), tri(2-furyl)phosphine (28 mg, 0.12 mmol, 5 mol %) and THF (2 mL). The solution was stirred until the red color disappeared (~ 10 minutes), indicating formation of the catalyst. A solution of ethyl 4-iodobenzoate (0.95 g, 3.4 mmol) in THF (2 mL) was added to the catalyst, followed by the red solution of the zinc compound. The reaction mixture was heated to 70° and stirred for 5 hours. The mixture was cooled to room temperature, quenched with a saturated aqueous ammonium chloride solution, and extracted with dichloromethane. The combined organic extracts were washed with brine, dried over magnesium sulfate, and concentrated at reduced pressure to give a solid. The crude residue was purified by chromatography (hexane/ether 5/1 to 1/1) to afford the desired product (0.54 g, 70 %). IR (neat) 2972, 1708, 1584, 1561, 1294, 1107, 775, 726 cm⁻¹. ¹H NMR (CDCl₃) δ 8.90 (s, 1 H), 8.70 (d, J = 8.2 Hz, 2 H), 8.01 (d, J = 8.4 Hz, 2 H), 7.94 (s, 1 H), 7.18 (s, 5 H), 5.40 (s, 2 H), 4.22 (q, J = 7.2 Hz, 2 H), 1.24 (t, J = 7.2 Hz, 3 H). Anal. Calcd for C₁₂H₂₅Br : C, 70.38; H, 5.06; N, 15.63; Found: C, 70.18; H, 5.13; N, 15.70.

5.1.23. (1S,2R)-1-(o-Methoxyphenyl)-2-(1-oxopentyl)cyclopentane (Palladium-Catalyzed Stereoselective Acylation of a Chiral Secondary Diorganozinc) (40)

A Schlenk flask was charged with (–)-monoisopinocampheylborane (3.1 mL, 2.5 mmol, 0.8 M) in ether, cooled to -35° , and

1-(o-methoxyphenyl)cyclopentene (435 mg, 2.5 mmol) in ether (1 mL) was added. The reaction mixture was stirred at -35° for 48 hours, and the solvents were then carefully evaporated under reduced pressure. Diethylborane (2.1 mL of a 7.3 M solution in dimethyl sulfide, 15 mmol) was added, and the resulting solution was stirred at 50° for 16 hours. The solvents were evaporated under reduced pressure (25°, 2 hours). Diisopropylzinc (2.5 mL of a 0.3 M solution in ether, 7.5 mmol) was added over 10 minutes, and the reaction mixture was stirred at 25° for 5 hours. The volatiles were evaporated under reduced pressure (0 to 25°, 30 minutes), and the resulting gray residue was dissolved in dioxane (5 mL). The mixture was filtered under inert gas and cooled to 0°. A previously prepared mixture of palladium bis(dibenzylidene)acetone (20 mg, 2 mol %), tri(o-tolyl)phosphine (30 mg, 4 mol %), and pentanoyl chloride (905 mg,7.5 mmol) in dioxane (3 mL) was added. The reaction mixture was allowed to warm slowly to 25°. After 12 hours the reaction mixture was quenched with an aqueous ammonia solution and stirred for 15 minutes. Then aqueous 2 M hydrochloric acid was added and the mixture was extracted with ether. After drying over magnesium sulfate and evaporating the solvents, the crude residue was purified by chromatography (hexane:ether, 49:1), affording 375 mg of pure product (58% yield based on the starting alkene). The syn:anti ratio (dr = 1:99) and the enantioselectivity (er = 90.5:9.5) were determined by capillary GLC analysis on a chiral cyclodextrin column (CP-Chirasil-Dex CB-Chrompack). IR (neat) 2956, 2870, 1708, 1492, 1463, 1243, 1030, 753 cm⁻¹. ¹H NMR (CDCl₃) δ 7.12-7.06 (m, 4 H), 3.70 (s, 3 H), 3.53-3.44 (q, J = 8.0 Hz, 1 H), 3.04-2.95 (q, J = 8.0 Hz, 1 H), 2.22-2.16 (td, J = 7.5, 3.5 Hz, 2 H), 2.04-1.64 (m, 6 H), 1.42-1.33 (quint,

J = 7.5 Hz, 2 H), 1.19-1.05 (sext, J = 7.5 Hz, 2 H). Exact mass calcd. for $C_{17}H_{24}O_2$: 260.1776, obsd. 260.1774.

5.1.24. Ethyl (E)-13-Pivalyloxy-2-tridecenoate (Nickel(II)-Catalyzed Cross-Coupling of a Functionalized Dialkylzinc with a Functionalized Alkyl lodide) (333)

A two-necked flask equipped with an argon inlet was charged with 6-iodohexyl pivalate (3.75 g, 12 mmol), copper(I) iodide (4 mg, 0.02 mmol), and diethylzinc (1.3 mL, 13 mmol). The reaction mixture was heated at 50° and

stirred for 8 hours. The ethyl iodide formed and excess diethylzinc were removed under vacuum (50°, 2 hours, ~0.1 mm Hg). The resulting oily bis(6-pivaloxyhexyl)zinc was dissolved in THF (4 mL) at room temperature. Meanwhile a three-necked flask equipped with an argon inlet was charged with nickel(II) bis(acetylacetonate) (116 mg, 0.45 mmol, 8 mol%), NMP (1.5 mL), and THF (2.5 mL).

(*E*)-Ethyl 7-iodo-2-heptenoate (1.69 g, 6 mmol) was added to the catalyst solution at –78°. The solution of bis(6-pivaloxyhexyl)zinc was slowly added at –78°. The resulting mixture was allowed to warm to –35° and stirred for 15 hours. The reaction was carefully quenched with a saturated aqueous ammonium chloride solution and was extracted extracted with ether. The combined organic layers were washed with brine, dried over magnesium sulfate, and evaporated under vacuum. The crude residue was purified by flash chromatography (hexane:ether = 19:1 to 5:9) to afford the desired product (1.49 g, 73 %). IR (neat) 2935, 1730, 1465, 1160 cm⁻¹; ¹H NMR (CDCl₃) δ 6.93-6.83 (m, 1 H), 5.73 (d, *J* = 15.7 Hz, 1 H), 4.09 (q; *J* = 7.1 Hz, 2 H), 3.96 (t, *J* = 6.6 Hz, 2 H), 2.11 (t, *J* = 7.1 Hz, 2 H), 1.56-1.49 (m, 2 H), 1.39-1.35 (m, 2 H), 1.28-1.17 (m, 15 H), 1.11 (s, 9 H). Anal. Calcd. for C₂₀H₃₆NO₄: C, 70.54; H, 10.65. Found: C, 70.48; H, 10.61.

5.1.25. Ethyl [3-(p-Cyanophenyl)propionate [Nickel(II)-Catalyzed Cross-Coupling of a Polyfunctional Arylzinc Derivative with a Primary Alkyl lodide] (230)

A three-necked flask equipped with a thermometer, a gas inlet, and an addition funnel was charged with 4-bromobenzonitrile (2.27 g, 12.5 mmol) in THF (20 mL). The reaction mixture was cooled to -100°, and n-butyllithium (8.7 mL, 12.9 mmol, 1.6 M in hexane) was added over 5 minutes. A precipitate formed immediately and the reaction mixture was stirred for 20 minutes at this temperature. A THF solution of zinc bromide (6.25 mL, 2.81 g, 12.5 mmol) was slowly added and the mixture was allowed to warm to room temperature and was concentrated by evaporation of the solvents under vacuum. The resulting ~1.2 M solution was transferred at -78° to a two-necked flask equipped with an argon inlet and a septum and containing ethyl 3-iodopropionate (1.14 g, 5 mmol), 4-trifluoromethylstyrene (0.75 mL, 5 mmol, 1 equivalent), nickel(II) bis(acetylacetonate) (128 mg, 0.5 mmol, 10 mol %) in THF (1.7 mL), and NMP (0.8 mL). The reaction mixture was allowed to warm to -15° and stirred for 5 hours. The reaction mixture was quenched with a saturated aqueous ammonium chloride solution and extracted with ether. The combined organics were dried over magnesium sulfate and evaporated under vacuum. The crude residue was purified by flash chromatography (hexane-ether) to afford the desired product (0.762 g, 75% yield) as a colorless oil. IR (neat) 3061, 3026, 2980, 2936, 2228, 1733, 1513, 1246, 1175, 1034 cm⁻¹. ¹H NMR (CDCl₃) δ 7.58 (d, J = 8.3 Hz, 2 H), 7.32 (d, J = 8.3 Hz, 2 H), 4.12 (q, J = 7.1 Hz, 2 H), 3.01 (t, J = 7.5 Hz, 2 H), 2.64 (t, J = 7.5 Hz, 2 H), 1.22 (t, J = 7.1 Hz, 3 H). Anal. Calcd. for C₁₂H₁₃NO₂: C, 70.92; N, 6.89; H, 6.45. Found: C, 70.75; N, 7.08; H, 6.57.

Ph

$$\begin{array}{c}
1. (-)-IpcBH_{2}, ether, -35^{\circ}, 48 h \\
\hline
2. Et_{2}BH, Me_{2}S, 50^{\circ}, 16 h \\
\hline
3. i-Pr_{2}Zn, ether, rt, 5 h \\
+ TMS = Br \quad \frac{4. CuCN \cdot 2LiCl (20 mol \%)}{THF, -78 to 25^{\circ}, 1 h} \quad Ph \qquad TMS \qquad (41\%)$$

5.1.26. (3R,4R)-3-Methyl-4-phenyl-1-trimethylsilylpentyne [copper(I)-Catalyzed Stereoselective Alkynylation of a Chiral Secondary Diorganozinc] (44)

A one-necked Schlenk flask was charged with

(-)-monoisopinocampheylborane (4.3 mL, 3 mmol, 0.7 M in ether), cooled to -35° , and (Z)-2-phenyl-2-butene (396 mg, 3 mmol) in ether (1 mL) was added. The reaction mixture was stirred at -35° for 48 hours, and the solvents were carefully evaporated under reduced pressure. Diethylborane (2.5 mL of a 7.3 M solution in dimethyl sulfide, 18 mmol) was added, and the resulting solution was stirred at 50° for 16 hours. The solvents were evaporated under reduced pressure (room temperature, 2 hours). Diisopropylzinc (1.8 mL of a 5 M solution in ether, 9 mmol) was added over 10 minutes, and the reaction mixture was stirred for 5 hours at room temperature. The volatiles were evaporated under reduced pressure (0 to 25°, 30 minutes), and the resulting gray residue was dissolved in THF (5 mL). A 1 M THF solution of copper(I) cyanide (215 mg, 2.4 mmol) and lithium chloride (204 mg, 4.8 mmol) was added at -78°. The reaction mixture was stirred at -78° for 10 minutes, and 2-bromo-1-trimethylsilylacetylene (1.59 g, 9 mmol) was added. The reaction mixture was stirred 1 hour at -78°, and the cooling bath was removed, allowing the reaction to rise to room temperature. The reaction mixture was quenched with a saturated aqueous ammonium chloride solution and extracted with ether. After drying over magnesium sulfate and evaporating the solvents, the crude residue was purified by chromatography (silica, hexane), affording 283 mg of pure (3R,4R)-3-methyl-4-phenyl-1-trimethylsilylpentyne (41 % yield based on the starting alkene). The syn:anti ratio and the enantioselectivity were determined by capillary GLC analysis on a chiral β -cyclodextrin column (CP-Chirasil-Dex CB, Chrompax). IR (neat) 2166, 1454, 1249, 842, 760 cm⁻¹. ¹H NMR (CDCl₃) δ 7.19-7.05 (m, 5 H), 2.61-2.45 (m, 2 H), 1.28 (d, J = 6.5 Hz, 3 H), 0.0 (s, 9 H). Anal. Calcd. for C₁₅H₂₂Si : C, 78.19; H, 9.62, Found: C, 77.81; H, 9.58.

5.1.27. 3-Myrtanylcyclopentanone (Conjugate Addition of Dimyrtanylzinc to an Enone in N-Methylpyrrolidinone) (314)

A two-necked flask equipped with an argon inlet was charged with $(1S)-(-)-\beta$ -pinene (13.6 g, 100 mmol) and cooled to -10°. Borane-methyl sulfide complex (2.28 g, 30 mmol) was added to form a thick precipitate (10 minutes), which was dissolved in ether (15 mL). The resulting solution was stirred at 0° for 2 hours, and warmed to room temperature for a further 8 hours. The solvent and excess (1S)-(–)- β -pinene were removed under reduced pressure (0.1 mm Hg, room temperature, 1 hour) to give tri(*cis*-myrtanylborane) (12.5 g, 99%). The resulting white solid was dissolved in hexane (12 mL) before cooling to 0°. Diethylzinc (6 mL, 60 mmol) was added, and the resulting mixture was stirred at 0° for 30 minutes. The solvent and the excess diethylzinc were removed under reduced pressure (0.1 mm Hg, room temperature, 1 hour). The reaction with diethylzinc was repeated a second time before heating at 40° for 4 hours under reduced pressure (0.1 mm Hg) to ensure removal of all excess diethylzinc. The resulting oily dimyrtanylzinc was allowed to cool to room temperature. Meanwhile a three-necked flask equipped with an argon inlet was charged with 2-cyclopenten-1-one (0.41 g, 5 mmol), THF (2 mL) and N-methylpyrrolidinone (3 mL). This solution was cooled to -30°, and TMSCI (0.54 g, 5 mmol) and dimyrtanylzinc (1.7 g, 5 mmol) were added. The resulting mixture was stirred at -30° for 3 hours, diluted with THF (30 mL), and poured into aqueous 10 % hydrochloric acid (10 mL). The mixture was stirred for 15 minutes and extracted with ether. The combined organics were washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure. The crude residue was purified by flash chromatography (hexane:ether, 19:1) to afford the desired product (0.87 g, 79% of a 1:1 mixture of diastereomers); IR (neat) 2907, 1744, 1468, 1404, 1159 cm⁻¹. ¹H NMR (CDCl₃) δ 2.28-1.74 (m, 12 H), 1.49-1.32 (m, 4 H), 1.11 (s, 5 H), 0.94 (s, 3 H). Anal. Calcd. for C₁₅H₂₄O : C, 81.76; H, 10.97, Found: C, 81.92; H, 10.94.

5.1.28. (S)-4-Hydroxy-4-phenylbutyl Pivalate (Enantioselective Addition of a Mixed Diorganozinc to Benzaldehyde) (565)

To 3-iodopropyl pivalate (1.49 g, 5.5 mmol) and copper(I) iodide (57 mg, 0.3 mmol) was added diethylzinc (3.6 mL, 36 mmoL). The reaction mixture was warmed to 55° and stirred for 12 hours. The flask was connected to vacuum (0.1 mm Hg), and ethyl iodide and excess diethylzinc were distilled off (50°, 4 hours). The resulting oily bis(3-pivaloyloxypropyl)zinc was dissolved in ether at room temperature (1.5 mL), and bis(trimethylsilyl)zinc (0.57 g, 2.4 mmol) was added. Meanwhile a three-necked flask was charged under argon with (1*R*,2*R*)-1,2-bis(trifluoromethanesulfonamido)cyclohexane (61 mg, 0.18 mmol), Ti(OPr–*i*)₄ (0.36 mL, 1.2 mmol) and ether (3 mL). This catalyst solution was cooled to –20°, and the

(3-pivaloyloxypropyl)(trimethylsilylmethyl)zinc solution was slowly added. After 10 minutes, benzaldehyde (0.21 g, 2 mmol) was added, and the reaction mixture was stirred at –20° for 26 hours. The reaction mixture was quenched with a saturated aqueous ammonium chloride solution and extracted with ether. The combined organics were washed with brine and dried over magnesium sulfate. The solvents were evaporated under reduced pressure and the crude residue was purified by chromatography (hexane:ether, 4:1) to afford the product (81% yield; 96% ee). The enantiomeric excess was determined by chiral HPLC analysis: Chiracel OD, hepane:2-propanol, 90:10; flow 0.6 mL/min; 12.6 minutes (major isomer) and 15.3 minutes (minor isomer). [α]²⁵_D = –20.3° (*c* 2.87, benzene). IR (neat) 3540, 2970, 2930, 1720, 1480 cm⁻¹. ¹H NMR (CDCl₃) δ 7.36-7.28 (m, 5 H), 4.72-4.70 (m, 1 H), 4.10-4.06 (t, *J* = 6.0 Hz, 2 H), 1.86-1.31 (m, 5 H), 1.20 (s, 3 H).

5.1.29. Bis(2-Furyl) Ketone [Cobalt(II)-Mediated Carbonylation of 2-Furylzinc Bromide] (536)

A three-necked flask was charged with furan (1.7 g, 25 mmol) and THF (10 mL) and was cooled to 0°. A solution of n-butyllithium (12.5 mL, 20 mmol, 1.6 M in hexane) was added dropwise over 5 minutes. The solution was stirred for 30 minutes at room temperature. A solution of zinc bromide (4.5 g, 20 mmoL) in ether (15 mL) was added at -80°. The reaction mixture was allowed to warm to 0°. Meanwhile a second three-necked flask was charged with cobalt(II) bromide (4.38 g, 20 mmol), THF (5 mL), and NMP (15 mL). The solution was cooled to 0° and carbon monoxide was bubbled through using a pipette. The solution of 2-furylzinc bromide was added dropwise at 0°. The reaction mixture was stirred at this temperature for 3 hours. The carbon monoxide stream was stopped, and stirring was continued for an additional 2 hours. The mixture was poured into hexane (200 mL) and stirred for 2 hours to decompose the intermediate cobalt-carbonyl complexes. The reaction was quenched with a saturated aqueous ammonium chloride solution, and extracted with ether. The combined organics were washed with brine, dried over magnesium sulfate, and the solvents were evaporated under reduced pressure. The crude residue was purified by flash chromatography (hexane:ether = 19:1) to afford 1.26 g of the desired product (78% yield); IR (neat) 1632, 1572, 1468, 1396, 1312, 1032, 839 cm^{-1} . ¹H NMR (CDCl₃) δ 7.53 (s, 2 H), 7.35 (d, J = 4.0 Hz, 2 H), 6.41 (m, 2 H). Anal. Calcd. for C₉H₆O₃: C, 66.66; H, 3.72; Found: C, 66.53; H, 3.75.

5.1.30. Ethyl (8-Hydroxy-8-phenyl-6-methylene)octanoate (Addition of a Masked Functionalized Allylzinc Reagent to Benzaldehyde) (296)

A two-necked flask equipped with an argon inlet was charged with ethyl (8-*tert*-butyl-9,9-dimethyl-8-hydroxy-6-methylene)decanoate (0.26 g, 0.83 mmol) and THF (4 mL). The solution was cooled to -78° and n-butyllithium (9.52 mL, 0.79 mmol, 1.5 M hexane) was added slowly. After 15 minutes a solution of zinc chloride (110 mg, 0.79 mmol) in THF (2 mL) was added followed by benzaldehyde (84 mg, 0.79 mmol). The mixture was stirred for 1 hour at -78° and slowly warmed to room temperature over 3 hours. The reaction was guenched with a saturated agueous ammonium chloride solution and the mixture was extracted with ether. The combined organics were washed successively with water and brine, dried over magnesium sulfate, and evaporated under reduced pressure. The crude residue was purified by flash chromatogaphy (pentane:ether, 80:20 to 60:40) to afford 130 mg of a colorless oil (60 % yield). ¹H NMR (CDCl₃) δ 7.30-7.18 (m, 5 H), 4.83 (m, 2 H), 4.70 (dd, J = 5.2 Hz, 8.3 Hz, 1 H). 4.20 (q, J = 7.1 Hz, 2 H), 2.34 (m, 2 H), 2.21 (t, J = 7.5 Hz, 2 H), 2.18 (s, 1 H), 2.00 (t, J = 7.5 Hz, 2 H), 1.60-1.36 (m, 4 H), 1.19 (t, J = 7.1 Hz, 3 H). Anal. Calcd. for $C_{17}H_{24}O_3$: C, 73.88; H, 8.75; Found: C, 73.66; H, 8.71.

5.1.31. 1-(Phenylcarbonylmethyl)spiro[4,5]dec-6-ene (Zinc-Ene Cyclization from a Masked Cyclic Allylzinc Reagent) (299)

A two-necked flask equipped with an argon inlet was charged with 3-(4-pentenyl)-3-(2,2-dimethylpropionyl)cyclohexene (0.24 g, 1.02 mmol) and THF (4 mL). The solution was cooled to 0°, and a solution of *n*-butyllithium (0.68 mL, 1.025 mmol, 1.5 M in hexane) was added. After 5 minutes the orange mixture was cooled to -78° , and a THF (2 mL) solution of zinc(II) chloride (0.14 g, 1.02 mmol) was added. The reaction mixture was slowly

warmed to room temperature over 3 hours. A THF (2 mL) solution of copper(I) cyanide (90 mg, 1.02 mmol) and lithium chloride (90 mg, 2.04 mmol) was added at 0°. After stirring the resulting yellow mixture for 5 minutes, benzoyl chloride (0.15 g, 1.08 mmol) was added. The reaction mixture was stirred for 2 hours at 0° and quenched with a saturated aqueous ammonium chloride solution. The mixture was diluted with ether and the white precipitate was removed by filtration. The aqueous layer was extracted with ether. The combined organics were washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure. The crude residue was purified by flash chromatography (pentane:ether, 98:2) to afford a colorless oil. The pure product was obtained by crystallization from pentane (0.2 g, 60% yield). IR (neat) 2930, 1677, 1446, 981, 784, 684, 569 cm⁻¹. ¹H NMR (CDCl₃) d 7.87 (d, J = 7.0 Hz, 2 H), 7.47-7.19 (m, 3 H), 5.63 (dt, J = 10.2, 3.6 Hz, 1 H), 5.49 (d, J = 10.2 Hz, 1 H), 2.97 (dd, J = 16.2, 3.3 Hz, 1 H), 2.66 (dd, J = 16.2, 10.4 Hz, 1 H), 2.12-2.02 (m, 1 H), 1.96-1.30 (m, 13 H). Anal. Calcd. for C₁₈H₂₂O : C, 84.99; H, 8.72; Found: C, 84.75; H, 8.63.

6. Tabular Survey

The tables include examples of functionalized organozincs reactivity collected during the last 20 years up to the end of December, 1999.

Yields are given in parentheses in the product column of the tables.

In all tables except Table XVIII, the first column has a header that represents a zinc reagent. The structures in this column contain a bond with a wavy line drawn through it. This symbol denotes the point of attachment of the zinc reagent that is indicated in the column header. There are four headers for the zinc reagent (FG = functional group):

FG-RZnX (Tables I, XIX, XX) FG-RCu(CN)ZnX (Tables II-VII, IX, XI, and XV) FG-RML_n (Tables VIII, X, XII-XIV, XVII) (FG-R)₂Zn (Table XXI)

Abbreviations:

2-thienyl
1-naphthyl
benzyl
tert-butoxycarbonyl
benzoyl
N,N-dimethylacetamide
1,2-dimethoxyethane
N,N-dimethylformanide
N,N¢-dimethylpropyleneurea
hexamethylphosphortriamide
lithium diisopropylamide
mesyl
N-methylpyrrolidinone
perfluorobutyl (nonaflate)
pivaloyl
tert-butyldimethylsilyl
tert-butyldiphenylsilyl
tetrahydropyranyl
triisopropylsilyl

TMEDA *N*, *N*, *N*¢, *N*¢-tetramethylethylenediamine
TMS trimethylsilyl
TMSCI trimethylsilyl chloride
Tol tolyl
Ts tosyl

 Table I. Hydroperoxides and Nitriles from Functionalized Zinc-Copper

 Reagents

View PDF

 Table II. Functionalized Stannanes from Functionalized Zinc-Copper

 Reagents

View PDF

 Table III. Reactions of Aliphatic Zinc-Copper Reagents with Allylic

 Halides

View PDF

Table IV. Reactions of Benzylic Zinc-Copper Reagents with Allylic Halides

View PDF

 Table V. Reactions of Alkenyl or Aromatic Zinc-Copper Reagents with

 Allylic Halides

View PDF

Table VI. Reactions of Propargylic Halides/Tosylates with Organozinc-Copper Reagents

View PDF

 Table VII. Reactions of Cationic Metal Complexes with

 Organozinc-Copper Reagents

View PDF

 Table VIII. Reactions of Alkenyl/Aromatic Halides and Sulfones with

 Zinc-Copper Reagents

View PDF

Table IX. Reactions of Zinc-Copper Organometallics with 1-Haloalkynes

View PDF

Table X. Coupling Reactions Between Functionalized Zinc Reagents andAlkyl Halides

ble XI. Additions of Zinc-Copper Reagents to Acid Chlor Anhydrides View PDF	ides
View PDF	
e XII. 1,2-Additions of Organometallic Reagents to Carl Related Compounds	ony
View PDF	
ale XIII 1 2-Additions of Zinc/Conner Reagents to Carbo	nvl
Related Compounds	
View PDF	

View PDF

Table XV. BF₃·OEt₂ Mediated 1,4-Additions of Zinc Cuprates to Enones

View PDF

Table XVI. Additions of Zinc-Copper Reagents to Nitroolefins

View PDF

Table XVII. Carbometallations of Alkynes with Dialkylzinc or Zinc-Copper Reagents

View PDF

 Table XVIII. Intramolecular Carbozincation of Functionalized Alkenes or

 Alkynes

View PDF

 Table XIX. Cross Coupling of Zinc Reagents with Aryl/Vinyl Halides and Sulfonates

View PDF

 Table XX. Palladium-Catalyzed Acylation of Functionalized Zinc

 Reagents

Table XXI. Enantioselective Additions of Functionalized DiorganozincReagents to Aldehydes

View PDF

	FG-RZnX (FG-R)	Conditions	Product(s) and Yield(s) (%)	Refs.
	-	A. Reactions of Functionalize	d Zinc-Copper Reagents with Oxygen	
-0	ζ ∽∽∽ Br	O ₂ , C ₆ F ₆ , THF, -60°, 1 h	Br (61)	303
C9	52 OPiv	$O_2,C_6F_6,THF,-60^\circ,1$ h	PivOOOH (58)	303
C15	Z OTIPS	O ₂ , C ₆ F ₆ , THF, -60°, 1 h	TIPSO OOH (62)	303
		B. Reactions of Functionalized Z	inc-Copper Reagents with Tosyl Cyanide	
С5	CI	TsCN, THF, 0 to 25°, 3 h	CI (81)	304
	2 Cl	TsCN, THF, 0 to 25°, 4 h	CI (72)	304
C ₆	2 Cl	TsCN, THF, 0 to 25°, 3 h	Cl. (81)	304
C ₇	32 OAc	TsCN, THF, 0 to 25°, 1 h	AcO (83)	304
C ₈	Si(OEt)3	TsCN, THF, 0 to 25°, 3 h	(EtO) ₃ Si(67)	304
	₹-	TsCN, THF, 0 to 25°, 3 h	(69)	304
	"In CN	TsCN, THF, 0 to 25°, 3 h	NC (69)	304
	ZZ CN	TsCN, THF, 0 to 25°, 3 h	NC (67)	304
C10		TsCN, THF, 0 to 25°, 3 h	(75)	304
C11	B-O	TsCN. THF, 0 to 25°, 3 h	NC $B = 0$ (70)	304
C ₁₅		TsCN, THF, 0 to 25°, 3 h	(76)	304
	n-Bu ^r	TsCN, THF, C ₆ H ₁₄ , -85°, 15 h	$\begin{array}{c} \text{NC} \\ & & \\ n - Bu^{2} \end{array} \end{array} $ (73) $E:Z = 1:$	2.1 566 ⁶

TABLE I. HYDROPEROXIDES AND NITRILES FROM FUNCTIONALIZED ZINC-COPPER REAGENTS^a

 a Unless otherwise indicated, the organozinc reagents were prepared by insertion of zinc metal into an organic halide.

 b The organozinc reagent was prepared by a transmetallation reaction.

492

	FG-RCu(CN)ZnX (FG-R)	Conditions	Product(s) and	1 Yield(s) (%)	Refs.
C ₄		Me ₃ SnCl, THF, 0 [°] , 1 h	O H SnMe ₃	(63)	35
Cs	H ^{CO} 2Et	Me ₃ SnCl. THF, Me ₂ S, -30 to 0 ⁺ , 3 h	Me ₃ SnCO ₂ Et	(99) $E:Z = 0:100$	87
C.6		Me ₃ SnCl. THF, Me ₂ S, -78 to 0', 1 h	SnMe3	(93)	88.87
		Mc ₃ SnCl, THF, 25 [°] , 12 h	O SnMe ₃	(56)	567 ^b
	Sector OPiv	Bu ₃ SnCl, THF, -40 to 25°, 0.5 h	Bu ₃ Sn OPiv	(93)	58
	P(O)(OEt) ₂	Bu ₃ SnCl, THF, -78 to -30° , 1 h	P(O)(OEt) ₂	(81)	90
C7		Bu ₃ SnCl, THF, 5 [°] , 1 h	Cl Bu ₃ Sn	(84)	51
	s ^{-s-s} P	Ph ₃ SnCl, THF	Ph ₃ Sn	(37)	321
	-CH(Pr)CH ₂ P(O)(OMe) ₂	Me ₃ SnCl. THF78 to30°. 4 h	$Me_3SnCH(Pr)CH_2P(O)(OMe)_2$	(67)	90
	my B O	Me ₃ SnCl, THF, -25 to 25°, 0.5 h	Me ₃ Sn O	(87)	61
C ₈	·z	Bu ₃ SnCl, THF, 5', 2 h	Bu ₃ Sn CN	(86)	51
	جَدْ S Ph O	Bu ₃ SnCl, THF, -70 to -20°, 8 h	Bu ₃ Sn S Ph	(64)	83
C₀	NHCO ₂ Et	Me ₃ SnCl, THF, 0°, 1 h	Me ₃ SnPr- <i>i</i>	(67)	35
- ,		Me3SnCl, THF, Me2S, -70 10 0°, 1 h		(69)	88
	'3, Ph	Me ₃ SnCl, THF, -20 to 25°, 0.5 h	$\frac{SnMe_3}{Me_3Sn}$	(90)	82, 83
	NHAC	Me ₃ SnCl, THF, DMSO, 0°, 1 h	SnMe ₃ Me ₃ Sn NHAc +	NHAc (64) 85:15	35
	NHAC	Me ₃ SnCl, THF, DMSO, 0°, 1 h	I + II 2:98	(72)	35
C ₁₀	≥ O Ph	Me ₃ SnCl, C ₆ H ₆ , THF, 25°, 2 h	Me ₃ Sn Ph	(65)	138

	FG-RCu(CN)ZnX (FG-R)	Conditions	Product(s) and Yield	(s) (%)	Refs.
	Z	Bu ₃ SnCl, THF, -70 to 25°, 2 h	Bu ₃ Sn CO ₂ Et	(88)	51
C ₁₁ C ₁₂	s ²	Me ₃ SnCl, THF, DMSO, 0°. 1 h	Me ₃ Sn	(76) dr = 1:1	35
	O O B Bu Mu	Me ₃ SnCl, THF, -78 to 25°, 2 h	O-B Bu Me ₃ Sn	(89) $E: Z = 82:18$	62
C ₁₄		Me ₃ SnCl, THF, 0°, 1 h	Me ₃ SnBn	(82)	35
C ₁₇	Ph OTMS	Me ₃ SnCl, THF, -78 to 25°, 1 h	TMSO Ph	(74)	66
C ₁₈	Ph OEt OZnX CO ₂ Et	Me ₃ SnCl, THF, -78 to 25°, 1 h	EtO ₂ C CO ₂ Et	(65)	66

TABLE II. FUNCTIONALIZED STANNANES FROM FUNCTIONALIZED ZINC-COPPER REAGENTS (Continued)^a

^a Unless otherwise indicated, the organozine reagents were prepared by insertion of zine metal into an organic halide. Transmetallation to the corresponding copper compound was not required.

 b The organozinc reagent was prepared by halide-zinc exchange.

FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
بخريه ا	Br	THF, -15 to 25°, 12 h	(96)	58
	CO ₂ Et Br	THF, -15 to 25°, 12 h	CO ₂ Et (89)	58
	Bu Br	THF, -15 to 25°, 12 h	Bu (90)	58
	Br	THF, -15 to 25°, 12 h	(79)	58
	OPh Br	THF, -15 to 25°, 12 h	OPh (95)	58
	Br	THF, -15 to 25°, 12 h	(90)	58
ř ^{ove} CN	CI	THF, 0°, 2.5 h	CN (83)	75
	CI	THF, 0°, 2.5 h	(84)	75
	Bu	THF, -40 to 0°	Bn CN (84)	266 ^b
	Ph	THF, 0°, 2.5 h	NC (92)	75

TABLE III. REACTIONS OF ALIPHATIC ZINC-COPPER REAGENTS WITH ALLYLIC HALIDES $^{\prime\prime}$

FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	CO ₂ Bu- <i>t</i>	THF, 0°, 2.5 h	CO ₂ Bu- <i>t</i> (95)	75
2 N	CO ₂ Et Br	THF, -60 to 0°, 1 h	CO ₂ Et N (91)	119
چې ^خ رCl	AcO AcO	1. BF3•OEt2, Ultrasound 2. CH2Cl2, 25°, 10 min	AcO $C!$ (63), $\alpha:\beta = 9:1$	568
; ^{z^f} , CN	OAc H Cl	THF, -25 to 0°, 3 h	Н СN I + (85) I:II = 97:3 СN II	47
	Ph Br	THF, -25 to 0°, 3 h	Ph NC Ph $I + (88)$ Ph $CN II I:II = 96:4$	47 1
	CI CI	THF, 25°, 14 h	NC H	53
	SPh CI CI	THF, 25°, 15 h	SPh NC (3) (85) $E: Z = 8:92$	53
	AcO AcO OAc	1. BF ₃ •OEt ₂ , ultrasound 2. CH ₂ Cl ₂ , 25°, 10 min	AcO CN (63), $\alpha;\beta = 5;1$	568
	CO ₂ Et Br	(—)	NC (68)	176 ^c
Z CN	Bu Br	THF , -40 to 0°	NC (69)	266 ^b
N ZZ N Me	CO ₂ Et	THF, -60 ιο 0°, 1 h	CO ₂ Et N N Me	119
HN-O	CO ₂ Et Br	THF,30 to 25°, 24 h		35
	PhBr	THF, -30 to 25°, 12 h	O NH Ph O (79)	35
NHAc	CO ₂ Et Br	THF, -40 to 0°, 1.5 h	AcNH (82) CO ₂ Et	35
22 Cl		THF, -78°, 4 h	CI (98)	569
	V o	THF,78°, 4 h	CI (82)	569

FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	OTMS	THF, -78°, 4 h	CI (40) +	569
			CI (40)	
S S	CO ₂ Et Br	THF, -78 to 25°, 12 h	S CO_2Et (91)	570
	Br CO ₂ Et	THF, -78 to 25°, 12 h	S (35)	570
22	CO ₂ Et Br	THF, -78 to 25°	CO ₂ Et (86)	78
ZZ CO2Et	OTs	THF, DMAC, 60°, 3 h	EtO ₂ C. (89)	141
	OTs	THF. DMAC, 60°, 1 h	E(O ₂ C (82)	141
	R ¹ R ²	THF, DMAC, 60°, 1 h	EtO_2C R^2 I +	141
			E_1O_2C R^1 II	
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	BrCO ₂ Me	THF, DMAC, 60°, 1 h	$E_{t}O_{2}C \xrightarrow{(80)} CO_{2}Me$	141
	i-PrOTs	THF, DMAC, 60°, 1 h	<i>i</i> -Pr (89)	141
ZZ CO2Mc	Br	DMF, Et ₂ O, 25°, 16 h	CO ₂ Me (59)	140 ^d
۶۰۰ CO ₂ Me	X, C ₃ H ₁₁	CuCl, 25°	CO ₂ Me	571
	OTBDMS OTBDMS X OAc		$\frac{S_{N}2':S_{N}2}{97:3}$ (68)	
	OP(S)(OMe) ₂ OP(S)(OEt) ₂		96:4 (91) 98:2 (90)	

FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
	X $C_{5}H_{11}$ $OTBDMS$ $OTBDMS$ X $OP(S)(OEt)_{2}$ $OP(O)(OEt)_{2}$ $OP(O)(OMe)_{2}$ $OP(O)(OEt)_{2}$	CuCl, 25°	$MeO_{2}C$ $C_{5}H_{11}$ $OTBDMS$ $OTBDMS$ $SN^{2}: SN^{2}$ $88:12$ (84) $87:13$ (86) $86:14$ (96) $84:16$ (95)	571
www.www.www.www.www.www.www.www.www.ww	Bu	THF, -40 to 0°, 12 h	Bu (68)	266 ^b
Et ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2	<i>B</i> r Br	THF, -78 to 0°	Et (68)	180°
-Z OPiv	Bu Br	THF,40 to 25°, 0.5 h	Bu (95) OPiv	58
	CO ₂ Bu- <i>t</i> Br	THF, -40 to 25°, 0.5 h	CO ₂ Bu- <i>t</i> (94)	58
	AcO AcO' OAc	1. BF ₃ •OEt ₂ , ultrasound 2. CH ₂ Cl ₂ , 25°, 10 min	AcO $OPiv$ (29), $\alpha:\beta = 4:1$ AcO	568
² ر CO ₂ Pr- <i>i</i>	Br	DMF, Et ₂ O, 25°, 1 h	$CO_2 Pr-i $ (93)	140 ^d
	Br	DMF, Et ₂ O, 25°, i h	Br $I + II (79)$ Br $I:II = 85:15$ II II	140 ^d
	Cl	DMF, Et ₂ O, 25°, 1 h	$i - PrO_2C$ $i - PrO_2C$ $I + I + II (97)$ $I : II = 96:4$ $i - PrO_2C$ $h_h Ph II$	140 ^d
	CI	DMF, Et ₂ O, 25°, 1 h	i -PrO ₂ C I + CO_2Pr-i II	140 ^d
			I + II (81), I : II = 88:12	
	o Ci	DMF, Et ₂ O, 25°, 1 h	OCO ₂ Pr- <i>i</i> (87)	140 ^d
	OAc CI	DMF, Et ₂ O, 25°, 1 h	OAc H (72)	140 ^d

FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	OBn Cl	CuBr•SMe ₂ , THF, -70 to 25°, 1 h	$CO_2 Pr \cdot i$ (73)	323 ^d
کرِ CO2EI	CI	THF, 0°. 0.5 h	ErO ₂ C. I + I + II (83) H I:II = 96:4 EtO ₂ C. II	368
	ci	THF, 0°, 0.5 h	II (87)	120
	Br	THF, 0°, 1 h	EtO ₂ C $I + I + II (88)$ I:II = 98.2 EtO ₂ C I	120
	R	THF, DMAC, 60°, 1 h	$I + II = \frac{R}{Br} = \frac{I + II}{(91)} = \frac{I:II}{83:17}$ TsO (95) 73:27	141
	ClPh	THF, 0°, 1 h	EtO_2C $I + I + II (86)$ $I:II = 93:7$	120
	SPh Cl	THF, 25°, 18 h	EtO ₂ C Ph II SPh EtO ₂ C (88) E:Z = 21:	53 79
	SPh Cl	THF, 25°, 12 h	EtO_2C $E: Z = 1:89$ CO_2Et (89)	53
	SePh Cl	THF. 25°, 7 h	EtO_2C $SePh$ (89) $E:Z = 20:3$	53 30
		1. BF ₃ •OEt ₂ , ultrasound 2. CH ₂ Cl ₂ , 25°, 10 min	$AcO CO_2Et (87)$ $AcO CO_2Et (87)$ $\alpha:\beta = 5:1$	568
	CO ₂ Et Br	THF, -40 to 0°	CO ₂ Et (71)	176 ^c , 567 ^c
	Br	(—)	EtO ₂ C (74)	176 ^c
کر CN	○	THF, -78°, 4 h	NCOH (78)	569
² ζζζCO₂Et	Br Ph	THF, DMAC, 25°, 12 h	EtO_2C $I + I + II (85)$ $I:II = 86:14$	141
	Br CO ₂ Me	THF, DMAC, 25°, 12 h	E_{1O_2C} Ph II E_{tO_2C} (79) CO_2Me	141
	. Br	THE -78 to 0°	EtOrC (77)	178°

TABLE III. REACTIONS OF ALIPHATIC ZINC-COPPER REAGENTS WITH ALLYLIC HALIDES (Continu	ied) ^a				
--	-------------------				
	FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
----------------	--	------------------------------------	------------------------	--	------------------------------------
	OAc 2	CO ₂ Et Br	THF, -78 to 0°, 0.5 h	OAc CO ₂ Et (95)	59, 60
	³ √, () ₄ Cl	ci 🦯	THF, 0°, 0.5 h	I + I + II (94) I:II = 98:2	120
	yN	Bu Br	THF, -40 to 0°, 12 h	$ \begin{array}{c} $	266 ^b
	$\frac{1}{2}$ $()_4$ NO ₂	Br	THF, -80 to 25°, 2 h	$()_{4}^{(82)}$	240 ^e ,242 ^e
	P(O)(OEt) ₂	CO ₂ Et	THF, -78 to 25°, 4 h	$\begin{array}{c} CO_2 Et \\ P(O)(OEt)_2 \end{array} (92) \end{array}$	90
		SO ₂ Bu- <i>t</i> Br	THF, -78 to 25°, 4 h	$P(O)(OEt)_2$ (79)	90
		SPh Cl	THF, -78 to 0°, 6 h	PhS $P(O)(OEt)_2$ (90) $E: Z = 8:92$ P(O)(OEt)_2	53
	Hg	CO ₂ Et	THF, -78 to 0°, 2 h	$\begin{pmatrix} CO_2Et \\ 2 \end{pmatrix}$ (56)	338°
	S ² S ² NMe Ne	CO ₂ Et Br	THF,60 to 0°, 1 h	EtO_2C NMe NMe (71) Me	119
	cis:trans = 14:86	CO ₂ Et Br	THF,78 to 0°, 1 h	$(86) \ cis:trans = 14:86$	76
C ₇	∽∽ () ₄ CN	CI ~~~~	THF, 0°, 0.5 h	$()_4$ CN I + I + II (91) I:II = 97:3	120
		≪, d	THF, 0°, 0.5 h	I + II (87), I:II = 3:97	120
		Cl	THF, 0°, 0.5 h	$Ph = \frac{CN}{4} I + I + II (87)$	120
	Jun ()_4OAc	CO ₂ Et Br	THF, -78 to -10°, 12 h	CO_2Et (88)	64
	³ ⁴ ∕ ₂ − B 0 − −	CO ₂ Et Br	THF, -78 to -10°, 1 h	$B_{O} (90)$	61

TABLE III. REACTIONS OF ALIPHATIC ZINC-COPPER REAGENTS WITH ALLYLIC HALIDES (Continued)^a

	FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		CO ₂ Et Br	ŤHF, −78 to 0°, 1 h	CO_2Et (76)	567°
	z_{2} , OTMS H $E: Z = 87:13$	CO ₂ Et	THF,78 to 25°, 3 h	CO ₂ EI (66)	567°
	cis:trans = 18:82	CO ₂ Et Br	THF, -78 to 0°, 1 h	CN CO_2E1 $(95) cis:trans = 18:82$	76
C ₈	SPh	CO ₂ Bu- <i>t</i> Br	THF, -78 to 0°, 0.5 h	SPh CO ₂ Bu-r (87)	82, 83
	تر () OAc	CI	THF, -78 to 25°, 14 h	Aco $\binom{1}{3}$ (80) $E: Z = 70:30$ OAc	53
		SPh Cl	THF, 25°, 15 h	PhS (75) $E: Z = 70:30$ (76) $E: Z = 70:30$	53
	NHCO ₂ Et	Bu Br	THF, -78 to 0° , 6 h	NIICO ₂ Et (70)	35
		CO ₂ Et Br	THF, -30 to 25°, 6 h	CO ₂ Et (74)	35
	SO ₂ Bu-1	CO ₂ Et Br	THF, -78 to 0°, 0.5 h	SO ₂ Bu- <i>t</i> CO ₂ Et (90)	83
	² √S Ph	R Br	THF, -78 to 0°, 1 h	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	83
	NBoc	Br	THF, -78 to 25°. 2 h	NBoc (58)	572
-9	SPh	Bu Br	THF78 to 0°, 0.5 h	Bu SPh CN (75)	83
	کر ۲۰۰۰ RI	R ² Br	THF, -78 to 0°, X h	\mathbb{R}^2 \mathbb{R}^1	
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	82, 83 82, 83 83
	N Bn Me	Bu Br	THF,40 to 0°, 1 h	$ \begin{array}{c} Bu \\ N \\ Me \end{array} $ (64)	266 ^b
	"YA. CN	CO ₂ Bu- <i>t</i> Br	THF, -60 to 0°, 2 h	<i>i</i> -BuO ₂ C (50)	270 ^b
	OAc Jun () CO ₂ Me	Br Br	THF78 to 0°, 0.5 h	OAc $()_{A}^{CO_{2}Me}$ (95)	59, 60

TABLE III. REACTIONS OF ALIPHATIC ZINC-COPPER REAGENTS WITH ALLYLIC HA	ALIDES (Continued) ^a

	FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	NHAc	Bu Br	THF, DMSO, C ₆ H ₁₄ , 0°, 0.5 h	$H = \frac{1}{1} = $	35
	NHAC	Bu Br	THF, DMSO, C ₆ H ₁₄ , 0°, 0.5 h	I + II (71) I:II = 70:30	35
	Ϋ́Ϋ́Ϋ́Ϋ́ΎΫ́ΎΎΎΎΎΎΎΎΎΎΎ	CO ₂ Bu- <i>t</i> Br	THF, –60 to 0°, 2 h $$	/-BuO ₂ C (70)	270 ^b
	NHCOPh	CO ₂ Et Br	THF, -60 to 0°, 12 h	CO ₂ Et (87)	35
	N CI	CO ₂ Et Br	THF,60 to 0°, 1 h	CO ₂ Et N CI (57)	119
	35 ⁴	CO ₂ Et Br	THF, -60 to 0° , 0.5 h	EtO ₂ C N (74)	119
	3. N	CO ₂ Et Br	THF40 to 25°	E_{tO_2C} (70)	119
	otms	CO ₂ El Br CO ₂ Et	THF, -78 to 25°, 3 h	EtO_2C (83) CO_2Et (70)	573 ^e
C ₁₀	OTMS mixture of regioisomers	CO ₂ Et Br	THF, -70 to -20°, 1 h	(10)	78
	CO2Et	<i>▶</i> Br	THF, -80 to 25°, 2 h	CO ₂ Et (85)	240, 242
	, st NBoc	<i>⊮</i> ∕∕ ^B r	THF, -78 to 25°, 2 h	(45)	572
	provide the second seco	Br Br	THF, -78 to 25°	Ph (65) syn:anti = 19:81	42
	² ζ CO ₂ Me NHBoc	CI	DMF, -55 to 0°	MeO ₂ C (82) NHBoc	574
	Hg	CO ₂ Et	THF, -60 to 0°, 1 h	$\begin{pmatrix} CO_2E_1 \\ \downarrow \\ \end{pmatrix}_2 Hg $ (80)	67 ^e

	FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	N Ph Me	CO ₂ Er Br	THF, -78 to 0°, 1 h	N^{-Ph} (74)	567°
Cu	N Bn Tf	<i>B</i> r Br	THF, -60 to 0°, 12 h	Me N N Tf	567°
	C C C C Ph	CI	THF, 25°, 24 h	$\bigwedge_{3} Ph \qquad (70)$	138
	OAc SPh	Br	THF, -78 to 0° , 0.5 h	OAc (86)	59, 60
	OAc CN Et Et	Br	THF, -78 to 0°, 0.5 h	CN = CN = CN = (69)	59, 60
	B-O O	CO ₂ Et Br	THF	$EtO_2C \xrightarrow{I} (33)$	62
	ÖZnI	CO ₂ Et	THF, -78 to 25°, 0.5 h	CO ₂ Et OH (62)	66
	OZnI	CO ₂ Et Br	THF, -78 to 25°, 0.5 h	$\begin{array}{c} \text{CO}_2\text{Et} & \text{OH} \\ ()_3 & ()_3 & \text{CO}_2\text{Me} \end{array} $ (68)	66
	$\frac{1}{2} - \frac{1}{5} - \frac{1}$	Br	THF, DMPU, -40 to 0°, 12 h	$S^{-C_{10}H_{21}-n}$ (75)	266"
	, se OMe	<i>▶</i> Br	THF, -78 to 25°	OMe (47) syn:anti = 24:76	42
	i ²	Br	THF, -78 to 25°	(47) (47) syn:anti = 81:19	42
C	CO ₂ Me	CI	DMF, -55 to 0°	MeO ₂ C (87)	574
C12	SPh , , , CO ₂ Et	CO ₂ Et Br	THF, -78 to 0°, 0.5 h	$EtO_2C \qquad SPh \\ CO_2Et \qquad (92)$	82, 83
	OZnl	CO ₂ Et Br	THF, -78 to 0°, 0.5 h	$CO_2Et OH (67)$	66
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CO ₂ Bu- <i>t</i> Br	THF,60 to 0°, 2 h	r-BuO ₂ C (74)	270 ^b
	NHBoc H CO ₂ Bu- <i>t</i>	///Cl	THF, -25 to 0°, 3 h	NHBoc I (65) CO ₂ Bu- <i>t</i>	94
		OTs	THF, -25 to 0°, 3 h	I (56)	94
		Cl	THF, -25 to 0°, 3 h	Ph CO ₂ Bu- <i>t</i> (48)	94
		CI CI	THF, -25 to 0°, 3 h	Cl NHBoc (55)	94

FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Br	THF, ~25 to 0°, 3 h	NHBoc (48) CO ₂ Bu- <i>t</i>	94
³ Ph O	∕∕_CI	(—)	Br' O O B Ph (86)	575
$s^{4}$ $()$ $s^{+}$ $O^{-}$ $s^{+}$ $O^{-}$ $S^{+}$ $O^{-}$ Ph OZnI	<i>⊮</i> ∕∽ ^B r	THF, -78 to 25°, 0.5 h	Ph NO ₂ (64)	66
- $O$ $B$ $ O$ -	CO ₂ Bu-r Br	THF, 0°, 0.5 h	$- O B - CO_2 Bu - t $ $(83)$ $- O CO_2 Et$	61
Store () OTMS	CO ₂ Et	THF,78 to 25°, 0.5 h	$CO_2Et$ (70)	66
TMS	Br CO ₂ Et	THF, -78 to 25°, 12 h	$S$ $CO_2Et$ (53)	570 ⁻
Siler-i)3	CO ₂ Et Br	THF,78 to 25°, 3 h	CO ₂ Et (71)	573 ^c
	CO ₂ Me Br	THF, -25 to 0°, 3 h	CO ₂ Me (90)	94
	CO ₂ Et Br	<b>THF</b> ,30 ω 25°, 6 h	Bn CO ₂ Et NHBoc (90) Bn	35
· ? · · · · · OTIPS	<i>∭</i> → ^{Br}	THF, 0°, 1 h	(72)	240 ^e 242 ^e
	CO ₂ Et Br	1. THF, 0°, 0.5 h 2. NH₄Cl	$\begin{array}{c} \text{CO}_2\text{Et} & \text{OTMS} \\ & & (67) \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$	576 ^e
5 st other	Bu Br	THF, -78 to 25°, 0.5 h	Bu (59)	66
کر NPh2	CO ₂ Et Br	THF, $-78$ to $0^{\circ}$	CO ₂ Et (62)	567°
۲۰۰۰ (CH2) روم Co2LIBS		THF, -78°, 4 h	$TIPSO_2C (CH_2)_4 (B7)$	569
	√v ^o	THF, –78°. 4 h	TIPSO ₂ C, (80)	569
6 CO2Bn	Br	THF, -30°, 3 h	CO ₂ Bn · · · · · (42)	97
	PhCl	THF. –30°, 3 h	CO ₂ B _I NHBoc (62)	97
	<i>∕</i> → ^{Br}	<b>THF</b> , -78 ω 25°, 0.5 h	rn H (74)	66
otms 	CO ₂ Et	1. THF, 0°, 0.5 h	CO ₂ Et OTMS (62)	576 ^e



TABLE III. REACTIONS OF ALIPHATIC ZINC-COPPER REAGENTS WITH ALLYLIC HALIDES (Continued)^a

^b The organozinc reagent was prepared by an insertion reaction using ICH₂ZnI.

 $^{\rm c}$  The organozinc reagent was prepared by halide-zinc exchange.

^d The organozine reagent was prepared by ultrasonic irradiation of an ether solution of (ethoxycyclopropyloxy)trimethylsilane and zine chloride.

 e  The organozinc reagent was prepared by a transmetallation reaction.

FG-RCu (FC	(CN)ZnX Substrate G-R)	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₅	Bu	THF, -40 to 0°. 12 h	$\begin{array}{c} Bu \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	266 ^b
	Br	THF, ~20°, 1 h	CI (95)	51
Br	CO ₂ Et Br	THF, -20°, 12 h	CO ₂ Et Br (86)	103
C ₈	CO ₂ Bu- <i>t</i> Br	THF, -78 to -20°, 12 h	CO ₂ Bu- <i>t</i> (95)	50
22 CN	CO ₂ Bu- <i>t</i> Br	THF, -78 to 0°	CO ₂ Bu· <i>t</i> CN (97)	51
32 5	Br	THF, -40 to 0°, 12 h	(93)	266 ^b
OAc بخر Ph	CO ₂ Bu- <i>t</i>	THF, -78 to 20°, 0.5 h	<i>t</i> -BuO ₂ C OAc (91)	59, 60

TABLE IV. REACTIONS OF BENZYLIC ORGANOZINC-COPPER REAGENTS WITH ALLYLIC HALIDES"

	FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	³ ₄ CO ₂ Me	R  OP(O)(OEt) ₂ OTBDMS	THF, -78 to -20°	R - CO ₂ Me OTBDMS	578
		$\frac{R}{C_{5}H_{11}-n}$ TBDMSO $Pr-n$ TBDMSO		(92) (88)	
		Pr-n		(88)	
C ₁₀	s ² r ² Ph	CO ₂ Et Br	THF, DMSO, -78 to 0°	EtO ₂ C CN (92)	51, 76
	CO ₂ Ei	Br	THF,70 to 0°, 2 h	CO ₂ Et (87)	51
	OMe	CO ₂ Er Br	THF, -20°, 12 h	OMe OAc (82)	103
C ₁₁	OAc	CO ₂ Bu-r Br	THF, -70 to -20°, 12 h	CO ₂ Bu- <i>t</i> OMe OAc (98)	50
Cu	Z OAc	CO ₂ Bu- <i>t</i> Br	THF, -15°, 2 h	OAc (89)	59, 60
10	OAc 2	CO2Bu- <i>t</i> Br	THF, -10°, 2 h	r-BuO ₂ C OAc (71)	59, 60
C ₁₅	(TMS) ₂ N	R Br	THF, -78 to 0°, 1 h	R H (TMS) ₂ N R H (86) OMOM (81) CH ₂ OPh (93) CO ₂ Bu-7 (84)	77
	² OAc OAc	Br	THF, -78 ω 0°, 3 h	OAc (82) OAc	51

^b The organozinc reagent was prepared by an insertion reaction using ICH₂ZnI.

FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
24 32 32 5	Br Br	THF,60 to 0°, ↓ h	Br (77)	579 [¢]
North Contraction of the second secon	Br Br	THF, -60 to 0°, 1 h	Br (72)	579 ^b
ده کړ کې کړ	CO ₂ Et Br	THF, -78 to 0°, 1 h	CO ₂ Et (81)	209 ⁶
-6 , z ^z Cl	CO ₂ Bu- <i>t</i> Br	THF, DMF, -78 to 0°, 1 h	t-BuO ₂ C (83)	48
st Br	R Br	THF, -60 to 0°, 1 h	R R Br Br (88)	579 ^b
s ²⁵	CO ₂ Bu- <i>t</i> Br	THF, -78 to 0°, 1 h	NO ₂ /-BuO ₂ C (79)	209 ^b
3-5- 3-5- 0	CO ₂ Et Br	THF, –60 to $0^{\circ}$ , 1 h	EtO ₂ C (83)	87, 88
S S S S S S S S S S S S S S S S S S S	CO ₂ Et Br	THF,60 to 0°, 2 h	0 EIO ₂ C (72)	567
-7 CN	омом	THF, DMF,	MOMO (72)	48
² ² ² ² ² ² ² ² ²		-78 to 0°, 1 h THF, DMF, -78 to 0°, 1 h	MOMO (91)	48
R R	Cl	THF, TMEDA	$\frac{R}{COMe}$ (63) $R$ $CO_2Me$ (41)	156°
	I		CO ₂ Me	
CO ₂ Me	R ⁻ OP(O)(OEt) ₂	THF, DMF, 30°	R	578
	$\frac{R}{C_{3}H_{11}-n}$		0TBDMS (92)	
	TBDMSÖ		(88)	
	TBDMSO OH Pr-n		(88)	
NMc2	<i>™</i> ^{Br}	THF60 to 0°	(60) NMe ₂	579 ^k
CO ₂ Et	омом	THF, DMF. 78 to 0°, 1 h	MOMO (72)	48

ABLE V. REACTIONS OF ALKENYL OR AROMATIC ZINC-COPPER REAGENTS WITH ALLYLIC HALIDES"



TABLE V. REACTIONS OF ALKENYL OR AROMATIC ZINC-COPPER REAGENTS WITH ALLYLIC HALIDES (Continued)^a

^b The organozinc reagent was prepared by a transmetallation reaction.

^c The organozinc reagent was prepared by Nakamura's method (ref. 140).

	FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C4	کر CN	ciCi	THF, 0 to 25°, 1.5 h	CN (84)	122
			THF, 0°, 1 h	H N O 0 (67)	35
C ₆	کر CO2Et	CI CI	THF, -78 to 25°, 1 h	CO ₂ Et (95)	122
	² ,2√(+) ₆ ^{CI}	ci	THF, -78 to 25°, 1 h	Cl (92)	122
C ₇	³ ⁴ CN	TsOOOTs	THF, -78 to 25°, 1 h	NC CN (97)	122
C ₈	COMe	TsO	THF, 0 to 25°, 1.5 h	MeOC COMe (93)	122
	Y CN	TsOOTs	THF, 0 to 25°, 1.5 h		(93) 122

TABLE VI. REACTIONS OF PROPARGYLIC HALIDES/TOSYLATES WITH ORGANOZINC-COPPER REAGENTS^a

FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
NHCO ₂ Et	== OMs	<b>THF.</b> 0°. 1 h	NHCO ₂ Et (84)	35
->OPiv	==Br	THF, ~60 to -10°, 12 h	OPiv (68)	567 ^b
Si(Pr-i)3		THF, –78 to –30°, 7 h $$	OSi(Pr- <i>i</i> ) ₃ (68)	573 ^c
۲۰۰۰ NHBoc CO2Bn	R R	THF, 0°, 3 h	$\longrightarrow CO_2Bn \qquad OTs \qquad (68)$	94 100
		THF, 0°, 3 h	$= \bullet = \underbrace{ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $	100
		THF, 0°, 3 h	$R \xrightarrow{\text{NHBoc}} CO_2Bn \xrightarrow{\text{R}} (51)$	100
SSS NHBoc	==CI	THF, ~30°, 3 h	NHBoc (36) CO ₂ Bn	97, 580

TABLE VI. REACTIONS OF PROPARGYLIC HALIDES/TOSYLATES WITH ORGANOZINC-COPPER REAGENTS (Continued)

^a Unless otherwise indicated, the organozinc reagents were prepared by insertion of zinc metal into an organic halide.

^b The organozinc reagent was prepared by a transmetallation reaction.

^c The organozinc reagent was prepared by Nakamura's method (ref. 140).

FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions		Product(s) and Yield(s) (%)	Refs.
	$\begin{array}{c} & R^{1} \\ & \downarrow_{+} \\ Fe(CO)_{4} \end{array}$	B. Cationic Iron Complexes		$\mathbf{R}^2$ <b>I</b> + $\mathbf{P}^{\mathbf{O}}_{\mathbf{R}^1}$ <b>I</b>	
<u>R²</u>	<u>R¹</u>		<u>I + II</u>	<u>I:II</u>	
s ^{s^s} () ₂ CN	Н	THF, 0°, 3 h	(45)	100:0	69
set () CN	н	THF, 0°, 3 h	(65)	100:0	69
Sof ()3 CO2Et	Н	THF, 0°, 3 h	(57)	100:0	69
srs () OAc	н	THF, 0°, 3 h	(68)	100:0	69
s ^{s^s} () ₂ CN	Ме	THF, -10°, 3 h	(56)	1:1.8	69
$3^{5}$ $()_{3}$ CO ₂ Et	Ме	THF, 0°, 3 h	(51)	1.2:1	69
oAc	Me	THF, -10°, 3 h	(58)	1:2.9	69
<b>P</b> ²	$R^1$ $Fe(CO)_3 BF_4$		R ¹ Fe(C	<b>R</b> ² (0) ₃	
$r^{s} \left( \right)_{2}^{CN}$	H	THF, 5 to 23°, 2 h	(84)		68
5 ⁵ . (), CN	Н	THF, 5 to 23°, 2 h	(90)		68

TABLE VII. REACTIONS OF CATIONIC METAL COMPLEXES WITH ORGANOZINC-COPPER REAGENTS (Continued)^a

FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		B. Cationic Iron Complexes		
	R ⁱ Fe(CO) ₄		$\begin{array}{ccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	
<u>R²</u>	<u>R1</u>		<u>I + II I:II</u>	
s ² CN	Н	THF, 0°, 3 h	(45) 100:0	69
sst ()_CN	Н	THF, 0°, 3 h	(65) 100:0	69
$cO_2Et$	н	THF, 0°, 3 h	(57) 100:0	69
est OAc	н	THF, 0°, 3 h	(68) 100:0	69
sos () CN	Ме	THF, -10°, 3 h	(56) 1:1.8	69
$s^{5}$ () CO ₂ Et	Ме	THF, 0°, 3 h	(51) 1.2:1	69
sof () OAc	Ме	THF, -10°, 3 h	(58) 1:2.9	69
	R ¹ Fe(CO) ₃ BF ₄		$R^1$ $R^2$ $R^2$	
R ²	<u></u> H	THF, 5 to 23°, 2 h	(84)	68
sot ()_CN	н	THF, 5 to 23°, 2 h	(90)	68
چ ^خ CO ₂ Et	Н	()	(69)	581
$-\frac{5}{5}$ CO ₂ Et	н	THF, 5 to 23°, 2 h	(95)	72
$-5^{5}$ CO ₂ Et	н	THF, 5 to 23°, 2 h	(97)	68
OPiv	н	(—)	(88)	581
St CN	Me	THF, 5 to 23°, 2 h	(75)	68
$-\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{2}$ CO ₂ Et	Ме	THF, 5 to 23°, 2 h	(82)	72
$-\frac{1}{3}$ $\int_{-\frac{1}{3}}^{-\frac{1}{3}} CO_2 Et$	Me	THF, 5 to 23°, 2 h	(82)	72
()2	Fe(CO) ₃ PF ₆			
<u>R</u>			10(00)3	70
$\frac{1}{2}$		THF, 5 to 23°, 2 h	(99)	12
$-\frac{1}{3} \left( \begin{array}{c} \\ \\ \\ \end{array} \right)_{3} CO_{2}Et$		THF, 5 to 23°, 2 h	(83)	72
NHBoc CO ₂ Bn	+	THF, MeCN,20°, 16 h	(CO) ₃ Fe. NHBoc (59)	96
	Fe(CO) ₃ PF ₆	THF, MeCN, -20°, 16 h	(CO) ₃ Fe ⁻¹ , H (57)	96

TABLE VII. REACTIONS OF CATIONIC METAL COMPLEXES WITH ORGANOZINC-COPPER REAGENTS (Continued)

FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
	-Fe ⁺ (CO) ₃ PF ₆ (CH ₂ ) ₂ CO ₂ Me	THF, MeCN, -20°, 16 h	MeO ₂ C (CO) ₃ Fe ⁽¹⁾ , MHBoc (52) (CO ₂ Bn	96
	$CO_2Me$ + Fe(CO) ₃ PF ₆	THF, MeCN, -20°, 16 h	(CO) ₃ Fe, H MeO ₂ C (31)	96
	R ¹ Fe(CO) ₂ PF ₆			
R ²	<u>R¹</u>			
$\frac{1}{2} \int CN$	Н	THF, 5 to 23°, 2 h	(78)	68
z ^z ()-CN	Н	THF, 5 to 23°, 2 h	(75)	68
$\int_{2}^{2} \int_{2}^{2} CO_2 Et$	Н	THF, 5 to 23°, 2 h	(83)	72
$\int_{2}^{2} CO_2 Et$	Н	THF, 5 to 23°, 2 h	(83)	68
St OAc	н	THF, 5 to 23°, 2 h	(60)	68
NHBoc	Н	THF, MeCN, -20°, 16 h	(68)	96
$CO_2Bn$	ОМе	THF, 25°, 2 h	(70)	72
$z^{z^{5}}$ ( )-CO ₂ Et	OMe	THF, 5 to 25°, 2 h	(76)	68
NHBoc	OMe	THF, MeCN, -20°, 16 h	(57)	96
CO ₂ Bn	Fe(CO) ₃ BF ₄		Fe(CO) ₃	
R z ^{z²} CN		THF, 25°, 2 h	(50)	71
$\sqrt{2}$		THF, 25°, 2 h	(65)	71
Me S ^f N CO ₂ Et		THF, 25°, 2 h	(93)	71
	С. Са	nionic Molybdenum Complexes	~	
	Mo(CO) ₂ Cp PF ₆		Cp(CO) ₂ Mo ['] R	
R z²()_CN		THF, 0°, 5 h	(41)	70
' [7] ₃ -₅ ² (		THF, 0°, 5 h	(58)	70
' ∏4 -5'/ }_CO2Et		THF, 0°, 5 h	(33)	70
$\sqrt[3]{2}$		THF, 0°, 5 h	(90)	70
· \\/3				70

TABLE VII. REACTIONS OF CATIONIC METAL COMPLEXES WITH ORGANOZINC-COPPER REAGENTS (Continued)^a

FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
-s ⁵ ()-OAc		THF, 0°, 5 h	(51)	70
^{set} , → OBz		THF. 0°. 5 h	(57)	70
(/+	D	Cationic Manganese Complexes	R	
	$\bigcirc$			
PF			(CO) ₃ Mn	
55 ( CO ₂ Me		Et ₂ O, -5°, 2 h	(50)	582
55 ⁴ () − CN		$Et_2O$ , $-5^\circ$ , 2 h	(69)	582
s ² () − CN		$Et_2O$ , $-5^\circ$ , 2 h	(63)	582
CO ₂ Et		Et ₂ O, -5°, 2 h	(58)	582
$z^{2}$ CO ₂ Et		Et ₂ O, -5°, 2 h	(69)	582
$_{2}^{2}$ CO ₂ Et		Et ₂ O, -5°, 2 iı	(67)	582

 a  The organozinc reagents were generated by direct insertion of zinc metal into organic halides.

FG-RML _n (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	A. Rea	actions with organozinc cuprates	$(ML_n = Cu(CN)ZnX)$	
λζζ CN		THF, -78 to 0°, X h	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	329
		THF,30°, 2 h	OH (89)	52
	EtO ₂ C EtO ₂ C SO ₂ Ph	THF, -78 to -30°, 2 h	$EtO_2C$ $EtO_2C$ (83)	57, 328
	MenthO ₂ C MenthO ₂ C SO ₂ Ph	THF, -30°, 2 h	$\underbrace{MenthO_2C}_{MenthO_2C} CN \qquad (67)$	328
4 ;e ^f CN	$I \longrightarrow Cl$	NMP, 60°, 12 h	NC $()_3 \longrightarrow ()_3^{Cl}$ (77)	330
	I CN	NMP, 60°, 12 h	NC $\begin{pmatrix} \\ \\ \\ \\ \\ \end{pmatrix}_3$ $\begin{pmatrix} \\ \\ \\ \\ \\ \end{pmatrix}_3$ (82)	330
	I Bu-n	NMP, 60°, 12 h	NC $()_3$ Bu-n (72)	330
	EtO ₂ C	NMP, 60°, 12 h	$EtO_2C$ $NC$ $(65)$	330
55 ()2 Cl	Cl CH	THF78 to 0°. 1 h	0 (57)	329

TABLE VIII. REACTIONS OF ALKENYL/AROMATIC HALIDES AND SULFONES WITH ZINC-COPPER REAGENTS^a

FG-RML _n (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	I C C C C C C C C C C C C C C C C C C C	THF, -30°, 2 h	$I \rightarrow OH \begin{pmatrix} -1 \\ -3 \end{pmatrix} $ (84)	52, 64 ^b
	EtO ₂ C EtO ₂ C SO ₂ Ph	THF, $-78$ to $-30^{\circ}$ , 2 h	$E_{IO_2C} \xrightarrow{CN} (84)$ $E_{IO_2C} \xrightarrow{(4)}_3$	57, 328
25 -22	I C C C C C C C C C C C C C C C C C C C	THF, -60 to -30°, 1 h	(88) O	78
مر OAc		THF, –30°, 3 h	Ac0 (79)	52
	EtO ₂ C EtO ₂ C SO ₂ Ph	THF, -30°, 2 h	$EtO_2C$ $EtO_2C$ $(88)$	57, 328
$F \xrightarrow{F}_{PO_3Et_2}$	CO ₂ Et	DMF, 25°, 12 h	$E_{t_2O_3P} \xrightarrow{F}_{CO_2Et} Z $ (95)	583
	$E$ $I \rightarrow I_{CO_2Et}$ $Z$	DMF, 25°, 12 h	$E \qquad (79)$ $F \qquad F$ $Et_2O_3P \qquad \qquad$	583
		DMF, 25°, 12 h	$E \qquad (89)$ $F \qquad F \\ PO_3Et_2$	583
	PhI	DMA, 25°, 24 h ultrasound	$\begin{array}{c} F \\ Ph \end{array}  F \\ P(O)(OEt)_2 \end{array} (60)$	584
	0 C ₆ H ₁₁ Cl	THF, -78 to 0°, 1 h		329
o ₂ N		THF, -78 to -20°, 2 h	$\begin{array}{c} O \\ O $	209 ^c
^۲ کړ OPiv		THF, -15 to 5°, 12 h	O OPiv (97)	58, 60
OAc Pr-i		THF, -30 to 5°, 14 h	OAc Pr-i (97)	60
	PhSO ₂ NO ₂	THF, -78 to -60°, 2 h	<i>i</i> -Pr NO ₂ (74)	60
,s ^d , Hg 3,∕∕		THF, -78 to 10°, 48 h	$\begin{pmatrix} 0 \\ \\ \end{pmatrix} \\ \begin{pmatrix} 0 \\ \\ \end{pmatrix} \\ \end{pmatrix} $ $Hg $ (40)	338°
ς γ ^{ef} CO ₂ Et	O O R	THF, –78 to 0°, X h	$\begin{array}{c} O \\ O \\ O \\ O \\ R \\ O \\ R \\ O \\ C_6H_{11} \\ O \\$	329
	RO ₂ C RO ₂ C SO ₂ Ph	THF, -30°, 2 h	$\begin{array}{ccc} RO_2C \\ RO_2C \\ RO_2C \end{array} \xrightarrow{CO_2Et} & \begin{array}{c} R \\ Et \\ \end{array} & \begin{array}{c} (90) \\ Pr-i \\ \end{array} & \begin{array}{c} (82) \\ \end{array} \end{array}$	57, 328

FG-I (FC	RML _n Substrate 3 R)	Conditions	Product(s) and Yield(s) (%)	Refs.
	MenthO ₂ C MenthO ₂ C SO ₂ Ph	THF, -30°, 2 h	$\begin{array}{c} \text{MenthO}_{2C} \\ \text{MenthO}_{2C} \\ \end{array} \tag{87}$	328
-32 () OAc	MenthO ₂ C MenthO ₂ C SO ₂ Ph	THF, -30°, 2 h	$MenthO_2C (74)$ $MenthO_2C (74)$	328
بي من P(O)(OE	t) ₂ I 0	THF, -78 to -30°, 4 h	O P(O)(OEt) ₂ (86)	90
jet CN		THF, -78 to -30°, 2 h	O CN (46)	48
je CN	1	NMP, 60°, 12 h	NC (76)	330
		THF, DMF, -78 to 0°, 1 h	0 (85)	51
ZZ (J4 OAc		THF, $-78$ to $0^{\circ}$ , 2 h	$O (f_5 OAc (89))$	329
	0 0 0 0 0	THF, -78 to 0°, 2 h	$O = C_0 H_{11} $ $O = C_0 H_{11} $ $O = C_0 A_C $	329
Z (J CO2Me		THF, -10°, 12 h	$O_{4} (86)$	103
Pr-n P(O)(OM	le) ₂	THF, $-78$ to $-30^\circ$ , 4 h	O P(O)(OMe) ₂ (95)	90
Z CI		THF, -78 to -30°, 12 h	0, CN (84)	50, 51
-SiMe ₂ Ph	EtO ₂ C EtO ₂ C SO ₂ Ph	THF, -30°, 2 h	$EtO_2C$ $EtO_2C$ $SiMe_2Ph$ $(40)$	57
OAc	PhO ₂ S	THF, -78°, 0.5 h	NO ₂ (80)	60
35 HOAc	I Bu-n	NMP, 60°, 12 h	AcO (70) Bu-n	330
15	EtO ₂ C EtO ₂ C SO ₂ Ph	THF, -30°, 2 h	$E_{tO_2C} \xrightarrow{(88)} E_{tO_2C} \xrightarrow{(88)}$	57
NHCO ₂ Et	I C C C C C C C C C C C C C C C C C C C	THF, -30 to 25°, 6 h	O NHCO ₂ Et (75)	35
SO ₂ Bu- <i>t</i>		THF, -78 to -30°, 23 h	OSO2Bu-t (93)	83
ي بر متله		THF, -78 to -30°, 5 h	0 0 0 0 (76)	573 ^c

	TABLE VIII. REACT	IONS OF ALKENYL/AROMATI	C HALIDES AND SULFONES	WITH ZINC-COPPER REAGENTS (Continued) ^a	
	FG-RML _n (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		I O	THF, -30 to 5°, 16 h	0 (70)	87, 88
	N N N N N N N N N N N N N N N N N N N		THF, 42°, 8 h		60
	Ph ,2,2,CN		<b>THF</b> , -78 to -20°, 2 h	O CN (89)	76
	Sector OPiv	I CN	NMP, 60°, 12 h	PivO $()_3$ (87)	330
			NMP, 60°, 12 h	$\operatorname{PivO}\left( \begin{array}{c} & \\ \end{array} \right)_{4} \left( \begin{array}{c} \\ \end{array} \right)_{3} CN \right) $ (77)	330
		lBu-n	NMP, 60°, 12 h	PivO. $()_3$ Bu-n (50)	330
	SPh Y-Z-CN	I C O	THF, -78 to 25°, 12 h	O (86)	82, 83
	SPh 2 €		THF,78 to25°, 12 h	OSPh (85)	82, 83
C ₁₀		EtO ₂ C EtO ₂ C SO ₂ Ph	THF, -30°, 2 h	$EtO_2C$ $EtO_2C$ $(74)$	57
	COPh	o Cl	THF, -78 to 0°, 2 h	O + COPh (72)	329
	Pr-n		THF, -78 to 25°, 12 h	O (88)	82, 83
	N(TMS) ₂		THF, -78 to -20°, 12 h	0 (97)	77
	jz ^z () ₃ OTMS	I O	THF78 to 25°, 15 h	0 (64)	66
	کرے OSi(Pr-i)		THF, -78 to -20°, 7 h	OSi(Pr- <i>i</i> ) ₃ (81)	573^
	p ^{2²}	I C C C C C C C C C C C C C C C C C C C	THF, -78 to -30°, 12 h	0 (85)	103
C ₁₁	ZZZ ()OPiv	I C O	THF, -30°, 10 h	OPiv (82)	242 ^c
	OAc 	PhSO ₂ Ph	THF, -78 to -60°, 2 h	PivO Ph (74)	60

FABLE VIII. REACTIONS OF ALKENYL	AROMATIC HALIDES AN	ND SULFONES WITH ZINC-	COPPER REAGENTS (Continued) ⁴



^b The organozinc reagent was prepared by halide-zinc exchange.

^c The organozinc reagent was prepared by a transmetallation reaction.

538

FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
4 .32 CN	$Br - \overline{=} C_6 H_{13} - n$	THF, -78 to -55°, 18 h	NC (81)	55
	Br	THF, -78 to -55°, 18 h	NC (79)	55
NH	IPr-i	THF, -30 to 0°, 6 h	$ \begin{array}{c} & & \\ & & \\ Pr \cdot i & \\ & & \\ O \end{array} \begin{array}{c} & \\ & \\ & \\ O \end{array} \begin{array}{c} (96) \\ & \\ & \\ O \end{array} \end{array} $	35
Śź∽∽∽⊂CI	Br	THF,78 to55°, 18 h	Cl (81)	55
i j N N	IBu-n	THF, -60 to -45°, 48 h	// (68)	119
Me	1Bu-n	THF, -60 to -30°, 1 h	Me (60)	78
"www.CO2Et	]— <u>—</u> Bu-n	THF, −55°, 48 h	n-Bu (81) EtO ₂ C	87, 88
Et CN	BrPh	THF,78 to 0°	Ph	178 ^b
	IBu-n	THF, -60°, 24 h	Bu- <i>n</i> (92)	87, 88
jěš OTMS	Br— <del>—</del> Et	THF, -60°, 2 d	Et OTMS (68)	567 ^b
OAc Pr-i	I────C6H13-n	THF, -30°, 3 h	$n-C_{b}H_{13}$ (76) $P_{T}-i$	59, 60
OPiv	$\mathbf{Br} \underbrace{-} \mathbf{C}_{6} \mathbf{H}_{13} \cdot \mathbf{n}$	THF, -50°, 8 h	$n \cdot C_6 H_{13}$	58, 60
۲۰٬۰٬۰٬۰٬۰٬۰٬۰٬۰٬۰٬۰٬۰٬۰٬۰٬۰٬۰٬۰٬۰٬۰٬۰٬	Br———R	THF, −78 to −55°, 18 h	$R \xrightarrow{\text{CO}_2\text{Et}} \frac{R}{Ph} \xrightarrow{(73)} C_6H_{13} \xrightarrow{(77)} C_6H_{13} \xrightarrow{(77)} C_7$	55
	Br-=	THF, -78 to -55°, 18 h	CO ₂ Et (74)	55
	BrOTHP	THF, $-78$ to $-40^{\circ}$ , 2.5 h	THPO CO ₂ Et (74)	586
		THF,84 to55°, 40 min	Ph (56)	327°
P(O)(OEt) ₂	BrC ₆ H ₁₃ - <i>n</i>	THF, -78 to -30°, 3 h	$n-C_6H_{13}$ (89) $-P(O)(OEt)_2$	90
کر SPh	$Br - C_6 H_{13} - n$	THF, -70 to -60°, 15 h	$n-C_6H_{13}$ (70)	82, 83
je ^s N	BrC ₆ H ₁₃ -n	THF60°, 4 d	<i>n</i> -C ₆ H ₁₃ 0 (64)	567 ^b
-8 ize	J	THF,78 to55°, 40 min	<i>n</i> -C ₆ H ₁₃ (56)	327 ^c

TABLE IX. REACTIONS OF ZINC-COPPER ORGANOMETALLICS WITH 1-HALOALKYNES^a

FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Ph.	THF, -78 to -55°, 40 min	$ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $	327 ^c
₹C6H13-n	IBu-n	THF, -60°	$n-\mathrm{Bu} = \frac{C_6H_{13}-n}{(77)}$	67
° OAc	BrC ₆ H ₁₃ - <i>n</i>	THF, -78 to 0°, 6 h	OAc n-C ₆ H ₁₃ (86)	60
Contraction of the second seco	BrPh	THF, -53°, 2 d	$\begin{array}{c} Ph \\ & \\ & \\ & \\ & \\ & \\ & \\ OTMS \end{array} $ (71)	567 ^b
CsH ₁₁ -n	BrPh	ТН <b>F</b> , −78 ю −55°, 18 h	Ph C ₅ H ₁₁ - <i>n</i> (86)	55
oPiv OPiv	I———Bu-n	THF, -78 to -20°, 4 h	<i>n</i> -Bu (66)	209 ^c
	$I C_6 H_{13} - n$	THF, -78 to -55°, 18 h	<i>n</i> -C ₆ H ₁₃	55
	1— <u>—</u> Bu- <i>n</i>	1. THF, –30°, 17 b 2. H ₂ O ₂ , NaOAc	<i>n</i> -BuCl (87)	62
	IBu-n	1. THF, -30°, 17 h 2. H ₂ O ₂ , NaOAc	<i>n</i> -Bu (86)	62
C ₁₇ NHBoc CO ₂ Bn CO ₂ Bn	Br — — CO ₂ Me	THF, -78°, 3 h	MeO ₂ C. NHBoc CO ₂ Bn (49)	100
Ph S	Br — — R	THF, -90 to 25°, 1 h	Ph -Ph R -Ph Ph (53) dr >97 TMS (40) dr >97	577°

 b  The organozinc reagent was prepared by halide-zinc exchange.

 c  The organozinc reagent was prepared by a transmetallation reaction.

-	FG-RML _n	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
 C ₆	(FG-K)	A. Reactions with O	rganozinc Cuprates [ML _n = Cu(N	/gCl)•Me2Zn]	
Ū	ZZ OAc	Ph-NO ₂	THF, DMPU, -78 to 0°, 2 h	Ph NO ₂ (83)	331
		Ph $N $ $I$	THF, DMPU, -78 to 0°, 2 h	$\begin{array}{c} SO_2 CF_3 \\ I \\ Ph \\ N \\ \end{array} \begin{array}{c} OAc \end{array} (87)$	331
	کر CO2Et	I	THF, DMPU, -78 to 0°, 2 h	$EtO_2C$ (71)	331
27		n-C ₈ H ₁₇ I	THF, DMPU, -78 to 0°, 2 h	$E_{i}O_2C\left(\frac{1}{10}\right)$ (72)	331
	ζζ () ₄ CN	BnBr	THF, DMPU, -78 to 0°, 2 h	$Ph\left(\frac{1}{7}CN\right)$ (93)	331
	Z () OAc	I	THF, DMPU, -78 to 0°, 2 h	AcO  (81)	331
		I CO ₂ Et	THF, DMPU, -78 to 0°, 2 h	AcO $CO_2Et$ (74)	331
		<i>n</i> -C ₈ H ₁₇ I	THF, DMPU, -78 to 0°, 2 h	$EtO_2C\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	331
-11	$30_2 CF_3$ N Ph		THF, DMPU, -78 to 0°, 2 h	$\begin{array}{c} \text{SO}_2\text{CF}_3\\ \text{Ph}_{\text{O}} & \text{N}_{\text{O}}\\ \text{V}_2 \\ \end{array} $	331
6		B. Nickel-G	Catalyzed Reactions with Organo	zincs	
	j² ⁴ ⊂CI	EtO ₂ C	Ni(acac) ₂ , <i>p</i> -CF ₃ styrene, THF, NMP, -15°	EtO ₂ C (71)	230 ^b
C7	- ZZ OPiv	ICOPh	Ni(acac) ₂ , <i>p</i> -CF ₃ styrene, THF. NMP, -35°	PhCO OPiv (76)	332
		COBu-n	Ni(acac) ₂ , p-CF ₃ styrene, THF, NMP, -35°	n-BuOC OPiv (68)	332
		LCOC4H3S-2	Ni(acac) ₂ , p-CF ₃ styrene, THF, NMP, -35°	2-C ₄ H ₃ SCOOPiv (70)	332
		s s s	Ni(acac) ₂ , <i>p</i> -CF ₃ styrene, THF, NMP, -35°	SOPiv (70)	332
		C N I	Ni(acac) ₂ , <i>p</i> -CF ₃ styrene, THF, NMP, –35°	OPiv (68)	332
	is the other of the other of the other oth	EtO ₂ C	Ni(acac) ₂ , <i>p</i> -CF ₃ styrene, THF, NMP, -35°	$EtO_2C$ (78)	333
	j ² CN	EtO ₂ C	Ni(acac) ₂ , <i>p</i> -CF ₃ styrene, THF. NMP. –15°	EtO ₂ C (75)	230 ^b
		s s	Ni(acac) ₂ , <i>p</i> -CF ₃ styrene, THF, NMP, –15°	S S CN (80)	230
9			Ni(acac) ₂ , <i>p</i> -CF ₃ styrene, THF, NMP, -15°	0 N CN (71)	230 ^b
	Z ( ) OPiv	s s s	Ni(acac) ₂ , <i>p</i> -CF ₃ styrene, THF, NMP, –35°	SOPiv (67)	332

FG-RML _n (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
2 ^{2⁴} CO ₂ Et	s s s	Ni(acac) ₂ , <i>p</i> -CF ₃ styrene, THF, NMP, –15°	$S$ $S$ $CO_2Et$ $(72)$	230 ^b
	PhS	Ni(acac) ₂ , <i>p</i> -CF ₃ styrene, THF, NMP, -15°	PhS CO ₂ Et (75)	230 ^b
CO ₂ Et	N I	Ni(acac) ₂ , <i>p</i> -CF ₃ styrene, THF, NMP, -15°	(72)	230 ^b

^b The organozinc reagent was prepared by a transmetallation reaction.

FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
23 25 CN		THF, 0°, 2 h	NC R $\frac{R}{-(CH_2)_3Cl}$ (77) Ph (83) C ₆ H ₁₃ (79)	75
کم کر``CN	Ph Cl	THF, $-20$ to $0^{\circ}$ , 3 h	NCPh (93)	47
	Ph Cl	THF, 0°, 10 h	$\stackrel{O}{} \stackrel{H}{} \stackrel{N}{} O \qquad (71)$	35
NHAc	Ph Cl	<b>THF</b> , 0°, 10 h	Ph NHAc (51)	35
23 22	Ph Cl	THF, -30 to 0°, 4 h	Ph (68)	78
	C ₆ H ₁₁ Cl	THF, -45 to 25°, 4 h	о С ₆ Н ₁₁ (67)	78
2200	Ph Ci	THF, -78 to -14°, 8 h		60
ZZZ CO ₂ Me	Ph Cl	THF, 25°, 4 h	$MeO_2C$ $Ph$ $(75)$	192, 587, 131
خر CO2Et		THF, HMPA, 0°, 6 h	EtO ₂ C Ph (76)	140 ^b

TABLE XI. ADDITION OF ZINC-COPPER REAGENTS TO ACID CHLORIDES AND ANHYDRIDES^a

$F_{T}$ $T_{T}$ $T_{T$	Ph - Cl $Ph - Cl$	THF, HMPA, 0°, 6 h THF, -78 to 0° THF, -20 to 0°, 10 h THF, -25° THF, -25°	$ \begin{array}{c}                                     $	140 ^{<i>b</i>} 178 ^{<i>c</i>} 133 120
$E_{I}$ $J_{2}$ $-C_{6}F_{5}$ $J_{2}$	$Ph \leftarrow Cl$	THF, -78 to 0° THF, -20 to 0°, 10 h THF, -25° THF, -25° THF, -78 to -5°, 2 d	$Ph + C_{6}F_{5}$ $O$ $Ph + C_{6}F_{5}$ $O$ $(89)$ $(76)$ $(76)$ $O$ $(76)$ $(90)$ $O$ $(90)$ $O$ $O$ $O$ $O$ $O$ $O$ $(90)$ $O$	178° 133 120 120
$-C_{6}F_{5}$ $\int_{a}^{a^{4}} \left( \int_{C_{1}}^{c} \int_{c_{2}}^{c} \int_{c_{1}}^{c} \int_{C_{1}}^{$		ТНF, -20 to 0°, 10 h ТНF, -25° ТНF, -25° ТНF, -78 to -5°, 2 d	Ph $C_6F_5$ (89) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (90) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76) (76	133 120 120
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \begin{array}{c} \end{array}\\ \end{array} $	O C r-Bu C C C C C	THF, -25° THF, -25° THF, -78 to -5°, 2 d	(76)	120
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \end{array}\\ \end{array} \begin{array}{c} \end{array} \end{array} $	r-Bu Cl	ТНF, -25° ТНF, -78 ю -5°, 2 d	(90)	120
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}$	o I-Bu Cl	THF, -78 to -5°, 2 d	0	
$O_2N$ CN $e^{e^{e^{e^{e^{e^{e^{e^{e^{e^{e^{e^{e^{e$			<i>t</i> -Bu O ₂ CBu- <i>t</i> (61)	567°
CN	Ph C1	THF, -20°, 2 h	Ph (75)	209 ^d
s /	Ph Cl	THF, 0°, 2 h	Ph (67)	76
OAc -CH Pr-n	Ph Ci	THF. 0°, 2 h	$\begin{array}{c} AcO \\ n Pr \end{array} \xrightarrow{O} (81) \\ n Bh \end{array}$	58-60
OAc -CH Pr-i	O II Ph Cl	THF, -20°, 8 h	AcO O (82) <i>i</i> -Pr Ph (82)	58-60
کر OPiv	CICI	THF, -10°, 3 h	ClOPiv (42)	58, 6
		THF, 0°, 5 h	OPiv (90)	58.6
	Ph Cl	THF, -10 to 0°, 2 h	Ph OPiv (81)	58, 6
	C ₆ H ₁₁ Cl	THF, -10°, 8 h	OPiv (66)	58, 60
کر CO2Et	Bu Cl	THF, -25°	$Bu$ $CO_2Et$ (91)	120
	Ph Cl	DME, -25 to 0°, 3 h	$Ph$ $CO_2Et$ $(95)$	120, 47
22 ()4 CI	Ph Cl	THF, -25°	Ph $Cl$ (85)	120
بر P(O)(OEt) ₂	0		Q R X	

TABLE XI. ADDITION OF ZINC-COPPER REAGENTS TO ACID CHLORIDES AND ANHYDRIDES (Continued)^a

	FG-RCu(CN)ZnX	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		Ph Cl	THF, -78 to -10°, 6 h	$\begin{pmatrix} 0 \\ Ph \end{pmatrix} Hg $ (58)	338 ^d
<b>C</b> ₇	cF3	Ph Cl	THF, –20 to 0°, 10 h	O Ph (80) CF ₃	133
	NC sport	n-Bu Cl	THF, -25°	о Ви-л (97) СN	120
		Pb CI		Ph	
			THF, -25° DMAC, 0°, 1 h	(98) (50)	120 48
		Ph CI	THF. 25°. I h	$ \bigcup_{O}^{N} \bigvee_{Ph}^{O} $ (63)	588
	22 OTMS	Ph Cl	THF78 to -20°, 7 h	Ph CHO (68)	573 ^d
	o ^{rf}	(CF ₃ CO) ₂ O	()	$\frac{O}{CF_3} = \frac{R}{CN} $ (50) OMe (32)	156 ^e
			THF, -25°	О Ви-л (71)	120
		Ph Cl	THF, -20 to 0°, 10 h	NC Ph	133, 209. 120
		C ₆ H ₁₁ Cl	THF, -70 to -20°, 12 h	$CI \qquad (92)$	50
	NC.	Ph Cl	THF, 0°, 2 h	CN + CN + Ph $CN + OPh$ $CS +$	76
	24 ()_4 CN	Ph Cl	THF, -25°	Ph $CN$ (94)	152
		O ₂ N CI	THF, −10°, 12 h	$O_2N$ $(76)$	240 ^d , 242 ^d
	32 (J3 OAc	Ph Cl	THF,10°, 12 h	Ph $(37)$	64
C ₈	S Ph	Ph Cl	THF, -78 to 25°, 8 h	Ph $S$ $Ph$ (85)	83

TABLE XI. ADDITION OF ZINC-COPPER REAGENTS TO ACID CHLORIDES AND ANHYDRIDES (Continued) ⁴				
FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
g ^d COMe	n-Bu Cl	THF, -25°	MeOC O (80)	120
CO ₂ Me	(CF ₃ CO) ₂ O	()	MeO ₂ CF ₃ (52)	156 ^e
CPiv OPiv	Fe CI	THF, -30°	OPiv Fe OPiv (80)	515
-Ş-ÇH Ph	C ₆ H ₁₁ Cl	THF, -70 to -20°, 8 h	$C_{0}H_{11} \xrightarrow{P_{h}} (93)$	50, 51
2 de la companya de l	CICOCOCI	(—)	(77)	65
-SiMe ₂ Ph	R	THF20 to 25°. 12 h	$\begin{array}{c} \begin{array}{c} R \\ \hline R \\ \hline SiMe_2Ph \end{array} & \begin{array}{c} R \\ \hline c-C_3H_5 \\ c-C_4H_7 \\ c-C_6H_{11} \\ (70) \\ n-C_{11}H_{23} \\ (90) \\ C_4H_3S \\ (81) \\ C_4H_3S \\ (81) \\ C_4H_3O \\ (98) \\ MeO_2CCH_2 \\ (96) \\ Cl(CH_2)_3 \\ (70) \end{array} \\ \end{array}$	589 ⁴
	ö		4-CN (80) 2-OAc (52) 0	
		THF, -20 to 25°, 12 h	SiMe ₂ Ph (53)	589 ^d
		THF, −20 to 25°, 12 h	$Ph \qquad SiMe_2Ph \qquad (65)$	589 ^d
C ₉ -{-{CN -} Ph	Ph Cl	THF, 0°, 2 h	$ \begin{array}{c} O \\ Ph \\ Ph \end{array} $ $ \begin{array}{c} CN \\ Ph \\ Ph \end{array} $ $ \begin{array}{c} (82) \\ (82) \end{array} $	76
-\$-CH SPh	Ph Cl	THF, -78 to -10°, 15 h	Ph SPh (79)	82, 83
EtO ₂ C	R CI	THF, –25°	$\begin{array}{c} \mathbf{O} \\ \mathbf{R} \\ \mathbf{CO}_2 \mathbf{Et} \end{array} \begin{array}{c} \mathbf{R} \\ $	120

FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
² ² ² ² ² ² ² ² ²	Ph Cl	THF, -25°	$EtO_2C$ $Ph$ (83)	120, 48
² ² CO ₂ Et	o CI	THF, −20 to 0°, 10 h	EtO ₂ C (68)	133
		THF, -25°	$\begin{array}{c} O \\ R \\$	120
r ² Bu-n CN	Ph Cl	THF, -45 to 25°	NC $Ph$ (60) Bu-n	131
-§-(CN	Ph Cl	THF, -40 to 25°, 4 h	$ \begin{array}{c}                                     $	131
۶۲۰ SPh	Ph Cl	THF, -70 to -20°, 12 h	PhS Ph (87)	82, 83
_з , , , , , , , , , , , , , , , , , , ,	Ph Cl	THF, -78 to -5°, 24 h	$\begin{array}{c} O \\ Ph \end{array} \begin{array}{c} C_6 H_{13} \cdot n \\ O_2 CPh \end{array} $ (65)	567°
.¿Ph		THF, 25°, 1 h	$Ph \xrightarrow{N}_{O} \xrightarrow{R}_{O}$	588 ^d
	R Ph p-MeOC ₆ H ₄ p-O ₂ NC ₆ H ₄ n-Pr <i>i</i> -Pr <i>i</i> -Bu		(70) (65) (80) (67) (67) (64)	
	Ph Cl	THF, 25°, 1 h	$Ph \longrightarrow O O O O O O O O O O O O O O O O O O $	588 ^d
) y y y y o TMS	Ph Cl	THF, -78 to 25°, 3 h	Ph (75)	573 ^d
کر OTMS	Ph Cl	THF, -78 to 25°, 3 h	$\begin{array}{c} Ph \\ 0 \\ 0 \\ 0 \end{array} $ (74)	573 ^d
-{-{CN	Ph Cl	THF, -60 to -20°, 8 h	NC $Ph$ $O$ (83)	51
·{	Ph Cl	THF, -78 to -10°, 12 h	$ \begin{array}{c}                                     $	82, 83
Zywobz		THF, -10°. 10 h	OBz (80)	240 ^{<i>d</i>} , 242 ^{<i>d</i>}

FG-RCu(CN)ZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Ph Cl	THF, 0°, 10 h	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	47
3.5.	Ph Cl	THF. –20°, 4 h	Ph (85)	240 ^d , 242 ^d
, jost OPiv	Ph Cl	THF, -25 to 0°, 3 h	PivO Ph (93)	47
s ^{zis} Bu-n CO ₂ Me	Ph Cl	THF, -45 to 25°	$MeO_2C \xrightarrow{O} Ph $ Bu-n (54)	131
ζζζ ² ζ ² ζ ²	Cl ₃ C Cl	THF, 0 to 25°, 1 h	CCl ₃ (82)	146
rin N	Ph Cl	THF, 0 to 5°, 12 h	$ \begin{array}{c}                                     $	79
NC Bu-t	Ph Cl	<b>THF</b> , 0°, 2 h	$\begin{array}{c} O \\ Ph \\ NC \end{array} \xrightarrow{Bu-t} (68) \end{array}$	76
(TMS) ₂ N , , , , , , , , , , , , , , , , , , ,	Ph Cl	1. THF, ~20°, 14 h 2. H ₂ O	Br N H H (75)	77
N(TMS) ₂	CI.	1. THF, -20°, 14 h 2. H ₂ O	Cl $Cl$ $Cl$ $(73)$	77
	Ph	1. THF, -20°, 14 h 2. H ₂ O	H (53)	77
(TMS) ₂ N	ClCl	1. THF, -20°, 14 h 2. H ₂ O	$ \begin{array}{c}                                     $	77
	Ci	1. THF, -20°, 14 h 2. H ₂ O	(78)	77
	Ph Cl	1. THF, -20°, 14 h 2. H ₂ O	$\bigvee_{\mathbf{N}} Ph \qquad (94)$	77
	CI COCI	1. THF, -20°, 14 h 2. H ₂ O		77
n-C ₆ H ₁₃ 	O Phr Ci	1. THF, 0°, 2 h 2. H ⁺	$P_h$ (74)	61
3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Cl ₃ C Cl	THF, 0 to 25°, 1 h	(85)	146
بر OSi(Pr-i)3	R	THF, -78 to -20°, 7 h	$R \xrightarrow{O} OSi(Pr-i)_3 \xrightarrow{R} Ph (73)$	) 573 ⁴



^b The organozinc reagent was prepared by ultrasonic irradiation of an ether solution of (ethoxycyclopropyloxy)trimethylsilane and zinc chloride.

 $^{\rm c}$  The organozinc reagent was prepared by halide-zinc exchange.

^d The organozinc reagent was prepared by a transmetallation reaction.

 $^{\it e}$  The organozinc reagent was prepared by Nakamura's method (ref. 140).

FG-RML _n (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	A. Reactions of Al	lylic/Allenic Organozinc Halides	$T(ML_n = ZnX)$	_
jut work	СН₃СНО	THF	OH Cl (78)	590
	° –	THF	OH CI (64)	590
	o L	THF	OH Cl (61)	590
		THF	OH Cl (73)	590
	RCHO	THF	$R \xrightarrow{Cl} Cl \qquad R \xrightarrow{P-ClC_6H_4} (52) \\ p-ClC_6H_4 (65) \\ ph (80) \\ p-MeC_6H_4 (67) \\ p-MeC_6H_4 (62) \\ R \xrightarrow{P-MeOC_6H_4} (62) \\ $	590
	Ph R	THF	$\begin{array}{c c} OH & \underline{R} \\ Ph & Me \\ R & Ph \\ Cl \end{array} $	590

TABLE XII. 1,2-ADDITIONS OF ORGANOMETALLIC REAGENTS TO CARBONYL AND RELATED COMPOUNDS^a

____



FG-RML _n (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	O H	Et ₂ O, 25°, 1 h	OH TMS (76) syn:anti = 1:1	592 ^b
	⊖o	BF3•OEt2, Et2O, ~15°, 10 min	OH TMS (66)	592 ^b
OMe	РѣСНО	Pd(PPh ₃ )4, THF, reflux, 18 h	$Et \qquad (78) \ cis:trans = 78:22$ $Et \qquad //$	356
	OHCOMe	Pd(PPh ₃ )4, THF, reflux, 18 h	MeO (100) <i>cis:trans</i> = 66:34	356
CO ₂ Et	РһСНО	THF, 25°	Ph 0 (87)	347
Fe(CO) ₃	^O ℝ	THF, -78 ιο 25°, 1 h	$\begin{array}{c} OH \\ R \\ \hline R \\ \hline Me \\ Fe(CO)_3 \end{array} (20) \\ Ph \\ (37) \\ \end{array}$	593 ^{<i>b</i>}
	СНО	THF, -78 to 25°, 1 h	OH (64) Fe(CO) ₃	593 [#]
CO ₂ Bu- <i>t</i>	Ph N OH	()	$\begin{array}{cccccccc} r-BuO_2C & Ph & R & R \\ & & & \\ & & & \\ & & & \\ & & & \\ H & Ph & (85) \end{array}$	351
73CN	РЬСНО	THF,78 to 25°, 4 h	NC $(7)_3$ OH (60)	296°
Y ² Y ²	РћСНО	THF, reflux	O O O Ph (33)	347
CO2Bu-1	рьсно	THF, reflux	Ph-0 (89)	347
	RCHO	THF, -78 to 25°, 4 h	Ph Ph R Ph $C_6H_{11}$ (77) syn:anti = 5:95 $C_6H_{11}$ (76) syn:anti > 2:98	299°
h ² r ⁴	РЬСНО	THF, -78 to 25°, 4 h	R (67) syn:anti = 90:10	299°
	RCHO	THF, DMAC, 25°, X h	$= \underbrace{\bigwedge_{I}^{R}}_{II} + \underbrace{\bigvee_{II}^{R}}_{OH} + \underbrace{\bigvee_{II}^{R}}_{OH}$	103
			$\frac{R}{Ph} = \frac{X}{2} \frac{I + II}{(95)} \frac{I \cdot II}{4:1}$	

FABLE XII. 1,2-ADDITIONS	OF ORGANOMETALLIC REA	AGENTS TO CARBONYL AN	VD RELATED COMPOUNDS	(Continued


FG-RML _n (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	РһСНО	THF, -50 to -20°, 15 min	HO Ph (96)	267 ^e
CO ₂ Et	C ₆ H ₁₁ CHO	THF, -60 to 0°, 5 h	$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	271°
OBn	СНО	i. THF, 0°, i2 h 2. Pd(PPh3)4, reflux	(92)	355
		1. THF, 0°, 12 h 2. Pd(PPh ₃ )4, reflux	(53)	355
	<b>O</b>	1. THF, 0°, 12 h 2. Pd(PPh ₃ ) ₄ , reflux	(96)	355
	РьСНО	1. THF, 0°, 12 h 2. Pd(PPh ₃ )4, rcflux	Ph (82)	355
	PhCOMe	1. THF, 0°, 12 h 2. Pd(PPh ₃ ) ₄ , reflux	Ph (83)	355
	N _{Bu-n}	1. THF, 0°, 12 h 2. Pd(PPh ₃ ) ₄ , reflux	58)	355
	Ph Me	1. THF, 0°, 12 h 2. Pd(PPh ₃ ) ₄ , reflux	Me N Ph (78)	355
-}-	0	THF, –60 to $0^\circ$ , 2 h	THPO-	268¢
2 SiMe ₂ Ph	<b>0</b>	THF, -50 to -20°, 15 min	PhMe ₂ Si (71)	267 ^e
CO ₂ Et	⊖_0	THF60 to 0°, 5 h	O = O $O = O $ $O = O $ $(68)$	271 ^e
	РЬСНО	THF, -60 to 0°, 5 h	O = O = Ph $I + II (85), I:II = 95:5$ $I = 95:5$	∎ 271 [¢]
GO2Et	рьсно	THF,60 to 0°, 5 h	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ Ph \\ I + II (78), I : II = 92:8 \end{array} $ II	271 ^e
CO ₂ Et	C₀H₁1CHO	THF,60 to 0°, 5 h	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	271 ^e

TABLE XII. 1.2-ADDITIONS OF ORGANOMETALLIC REAGENTS TO CARBONYL AND RELATED COMPOUNDS (Continued)^a

566

567

~~________CN

I + II (93), I:II = 95:5



^a Unless otherwise indicated, the organozinc reagents were prepared by insertion of zinc metal into an organic halide.

- ^b The organozinc reagent was prepared by a transmetallation reaction.
- ^c The organozinc reagent was prepared by an electrochemical reaction.
- d  The organozinc reagent was prepared by halide-zinc exchange.
- ^e The organozinc reagent was prepared by an insertion reaction using ICH₂ZnI.



FG-RML _n	Substrate	Additive	Conditions	Product(s) and Yield(s) (%)	Refs.
(ru-k)	n-C ₆ H ₁₃ O, O	TMSOTf	CH ₂ Cl ₂ , -78°, 1 h	$\begin{array}{c} n - C_6 H_{13} \\ 0 \\ 0 \\ 0 \end{array} \xrightarrow{(1)} CO_2 Et \\ (77) \\ (77) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	373°
	Bu-t n-C ₆ H ₁₃ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TMSOTf	$CH_2Cl_2, -78^\circ, 1$ h	$\tilde{B}u$ - $t$ $n$ - $C_6H_{13}$ $CO_2Et$ O O OBn OBn	373 ^c
	OHC BO	_	THF,40°, 3 h	$EtO_2C$ $OH$ $OH$ $(73)$	596
sist NO2	РһСНО	_	THF. ~78°. 1 h	Ph (68) NO ₂	597°
N O CO ₂ Et		_	THF, 0°, 2 h	EtO ₂ C OH (52)	372
	() = 0	—	THF, 0°, 2 h	$E_1O_2C$ (90)	372
	онс	-	THF, 0°, 2 h	$EtO_2C \longrightarrow OH$ (62)	372
	OHC		THF, 0°, 2 h	$E_{1O_2C} \longrightarrow O_{OH}^{N}$ (40)	372
		_	THF, 0°. 2 h	$E_{IO_2C}$ (49)	372
	n-C₅H₁₁CHO	_	THF, 0°, 2 h	$E_{tO_2C} \xrightarrow{N} \xrightarrow{OH} C_5H_{11} \xrightarrow{n} (92)$	372
		_	THF, 0°, 2 h	$E_1O_2C$ (39)	372
	РһСНО	_	THF, 0°, 2 h	$EtO_2C \longrightarrow O P_h$ (96)	372
	Ph-	_	THF, 0°, 2 h	$E_{tO_2C} \xrightarrow{N_{tot}} \stackrel{OH}{} P_h$ (47)	372
	OHCPh	_	THF, 0°, 2 h	$EIO_2C \longrightarrow OH $ (97)	372
	O Ph	_	THF, 0°, 2 h	$E_{IO_2C} \xrightarrow{N_1} OH_{Ph}$ (93)	372
	O OTBDMS	_	THF, 0°, 2 h	EtO ₂ C-V-OHOTBDMS (6	2) 372

FG-RML _n (FG-R)	Substrate	Additive	Conditions	Product(s) and Yield(s) (%)	Refs.
3	TBDPSO	BF ₃ •OEt ₂	CH ₂ Cl ₂ , -30 to 0°, 3 h	TBDPSO $H O H O O$ TBDPSO $H O H O O$ TBDPSO $H O H O O$	- 369, 598 3)
0	TBDPSO	BF3•OEt2	$CH_2Cl_2$ , -30 to 0°, 3 h	TBDPSO $I$ (37) + H $O$ $H$ $O$ $O$ $O$ $TBDPSO II (C) H O O II (C) H O O O II (C) H O O O O O O O O O O$	369, 598
	СНО	BF3•OEt2	CH ₂ Cl ₂ , -30 to 0°, 3 h	$O \rightarrow O HO $ $(36) + $ $(36) + $ $(15)$ $(15)$	369, 598
	СНО	BF3•OEt2	CH ₂ Cl ₂ 30 to 0°. 3 h	о но s (71) +	369, 598
	PhCHO	BF ₃ •OEt ₂	CH ₂ Cl ₂ , ~30 to 0°, 3 h	O HO S (21) $O HO Ph (73) +$ $O HO Ph (23)$	369, 598
	твдрѕо Сно	BF3•OEt2	CH ₂ Cl ₂ , -30 to 0°, 3 h	OTBDPS O HO (49) OTBDPS O HO (9)	369, 598
2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\overbrace{\substack{N+\\ CO_2Ph}}^{N+} Cl^-$	_	1. C ₆ H ₆ , 25°, 0.5 h 2. H ⁺	(64) N CO ₂ Ph	391
3.3.	RCHO	BF3•OEt2	CH ₂ Cl ₂ , -30 to 0°, 3 h	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	369, 598



TABLE XIII. 1,2-ADDITIONS OF ZINC/COPPER REAGENTS TO CARBONYL AND RELATED COMPOUNDS (Continued)^a

	FG <b>-RML</b> n (FG-R)	Substrate	Additive	Conditions	Product(s) and Yield(s) (%)	Refs.
-2	CF ₃ -CF CF ₃	СНО		DMF, 25°, ultrasound	$ \begin{array}{c}                                     $	374a
	ζζ ^Λ CN	Cr(CO) ₃ PhCHO	BF3•OEt2	THF, -78 to -30°, 16 h	Cr(CO) ₃ OH Ph CN (85)	54
	33	PhCHO	BF3•OEt2	THF, -60 to 0°, 17 h	Ph (75)	78
,	Z OAc	<i>n</i> -C ₆ H ₁₃ CHO	BF3•OEt2	THF, -78 to -30°, 16 h	$n-C_6H_{13}$ OAc (91)	54
		РЬСНО	BF3•OEt2	THF, -78 to 25°, 1 h	$AcO\left(\frac{1}{3}\right)$ $Ph + AcO\left(\frac{1}{3}\right)$ $Ph$ I $OH$ $I$ $I$	54
	کر CO2Et	RCHO	TiCl(OPr-i)3	DMAC, C ₆ H ₆ , 0°, 2 h	<b>I</b> + <b>II</b> (77), <b>I</b> : <b>II</b> = 83:17 <b>O</b> $R$ $\frac{R}{n \cdot Bu}$ (100) Ph (95)	135 135, 3
		t-Bu	TiCl(OPr-i)3	DMAC, $C_6H_6$ , 0 to 20°, 16 h	0 0 (88)	135
		Ph ()4	TiCl(OPr-i)3	DMAC, C ₆ H ₆ , 0°, 2 h	$0 \xrightarrow{Ph} (95)$	135
		BocNH n-Bu CHO	_	THF,78 to 25°, 1 h	BocNH $CO_2Et$ (32) Bu-n	367
	P(O)(OMe)2	РһСНО	BF ₃ •OEt ₂	THF,78 to 15°, 12 h	$(MeO)_2(O)P$ $Ph$ (81) OH	90
6	-(CF ₂ ) ₅ CF ₃	CHO Cr(CO) ₃	_	DMF. 25°, ultrasound	$\begin{array}{c} OH \\ I \\ C_6 F_{13} \\ C_7 (CO)_3 \end{array} $ (80)	374a
	22 OPiv	RCHO	BF ₃ •OEt ₂	THF, -30 to -20°, 12 h	$\mathbf{R} \xrightarrow{\text{OPiv}} \mathbf{Ph} = \mathbf{R} \xrightarrow{\mathbf{R}} \mathbf{Ph} = \mathbf{R}$	58, 6
	Zv2 CO2Et	RCHO	TMSCI	DMAC. PhMe, 25°, X h	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	368 0) 8) 7) 8)
		РЬСНО	BF3•OEt2	THF,78 to30°, 16 h	Ph 0 (72)	54
		PhCHO	TiCl(OPr-i)3	DMAC, C ₆ H ₆ , 0°, 8 h	$\begin{array}{c} Ph \\ \swarrow \\ OH \end{array} \xrightarrow{(80)} $	135
	ZZ CO2Et	РһСНО	TiCl(OPr-i)3	DMAC, C ₆ H ₆ . 0°, 8 h	0 (94)	135

	FG-RML _n (FG-R)	Substrate	Additive	Conditions	Product(s) and Yield(s) (%)	Refs.
		Рћ	TiCl(OPr-i)3	DMAC, C ₆ H ₆ , 0°, 8 h	$\begin{array}{c} 0 \\ 0 \\ Ph \end{array} \qquad I + 0 \\ Ph \\ I + II (95), I:II = 83:17 \end{array}$	135
م	CO ₂ Et	РһСНО	TMSCl	DMAC. PhMe, 25°, 6 h	$Ph$ $CO_2Et$ $(70)$	368
ې بې	P(O)OEt) ₂	RCHO	BF ₃ •OEt ₂	THF, -78 to -15°. 12 h	$\begin{array}{c} R & & \\ & & \\ & & \\ & OH & & Ph & (96) \end{array}$	90
, , , , , ,		РһСНО	BF3•OEt2	THF, -78 to -30°, 12 h	Ph (93)	50, 51
ی مح	SPh	РЪСНО	BF3•OEt2	THF, 0°, 36 h	Ph SPh (71)	82, 83
<u>^</u> ئز	CO ₂ Et	RCHO	TMSCI	DMAC. PhMe, 60°, 6 h	$\mathbf{R} \xrightarrow{\text{OH}} \text{CO}_2\text{Et}  \frac{\mathbf{R}}{\mathbf{n} \cdot \mathbf{C}_5 \mathbf{H}_{11}}  (22)$ $\mathbf{Ph}  (80)$	368
ېز		CHO	BF₃•OEt₂	1. THF, -78 to 25°. 14 h 2. H ₂ O ₂	HO OH (93)	76
8 	CN	PhCHO	BF3•OEt2	THF, -78 to -30°, 45 min	Ph OH (94)	65, 64
2	$()_{4}^{CO_2Et}$	РЬСНО	TiCl(OPr-i)3	DMAC, C ₆ H ₆ , 0°, 8 h	Ph $()_4^{CO_2Et}$ (95)	135
ہر ہر	SPh	$n - C_6 H_{13}$	TMSOTf	CH2Cl2, 78°, 1 h	n-C ₀ H ₁₃ O Bu- <i>t</i> (36)	373, 37
n	MS Bu-n	РһСНО	_	$C_6H_{14}, 0^\circ, 12 h$	$\begin{array}{c} OH \\ Ph \\ \hline \\ TMS \\ Bu-n \end{array} $ (68)	236 ^b
.10 بحر م	o Ph	РһСНО	TiCl(OPr- <i>i</i> ) ₃	DMAC, C ₆ H ₆ , 0°, 2 h	Ph $Ph$ $(76)$	135
	CO ₂ Et	РьСНО	BF ₃ •OEt ₂	THF, -70 to -20°, 12 h	EtO ₂ C OH (97)	51
مح	OMe	PhCHO	BF3•OEt2	THF70 to -30°. 4 h	MeO AcO OH (85)	50. 51
^ع نی	s Bu-n	РһСНО	BF ₃ •OEt ₂	THF, -70 to -20°, 15 h	Ph Bu-n (64)	66
y y	OPiv	РһСНО	BF ₃ •OEt ₂	THF, -70 to -30°, 16 h	Ph $OPiv$ $(80)$ $OH$ $I$	54
				TUE 70 to 209		54

	FG-RML _n (FG-R)	Substrate	Additive	Conditions	Product(s) and Yield(s) (%)	Refs.
		СНО	BF ₃ •OEt ₂	THF, -70 ω -30°, 16 h	OH OPiv (84)	54
	, it N	РһСНО	BF ₃ •OEt ₂	THF, -70 to -30°, 16 h	O O Ph OPjv (89)	54
		Ph	BF ₃ •OEt ₂	THF, -60 to 0°, 15 h	HO O O (50)	79
	22 ( )7 CO2EI	Ph	BF3•OEt2	THF, ~30°, 12 h	$Ph$ $CO_2Ei$ (80)	371
6		OHC n-C ₅ H ₁₁ OAc	BF3•OEt2	THF,78°, 5 h	$AcO \xrightarrow{OH} CO_2Et$ $AcO \xrightarrow{C_5H_{11}-n} dr = 1:1$	371
C12	r ^j ^{r²} () ₃ O Ph	РьСНО	BF3•OEt2	THF, -70 to -30°, 16 h	$Ph \left( \begin{array}{c} OH \\ O \\ \end{array} \right)_{3} O \\ O \\ O \end{array} Ph \left( \begin{array}{c} 93 \\ \end{array} \right)$	54
		Ph	BF3•OEt2	THF, ~70 to ~30°, 16 h	Ph $OH$ $OH$ $OH$ $OH$ $OH$ $OH$ $OH$ $OH$	54
		РћСно	BF₃•OEt₂	THF, -70 to -30°, 16 h	Ph $V$ $O$ $Ph$ $I + O$ $O$ $O$ $Ph$ $I + O$ $O$ $O$ $Ph$	54
					$\begin{array}{c} Ph & & \\ & & \\ Ph & & \\ & & \\ I + II (73), I:II = 85:15 \end{array}$	
C ₁₃	n-Bu H O	RCHO	BF3•OEt2	1. ТНF, –15°, 15 h 2. H ₂ O ₂ , NaOAc	$\begin{array}{ccc} O & R & R \\ n-C_5H_{11} & R & n-Bu & (74) \\ OH & Ph & (76) \\ C_6H_{11} & (87) \end{array}$	62
	o ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	л-ВиСНО	TiCl(OPr-i)3	DMAC, C ₆ H ₆ , 0°, 2 h	$ \begin{array}{ccc} \text{OH} & \text{O} \\ \text{n-Bu} & & (75) \\ \end{array} $	135

^a Unless otherwise indicated, the orgaonzinc reagents were prepared by insertion of zinc metal into an organic halide.

^b The organozinc reagent was prepared by a transmetallation reaction.

^c The organozinc reagent was prepared by halide-zinc exchange.

^d The organozinc reagent was prepared by Nakamura's method (ref. 140).

	FG-RML _n (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Rets
C4		A. Reactions with	h Dialkylzinc and Alkylzinc Halia	de Reagents	
	ترکم CN		TMSCl, THF, -78 to -10°, 12 h	NC (83)	64 ^b
	xx (+) ₃ ^{CI}		TMSBr, THF, NMP, -30 to 25°, 12 h	$\begin{array}{c} R^{1} \\ Cl \\ H_{3} \\ \end{array} \begin{array}{c} R^{2} \\ R^{2} \\ R^{2} \\ H \\ H \\ \end{array} \begin{array}{c} R^{1} \\ R^{2} \\ R^{R$	180 602
	3. A		TMSBr, THF, NMP, -30 to 25°. 12 h	$\begin{array}{c} & X \\ X \\ & & S \\ & & O \\ & & O \end{array} $	180
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		A. TMSBr, THF, NMP, -30 to 25°, 12 h B. THF, NMP, -60 to -30°, 3 h	$R^{1} \longrightarrow R^{2} O \qquad \frac{R^{1}}{H} \qquad \frac{R^{2}}{Me} \qquad Cond.$ $R^{2} \qquad Me \qquad Et \qquad A \qquad (55)$ $Me \qquad Me \qquad B \qquad (95)$ $H \qquad Me \qquad B \qquad (92)$	180 180 602 602
C5	$\left( E_1O_2C _2 Z_1 \right)_2$	r − − °	TMSCI, Et2O, HMPA, 0 to 25°, 3 h	OTMS EtO ₂ C (75) $E: Z = 24:76$	140
		СНО	TMSCl, Et ₂ O, HMPA, 0 to 25°, 3 h	E(O ₂ C OTMS (75)	140
		Et	TMSC1, Et ₂ O, HMPA, 0 to 25°, 3 h	$EtO_2C$ $TAC (73)$	140
		() ⁰	TMSCl, Et ₂ O, HMPA, 0 to 25°, 3 h	EtO ₂ C OTMS (76)	140
			TMSCl, Et ₂ O. HMPA, 0 to 25°, 3 h	EtO ₂ C. (92)	140
			TMSCI. Et ₂ O. HMPA, 0 to 25°, 3 h	EtO ₂ C OTMS (78) cis:trans = 28:72	140
	$(MeO_2C \xrightarrow{1}_{2} Zn)$		TMSCl, Et ₂ O, HMPA, 0 to 25°, 3 h	MeO ₂ C OTMS (91)	140
	Z N Me	C O	TMSBr, THF, NMP, -30 to 25°, 12 h	N Me (54)	180
C	22	0	TMSBr, THF, NMP, -30 to 25°, 12 h	O (58)	180
~6	$\begin{pmatrix} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	O H	TMSCI, Et ₂ O, HMPA, 25°	TMSO H $CO_2Pr-i$ Ac (88)	140
				$TMSO \qquad \qquad MOM \qquad (95) \\ I:II = 1:1 \\ I:II = 1:1 \\ H \qquad CO.Pr-i$	

TABLE XIV. 1,4-ADDITIONS OF ZINC/COPPER REAGENTS TO ENONES AND RELATED COMPOUNDS^a

FG-RML _n (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
; <del> ,</del>	() ⁰	TMSCl, Et ₂ O, HMPA, 0 το 25°, 3 h	<i>i</i> -PrO ₂ C OTMS (93)	140 ^d
Z CO2Et		TMSBr. THF, NMP, -30 to 25°, 12 h	EtO ₂ C (49)	180, 179
	$R^1$ $R^2$ $R^3$	TMSBr, THF, NMP, -30 to 25°, 12 h	$EtO_{2}C$ $R^{1}$ $R^{2}$ $R^{3}$ $H$ $R^{3}$ $R$	180, 60 180, 60 180 180, 60
5 ⁵ TMS	€ C °	Ni(acac) ₂ , Et ₂ O, -15°, 10 min	TMSO (80)	603 ^c
-7 برکی OAc	C C	NMP, -30°	AcO (74)	314 ^c
		NMP, -30°	Aco (82)	314 ^c
`.		NMP, -30°	Aco (84)	314 ^c
° ₩		TMSBr, THF, NMP, -30 to 25°, 12 h	$ \begin{array}{c}                                     $	180°,1' 180°
² کر OPiv		NMP, -30°	Piv0 (72)	314 ^c
		TMSBr, THF, NMP, ~30 to 25°, 12 h	(78)	180 ^c
Sector OPiv	OBn	TMSBr, THF, NMP, -30 to 25°, 12 h	PivO (68) OBn	180
C ₁₀		1. THF, 0 to 25° 2. H ₂ O 3. NaH, Pd(PPh ₃ ) ₄	(63) CO ₂ Et	358
	CN CN	1. THF, 0 to 25° 2. H ₂ O 3. NaH, Pd(PPh ₃ ) ₄	$ \begin{array}{c}                                     $	358
	$Ph$ $R^1$ $R^2$	1. THF, 0 to 25° 2. H ₂ O 3. NaH, Pd(PPh ₃ ) ₄	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	358
	i-Pr CO ₂ Et	1. THF, 0 to 25° 2. H ₂ O 3. NaH, Pd(PPh ₃ ) ₄	(83)	358
	O O CO ₂ Et	1. THF, 0 to 25° 2. H ₂ O 3. NaH, Pd(PPh ₃ ) ₄	O CO ₂ Et (75)	358

FG-RML _n (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Ph CO ₂ Me	1. THF, 0 to 25° 2. H ₂ O 3. NaH, Pd(PPh ₃ ) ₄	Ph $(37) + (0,1)$ $(37)$ $(37)$ $(37)$ $(37)$	358
-2-CHOPiv		TMSBr, THF, NMP, -30 to 25°, 12 h	Pivo $\begin{pmatrix} & & n \\ & & & \end{pmatrix}_n$ (60) $\begin{pmatrix} & & & \\ & & & \end{pmatrix}_n$ 1 (70)	180 ^b ,179 ^b 180 ^b
	B. Reactions of	f Organozinc Cuprates [ML _n = 0	Cu(CN)Zn]]	
ζζ_CN		TMSCI, THF. -78 to 25°	NC (65)	75
		TMSC1, THF, -78 to 25°	NC (86)	75
	Ph	TMSCI, THF, ~78 to 25°	NC (95)	75, 266
- ² ² ² ² CN	CO ₂ Me	TMSCl, dioxane, HMPA, 0°, 16 h	NC CO ₂ Me (59)	142
	0	TMSCl, THF, Et ₂ O, -78 to 25°, 15 h	NC (81)	47
	C C	TMSCl, THF, Et ₂ O, -78 to 25°, 15 h	NC (97)	47
	СНО	TMSCl, dioxane, HMPA, 27°, 4 h	NC (95)	142
		TMSCl, dioxane, HMPA, 7°, 19 h	NC (70)	142
	Ph	TMSCI, THF, Et ₂ O, 78 to 25°, 15 h	Ph O I II (99)	47
³ ³ ² − ^{CN}	<b>O</b>	TMSCl, dioxane, HMPA, 7°, 10 h	NC (70)	142
2,2 CN		TMSCl, dioxane, HMPA, 7°, 5 h	NCO (62)	142
، کرچر Cl	Ph CO ₂ Et	DMPU	$Cl$ $CO_2Et$ $(74)$ $CO_2Et$	176 ^b
3-2-2	Ph	TMSCI, THF, 70 to 20°, 8 h	O Ph (95)	78 ^a
jš. Cl	R CO ₂ Et	THF, Et ₂ O, C ₅ H ₁₂ , -30 to 25°. 5 h	$CI \xrightarrow{CO_2Et}_{R} \xrightarrow{R} (80) C_6H_{13} (71)$	210° 210°,604°
	Ph CO ₂ Et	THF, Me ₂ S, 25°, 6 h	CI CO ₂ Et	604 ^c

	FG-RML _n	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	22 CN	i.Pr 0	TMSCl, dioxane, HMPA, 0°, 40 h	NC i-Pr (54)	142
C ₆	, stCN	Ph CO ₂ Et	THF, Et ₂ O, C ₅ H ₁₂ , -30 to 25°. 5 h	NC $CO_2Et$ (82) Ph	210°,604
	orms Pr-i	Ph CO ₂ Et	1. THF, -78°, 1 h 2. <i>n</i> -Bu ₄ NF, THF, 0°, 3 h	$\begin{array}{c} OTMS & CO_2Et \\ i-Pr & CO_2Et \\ Ph \end{array} \tag{64}$	567 ⁶
	Pr-n Zu, CN		TMSCI, THF, -78 to 25°, 12 h	NC $(84), dr = 67:33$	76
		Ph	TMSCI, THF, 78 to 25°, 12 h	NC $Ph$ O (83), dr = 76:24 Pr-n	76
	OPiv	<b>O</b>	BF ₃ •OEt ₂ , THF, 38 to 25°, 45 h	Piv0 (59)	60
		O OTBDMS	1. TMSCI, THF 2. HCl (1 N)	OPiv C5H ₁₁ OTBDMS (83)	412
	Pr-i	CN Ph CN	THF, 25°, 8 h	$i - \Pr $ $Pr $ $CN $ (89) mixture of Ph  diastereomers	60
		Ph CO ₂ Et	THF, -78 to 25°, 10 h	OAc $CO_2Et$ <i>i</i> -Pr $CO_2Et$ (86) mixture of Ph diastercomers	60, 59
	Second CO2Et	СНО	TMSCl, dioxane, HMPA, 27°, 5 h	EtO ₂ C (73)	142
			TMSCl, dioxane, HMPA, 27°, 1.5 h	EtO ₂ C (94)	47, 142, 120
			TMSCI, dioxane, HMPA, 27°, 23 h	EtO ₂ C (77)	142
		₩	TMSCl, dioxane, HMPA, 27°, 3 h	EtO ₂ C (77)	142
		Ph	TMSCl, dioxane, HMPA, 7°, 1.5 h	Ph EtO ₂ C CHO (94)	142
		Ph CO ₂ Et	DMPU	$EtO_2C$ $CO_2Et$ (68) $CO_2Et$	176 ⁶
	CO2Et	€ C P °	TMSCl, dioxane, HMPA, 7°, 1.5 h	EtO ₂ C (78)	142

FG-RML _n (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
, store NO2	Ph CO ₂ Et	THF, 25°, 2 h	$O_2N$ $Ph$ $CO_2Et$ (77) $CO_2Et$	240 ^c
P(O)(OEt) ₂	⊂°	TMSCl, THF, -78 to 25°, 12 h	(EtO) ₂ (O)P (71)	90
	Ph	TMSCI, THF, -78 to 25°, 12 h	Ph O (E(O) ₂ (O)P (88)	90
CF3	() ^o	TMSCI, DMF, 30 to 40°	0 (52) CF ₃	156 ^e
of CN	Ph	TMSCI, DMAC, DMF	NC (61)	48
^{2^s} CN	C o	TMSCI, DMF, 30 to 40°	0 (35) CN	156°
	R R CO ₂ Et	THF30 to 25°. 5 h	NC. $CO_2Et$ $R$ $CO_2Et$ $Ph$ (90) $Co_2Et$ $Co_6H_{11}$ (92)	210 ^c
	$ \begin{array}{c} R^2 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	1. THF, DMF, -55°, 15 min 2. <i>o</i> -chloroanil, PhMe	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	383¢
Br	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	l. THF, -78°, 2 h 2. O ₂	$\begin{array}{c} R \\ H \\ R \\ H \\ CN \\ CN \\ Me \\ (61) \\ (0) Me \\ (30) \end{array}$	384 385 385 385
J.		TMSCI, THF, -70 to 25°, 12 h	0 (93)	50, 5
L'ALL CI	N CI- CO2Et	1. THF, –78°, 2 h 2. O ₂	N (56)	384
e st OMe	⊂°	<b>TMSCI, DM</b> F, 30 to 40°	OMe (54)	156*
		TMSCI, THF, -78 to 25°	O (95)	410



	FG-RML	LA-ADDITIONS OF ZINC/COPPE	Conditions	Product(s) and Yield(s) (%)	Refs
	(FG-R)				
	CO2Me	R + CI- CO ₂ Et	1. THF. DMF. -55°, 15 min 2. <i>o</i> -chloroanil, PhMe	$ \begin{array}{cccc} N & R & R \\ & H & (57) \\ & F & (38) \\ & CN & (29) \\ & Mc & (46) \end{array} $	383°,386° 383° 383° 383°
	CO ₂ Me	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	1. THF, DMF, -55°, 15 min 2. <i>o</i> -chloroanil, PhMe	$\begin{array}{c} N \\ R \\ CO_2Me \\ H \\ (50) \\ OMe \\ (41) \end{array}$	383°,386° 383°
	NC	γ ⁺ ⁺ ⁺ [−] [−] [−] [−] [−] [−] [−] [−]	1. THF,78°. 2 h 2. O ₂	CN N (40)	384 ^c
	22 to the second	1. 0 2. Br	1. TMSCl. THF, -78 to -25°, 15 h 278 to 25°, 0.5 h	O (74) mixture of diastereomers	65, 66
C	- C OMc		TMSCl, dioxane, HMPA, 27°, 4 h	(76)	142
C9	کر SPh	C o	TMSCl, THF, -78 to 25°, 12 h	PhS (84)	82, 83
		Ph	TMSCI, THF, -70 to -10°, 15 h	Ph O PhS (81)	83
	CO ₂ Et	Ph CO ₂ Et	THF, 25°, 2 h	$CO_{2}Et \qquad CO_{2}Et \qquad (82)$	240 ^c
C ₁₀	, it SPh		THF, -78°, 1 h	O SPh (71)	409 ^c
	SPh		TMSCI, THF, 78 to 25°, 12 h	n-Pr (78)	82, 83
	, j ⁵ OPiv	Ph_CO ₂ Et	THF, $Et_2O$ , $C_5H_{12}$ , ~30 to 25°, 5 h	$\begin{array}{c} Ph \\ \hline CO_2Et \\ \hline CO_2Et \end{array} (76)$	210 ^c ,604 ^c
	OPiv	<b>O</b>	TMSCI, THF, Et ₂ O, $-78$ to $25^{\circ}$	OPiv (94)	47
CH		Ph	TMSC1, THF, -78 to 25°, 12 h	OPiv Ph O (92)	54
	ç ⁱ CO ₂ Bu-t	R CO ₂ Et CO ₂ Et	THF, -30 to 25°, 5 h	$EtO_2C$ $R$ $R$ $Ph$ $R$ $R$ $Ph$ $R$ $R$ $Ph$ $R$ $R$ $Ph$ $R$ $R$ $R$ $R$ $Ph$ $R$	210 ^c
	sterment Bu-t	Ph ~~~	TMSCI, THF, 78 to 25°, 12 h	Bu-t NC (86) mixture of diastereomers	76



	FG-RML _n (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
, ,	OSi(Pr-i)3	CO ₂ Et Ph	THF, -78 to -30°, 4 h	$EtO_2C \xrightarrow{\text{CO}_2\text{Et}}_{\text{Ph}} OSi(Pr-i)_3 (75)$	573°
-14 -75			TMSCl, THF, -70 to 25°, 12 h		408
ېر بې	Sn(Bu-n) ₃	R	TMSCI, C ₆ H ₆ , HMPA, -20 to 25°, 14 h	$O_{\text{Sn}(\text{Bu-}n)_3} = \frac{R}{H} $ $Me  (38)$	491
		C. Copper-Catalyzed Reaction	s with Dialkylzinc Reagents	$[ML_n = Cu(CN)ZnR]$	
4 2 ,	Cl	$R^1$ $R^2$	1. TMSCl, THF, –78° 2. <i>n</i> -Bu ₄ NF	$\begin{array}{c c} R^{1} & R^{2} \\ \hline \\ R^{2} & Me & H & (83) \end{array}$	605 ^b
6 	ζ [^] CN	i-Pr	1. TMSCl, THF,78° 2. <i>n</i> -Bu ₄ NF	NC <i>i</i> -Pr diastereomers	605 ^b
, vy	CO ₂ Et	TBDMSO	1. TMSCl, THF, -78° 2. n-Bu₄NF	TBDMSO (81) EtO ₂ C (81) 7:1 mixture of diastereomers	605 ^b
7	cO ₂ Et		1. TMSCI, THF, -78° 2. <i>n</i> -Bu ₄ NF	FtO2C (72)	605 ^b
		Ph H On OTIPS	1. TMSCl, THF, -78° 2. <i>n</i> -Bu ₄ NF	Ph $(3)$ OTIPS (83) 7:1 mixture EtO ₂ C $(3)$ OTIPS (63) 7:1 mixture of diastereomers	605 ^b
`.		<b>O</b>	1. TMSCl, THF,78° 2. <i>n</i> -Bu ₄ NF	EtO ₂ C, (90)	605 ^b
-8 - /	OPiv	i-Pr	1. TMSCl, THF, –78° 2. <i>п</i> -Bu ₄ NF	Pivo (77)	605 ^b
			1. TMSCI, THF, –78° 2. <i>n</i> -Bu₄NF	Piv0 (85)	605 ^b
-10 5	o Ph	⊖_0	1. TMSCI, THF, –78° 2. <i>n</i> -Bu ₄ NF	Ph O (85)	605 ^b
-16 5 ⁵	5 ³ () ₄ Si(OPr- <i>i</i> ) ₃		1. TMSCl. THF, −78° 2. n-Bu₄NF	0 0 ( <i>i</i> -PrO) ₃ Si ()4 (74)	605 ^b

COMPOLINDS (Continued)^a

^a Unless otherwise indicated, the organozinc reagents were prepared by insertion of zinc metal into an organic halide.

 b  The organozinc reagent was prepared by halide-zinc exchange.

^c The organozine reagent was prepared by a transmetallation reaction.

^d The organozinc reagent was prepared by ultrasonic irradiation of an ether solution of (ethoxycyclopropyloxy)trimethylsilane and zinc chloride.

^e The organozinc reagent was prepared by Nakamura's method (ref. 140).

^f The anti:syn ratio was 9:1.

600

FG-RCu(CN)ZnI	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
(FG-R)				
کر ا		BF ₃ •OEt ₂ , THF, -78 to -30°	0Cl (88)	52
	C6H11 0	BF ₃ •OEt ₂ , THF, -30 to $0^\circ$ , 5 h	$C_{l} $	52
		BF ₃ •OEt ₂ , THF, -30 to $0^\circ$ , 5 h	(94) mixture of diastereomers	52
OAc		BF ₃ •OEt ₂ , THF, -78 to -30°	ООАс (87)	52
CO2Me	() ⁰	BF ₃ •OEt ₂ , TMSCl, THF, -30 to 25°, 13 h	0CO ₂ Me (53)	131
کر OPiv	<b>VV</b>	BF ₃ •OEt ₂ , THF, -30°, 3 d	OPiv (71)	58
TMS	<b>O</b>	BF ₃ •OEt ₂ , Et ₂ O, -15°, 10 min	0 TMS (34)	603 ^t
CO2Et	0	BF ₃ •OEt ₂ , THF, -78 to -30°	O CO ₂ Et (88)	52
	0	BF3•OEt2, TMSCl, THF, -78 to 0°, 5 h	OCO2Et (74)	120
		BF ₃ •OEt ₂ , THF, $-30$ to 0°, 16 h	(94)	52
?z∽(+)5 ^{Cl}		BF3•OE12, TMSCI, THF, -78 to 0°, 5 h	O () ₄ (77)	120
co2Et	⊂°	BF3•OEt2. TMSCI. THF, -78 to 0°, 5 h	O CO ₂ Et (68)	120
O OPiv	0	BFյ•OEt₂, THF, 30 ւօ 0°, 16 հ	OPiv (88)	52
	OCI	$BF_3$ •OEt ₂ , THF, -30 to 0°, 16 h	O Cl (86)	52
² O ² ² ² ² ² ² ² ² ² ²	0	BF ₃ •OEt ₂ , THF, -30 to 0°, 16 h		52
		BF3•OEt2, THF, -30 to 0°, 16 h	0,, 0,, Ph (98)	52
		BF3•OEt2, THF,		52

^a Unless otherwise indicated, the organozine reagents were prepared by insertion of zine metal into an organic halide. ^b The reagent was prepared by halide-zine exchange.

	TABLE XVI. ADDITIONS	OF ZINC-COPPER REAGENT	IS TO NITROOLEFINS"	
FG-RML _n (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	A. Reactions with	Diorganozinc Reagents: FG-RM	$dL_n = (FG - R)_2 Zn$	<del></del>
4	NO			
32 0	Et NO ₂	THF, NMP,	(64)	602, 180
_		-60 to -30°, 3 h	Et NO ₂	
			R	
35 YJ4	R NO2	THF, NMP,	$AcO$ $NO_2$ $Ph$ (84)	314 ^b
		-30,31	$C_{6}H_{11}$ (85)	
	B. Reactions with Zinc	-Copper Reagents: FG-RML _n =	(FG-R)Cu(CN)ZnX	
25 CN	NO ₂	THF, -78 to 0°, 4 h		56 74
5 61	n-PT 🔨	. ,	Pr- <i>n</i>	30, 74
	NOn	1 THE 79 to 09 4 h	NG COMe	
	n-Pr ⁵⁰	2. NH ₄ Cl. H ₂ O	$\mathbf{Pr}_{\mathbf{r}}$ (76)	56, 74
	Į.		0	
	NO ₂			
	CO ₂ Me	1. THF, -78 to 0°, 4 h 2. NH, CL, H, O	$NC' \rightarrow CO_2Me$ (74)	74
	~	2. NH4CI, H2O	,	
	Ph NO ₂	THF, 0°, 12 h	NC NO ₂ (84)	56, 74
نہ ہے۔ 1	○ NO ₂	THE 78 to 0° 4 h	Ph	
$\sim \sim$	<i>n</i> -Pr	1111, -78 10 0 , 4 11	NO ₂ (90)	56, 74
			Pr-n	
-}			Pr-n	
` >	No		NO ₂	
s.	<i>n</i> -Pr	THF, -78 to 0°, 4 h	(81)	56, 74
			ł	
$\sum_{n \in \mathbb{Z}_{n}} P(\mathbf{O})(\mathbf{OMe})_{2}$	Ph NO ₂	THF, -20°	$(MeO)_2(O)P$ (91)	90
<u>'</u>	NO ₂	THF, -78 to 0°, 1 h	× (78)	78
	Pli <		Ph	,0
K CI	NO ₂	THE, MeaS.		60 <b>-</b> 6
y > () ₃	R' 🐦 -	· · · · · · · · · · · · · · · · · · ·	R	605
	<u>R</u> Ph	00.01		
	$C_5H_{11}-n$	0°,8 n 10°5 b	(86)	
	Pr-i	8 h	(88)	
QAc			QAc	
³ ² Pr-i	Ph NO ₂	THF, DMSO,	i-Pr (72)	59, 60
		-78 to 0°, 12 h	Ph	
3	NO ₂	THE55°. 10 min	$NO_2$ (02)	56 74
·ζ · CO ₂ Et	OAc	1111, 25, 10 mm	EtO ₂ C	56, 74
	n-Pr NO ₂	THF, -78 to 0°, 4 h	EtO ₂ C NO ₂ (94)	56, 74
			Рт- <i>п</i>	
	∧ NO.	1 THE 70 - 00 41	o II	
	n-Pr	1. 1 $\pi$ r, $-/8$ to 0°, 4 h 2. NH ₄ CL H ₂ O	EtO ₂ C (82)	56, 74
	ç		$\Pr{-n}$	
			<b>O</b>	
	n-Pr NO2	1. THF, -78 to 0°, 4 h	$EtO_2C$ (85)	74
	Ł.	2. $O_3$ , Me ₂ S		

FG-RML _n	Substrate	Conditions	Product(s) and Vield(s) (%)	Pafe
(FG-R)				Keis.
	NO ₂	1. THF, -78 to 0°, 4 h		74
	CO ₂ Me	2. $O_3$ , $Me_2S$	$EtO_2C$ $CO_2Me$ $(87)$	74
	NO		Ph	
	Ph NO ₂	THF, 0°, 12 h	$EtO_2C$ (90)	56, 74,
	- NO			78
		THF, 0°	NO ₂ (72)	56 74
	OAc		CO ₂ Et	,
3 H Br	o NO.			
- 1/5	Ph	IHF, 0 , 12 ll	BI NO ₂ (84)	240 ^p
			Ph	
NO ₂	∧ NO₂	THE 0° 12 b		a coh
in the second se	Ph	1111,0,1211	$NO_2$ Ph	240%
	NO			
22 VI (0)(0Et)2	n-Pr NO2	THP, U ³	$(EtO)_2(O)P$ (80)	90
			Pr-n	
	20		O II	
	n-Pr NO ₂	1. THF, -78 to 0°, 4 h	$(EtO)_2(O)P$ (70)	90
	Ėt	2. 03, 11025	Pr-n	
	NO ₂		ο	
		1. THF, -78 to 0°, 4 h	(EtO) ₂ (O)R (78)	74
	CO ₂ Me	2. O ₃ , Me ₂ S	CO ₂ Me	
	NO ₂	THF, -20°	$(E(O)_{T}(O)B \qquad \qquad$	90
	Ph' 💉		$(10)_2(0)^2$ $(01)$	50
ž			Ph	
Hø	a NO	THE 79 to 00 10 1	$\begin{pmatrix} Ph \\ 0 \end{pmatrix}$	
3	Ph	$1 \text{ Hr}, -78 \text{ to } 0^{-}, 12 \text{ h}$	$V_2N$ (51)	338
~~~				
MeO ₂ C			CO ₂ Me	
~~~~ \\	NO ₂	THF78 to 0°. 4 h	$\Pr$	56 74
3~ 0	n-Pr	,	0 NO ₂ (73)	50, 74
	20		Ph I	
ZZ CO2EI	Ph NO ₂	THF, 5°, 12 h	$EtO_2C$ (85)	103
		1. THF, 0°	Ph	
	Ph NO ₂	2. PhSeBr, 0°	EtO ₂ C (85)	441
		3. H ₂ O ₂ , THF, 25°	E: Z = 36:64	
3	NO ₂	THF		640
- Y, ~ ~ OAc	Ph			04
Me			Me CueHeel	
Set N Boc	NO ₂	THF, -78 to 0°, 5 h	$= \underbrace{N}_{N} \underbrace{NO_2}_{N} (84)$	606 ^b
Bot	I-C ₁₀ H7 ~~ -		Boc VV 2 VV	
	NO ₂		NO ₂	
	$\bigcirc$	THF78 to 25° 48 b	Me N (62)	60ch
	$\smile$		Boc (02)	000"
3~~~			$\sim$ $\sim$ $\sim$	
y J	Ph NO ₂	1. THF, -78 to -10°, 2 h	$\int \int V (74)$	66
ξ <b>~</b> ~		2. H ₂ O	V Pn	



TABLE XVI. ADDITIONS OF ZINC-COPPER REAGENTS TO NITROOLEFINS (Continued)^a

^a Unless otherwise indicated, the organozine reagents were prepared by insertion of zine metal into an organic halide.

^b The organozinc reagent was prepared by halide-zinc exchange.

^c The organozinc reagent was prepared by a transmetallation reaction.

FG-RML _n (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
5	A. Copper-Catalyzed Carbometallations of	of Alkynes with Dialkylzinc R	teagents: $FG$ - $RML_n = (FG$ - $R)_2Zn$	
$\left( EtO_2C \longrightarrow_2^{Zn} \right)$	MeO ₂ C — — CO ₂ Me	TMSCI, $Et_2O$ , HMPA, 0 to 35°, 4 h	$EtO_2C$ $MeO_2C$ $CO_2Me$ (63) $E: Z = 2.98$	140 ^b ,442 443 ^b
	Et————COMe	TMSCI, Et ₂ O, HMPA, 0 to 35°, 4 h	$EtO_2C$ $\to$ $CTMS$ (73)	140 ^b
	n-Bu————COMe	TMSCl, Et ₂ O, HMPA, 25°, 2 h	$EtO_2C$ $n-Bu$ $(73)$	442 ^b
	<i>n</i> -Bu———CO ₂ Me	TMSCI, Et ₂ O, HMPA, 25°, 2 h	$O \xrightarrow{\text{CO}_2\text{Me}} Bu \cdot n  (65)$	442 ⁶ ,443
	MeO ₂ C	TMSCl, Et ₂ O, HMPA, 25°, 2 h	$O_{MeO_2C}$ $CO_2Me$ $CO_2Me$ $MeO_2C$ $(11) + O_{MeO_2C}$ $(54)$	443 ^b
	RO i-Pr	TMSC1, Et ₂ O, HMPA, 25°, 2 h	$P_{r,i}$ I +	
	R Ac MOM TMS		$EtO_2C \bigcirc \bigcirc O = \bigcirc O = H + (72) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-$	- 442 ^b ,443 -) 442 ^b -) 443 ^b
			$EtO_2C$ $PT^{-1}$ III	

FG-RML _n (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	n-Bu	TMSCI, Et ₂ O, HMPA, 0°, 2 h		443 ^b
	HO N-	TMSCI, $Et_2O$ , HMPA, $0^\circ$ , 2 h	$ \begin{array}{c}                                     $	443 ^b
	HO CO ₂ Et	TMSCl, Et ₂ O, HMPA, 0°, 2 h	EtO ₂ C OTMS O	442 ^b
	$\stackrel{\text{RO}}{\longrightarrow}$ $ $ $ CO_2Et$ $n$ - $C_5H_{11}$	TMSCI, Et ₂ O, HMPA, 0°, 2 h	$\begin{array}{cccc} EtO_2C & OR & R \\ O & & C_3H_{11}-n & Ac & (50) \\ & MOM & (78) \\ & TMS & (70) \end{array}$	442 ^b 443 ^b 443 ^b
	EtO ₂ C	TMSCI, Et ₂ O, HMPA, 0°, 4 h	ElO ₂ C OTMS 0 (86)	443 ^b
	n-C ₅ H ₁₁ HO N	TMSCI, Et ₂ O, HMPA, 0°, 4 b	$O = C_{3}H_{11}-n$ (85)	443 ^b
		TMSCI, Et ₂ O, HMPA, 0°, 4 h	$\begin{array}{cccc} MeO_2C & OTMS & \underline{R} \\ O & & H & (69) \\ R & & Me & (67) \end{array}$	443 ^{<i>b</i>}
	HO ————————————————————————————————————	TMSCI, Et ₂ O, HMPA, 0°, 2 h	$P_h$ (65)	442 ⁶ 443 ⁶
	CO_2Et	TMSCl, Et ₂ O, HMPA, 0°, 4 h	0 (54)	443 ^b
		TMSCI, Et ₂ O, HMPA, 0°. 4 h		443 ^b
	MeO ₂ C H- Bu- <i>t</i>	TMSCI, Et ₂ O, HMPA, 25°, 2 h	O CO ₂ Me OTMS H- O Bu-t (52)	444 ^b
		TMSCI, Et ₂ O, HMPA, 0°, 4 h	OH (85)	443 [#]

FG-RML _n (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	MeO ₂ C	TMSCl, Et ₂ O, HMPA, 25°, 2 h	$ \begin{array}{c} MeO_2C \\ O = & O \\ & O \end{array} $ (72)	443 [*]
	MeO ₂ C	TMSCl, Et ₂ O, HMPA, 25°, 2 h	$ \begin{array}{c} \text{MeO}_2C \\ 0 = & & & & (60) \\ & & & & & & \\ & & & & & & \\ & & & & $	443 ^b
		TMSCl, Et ₂ O, HMPA, 0°, 4 h	$\begin{array}{c cccccc} EtO_2C & OR & Bu-r & R \\ O & & H & (83) \\ O & & MOM & (65) \end{array}$	442 ^b
	RO CO ₂ Et	TMSCI, Et ₂ O, HMPA, 0°, 4 h	$EtO_2C   OR   Bu-r   R   TMS   (82)   MOM   (65)$	442 ^b
	CO2E	t TMSCI, Et ₂ O, HMPA, 0°, 4 h	O N CO ₂ Et (89)	443 ^{<i>b</i>}
	СО2Ме	TMSC1, Et ₂ O, HMPA, 0°, 4 h	MeO ₂ C O O THP (51)	443 ^b
	TMSO CO ₂ Me	TMSCI, Et ₂ O, HMPA, 0°, 4 h	MeO ₂ C OTMS	443 ^b
	CO ₂ Me	TMSCl, Et ₂ O, HMPA, 0°, 4 h	MeO ₂ C O	443 ^b
		TMSCl. Et ₂ O, HMPA. 0°, 4 h	O N OTMS (86)	443 ^b
	TMSO Pr ² MeO ₂ C	TMSCI, Et ₂ O, HMPA, 0°, 4 հ	$MeO_2C \qquad OTMS \\ O \qquad \qquad$	443 ^b
		TMSCI, Et ₂ O, HMPA, 0°, 4 h	$\begin{array}{c} O \\ O \\ ROC \\ TBDMSO \end{array} \qquad \begin{array}{c} R \\ OMe \\ NMe_2 \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71) \\ (71$	443 ^b



FG-RML _n (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		OBn TMSCI, $Et_2O$ , HMPA, $0^\circ$ , 4 h		443 ^b
	Ph O	TMSCI, Et ₂ O, HMPA, 0°, 4 h	OBn OBn (28)	443 [¢]
خر CO2Et	$R^{1}O$ $R^{2}$ $CO_{2}EI$	TMSCI, Et ₂ O, HMPA, 25°	EtO ₂ C OR ¹ EtO ₂ C- $\begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	607
			$R^1$ $R^2$ $I$ $II$ MOM $(CH_2)_3CH=CH_2$ (71)         (23)           MOM $C_5H_{11}-n$ (68)         ()           MOM $(CH_2)_2CH=CH_2$ (63)         ()           MOM $(CH_2)_2CH=CH_2$ (63)         ()           MOM $Pr \cdot i$ (35)         ()           MOM $CH_2Bn$ (60)         ()           TBDMS $(CH_2)_3C(CH_3)=CH_2$ (65)         ()	
4 3 CN	B. Carbometallations of Alkynes	with Zinc-Copper Reagents FG	$-RML_n = FG - RCu(CN)ZnI$	55
	=CO ₂ Et	TMSCl, THF, -78 to 23°, 17 h	NC $TMS$ (84) $E: Z > 99:1$ CO ₂ Et	55
	n-BuSMe	THF, 25°	NC SMe (60)	471 ^c
	n-C ₆ H ₁₃ ——CO ₂ Et	THF, -78 to 23°, 17 h	NC $C_6H_{13}$ - $n$ (82)	55
HN-O	EtO ₂ CCO ₂ Et	THF,78 to 0°, 6 h	$O \rightarrow O \rightarrow O = O = O = O = O = O = O = O = $	35
بر Cl	──CO ₂ Et	TMSCl, THF, -78 to 23°, 17 h	$Cl \xrightarrow{\text{CO}_{2}Et} TMS  (85)  E: Z > 99:1$	55
	n-BuSMe	THF, 25°	Bu-n Cli SMe (66)	471 ^c
5 s	───CO ₂ Et	THF, Et ₂ O, C ₅ H ₁₂ , -78 to -20°. 2 h	$R \xrightarrow{CO_2Ft} CO_2Ft = \frac{R}{Cl} (70)$ $R \xrightarrow{F : 7 > 90 \cdot 1} N_3 (81)$	209°,60
OAc	CO ₂ Et	THF, DMSO, 25°, 4 h	$i-Pr \underbrace{CO_2Et}_{OAc} (91) E: Z > 96:4$	59, 60
	McO ₂ C———CO ₂ Me	THF, DMSO, –30°, 1 h	$CO_2Me$ i-Pr $CO_2Me$ OAc (93) E: Z > 97:3	59, 60

	FG-RML _n (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	کر CO2Et	=	1. THF40°, 1 h 2. I ₂	EtO ₂ C (26) $E: Z = 1:99$	471 ^c
		$\equiv$ -conh ₂	THF, -30 to 0°, 19 h	EtO ₂ C CONH ₂ (53)	78
		──CO ₂ Et	THF, -20°, 12 h	EtO ₂ C CO ₂ Et (99)	55, 103
		CO ₂ Et	TMSC1, THF, 78 to 23°, 12 h	EtO ₂ C CO ₂ Et (91)	55
		n-Bu————————————————————————————————————	THF, 25°	EtO ₂ C SMe (92) Bu-n	471 ^c
		n-Bu————————————————————————————————————	1. THF, 25° 2. I ₂	EtO ₂ C SMe (91) Bu-n	471°
		n-Bu————————————————————————————————————	1. THF, 25° 2. Br	EtO ₂ C SMe (70) Bu-n	471 [¢]
		Ph-CO ₂ Et	THF, 20°, 12 h	EtO ₂ C CO ₂ Et (92) Ph	471 ^c
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	≡=CO₂Et	THF, -78 to -30°, 12 h	$L_{4}$ CO ₂ Er (70)	240 ^c
	ζζ P(O)(OEt) ₂	──CO ₂ Et	THF78 to 25°, 3 h	(EtO) ₂ (O)P (85)	90
		MeO ₂ C————————————————————————————————————	THF, -78 to -20°, 3 h	(EtO) ₂ (O)P CO ₂ Me (91)	90
	Hg Jaz	──CO ₂ Et	THF, -78°, 14 h	$\left(\text{EtO}_2\text{C}, \dots, \text{EtO}_2\text{C}\right)_2$ (53)	338°
C ₇	کر CO2Et	CO ₂ Et	THF, -30 to 0°, 17 h	EtO_2C (53)	55
C ₈		<u>₩</u> CO ₂ Et	THF, DMAC, -20°, 12 h	0	103
	Z ()5 OAC	CO ₂ Me	TMSCI. THF, –78 to 23°, 17 h	$AcO \begin{pmatrix} H \\ CO_2Me \end{pmatrix}^{+} AcO \begin{pmatrix} H \\ CO_2Me \end{pmatrix}^{+} CO_2Me \\ I \\ I + II (76), I:II = 17:83 \end{pmatrix}$	55 1e
	کر SPh	CO ₂ Et	THF, -60 to -50°, 2 h	PhS CO ₂ Et (95)	83
		EtO ₂ CCO ₂ Et	THF, -78 to -50°, 1 h	PhS CO_2Et (87) CO_2Et	83
C-	NHCO ₂ Et	EtO ₂ CCO ₂ Et	THF, -30 to 25°, 4 h	i-Pr EtO ₂ CNH CO ₂ Et (68) $E: Z > 95.5$	35
L9	s ^s N Ph	──CO ₂ Et	THF, -78 to -30°, 12 h	EtO_2C (34) H	35
	۰۰ کر OTMS	──CO ₂ Et	THF, -78 to -30°, 12 h	EtO ₂ C (69)	573¢

TABLE XVII. CARBOMETALLATIONS OF ALKYNES WITH DIALKYLZINC OR ZINC-COPPER REAGENTS (Continued)^a

TABLE XVII. CARBOMETALLATIONS OF ALKYNES WITH DIALKYLZINC OR ZINC-COPPER REAGENTS (Continued)^a

^a Unless otherwise indicated, the organozinc reagents were prepared by insertion of zinc metal into an organic halide.

^b The organozinc reagent was prepared by ultrasonic irradiation of an ether solution of (ethoxycyclopropyloxy)trimethylsilane and zinc chloride.

^c The organozinc reagent was prepared by a transmetallation reaction.

^d The organozinc reagent was prepared by an insertion reaction using ICH₂ZnI.

	Alkene/ Alkyne	Cyclization Conditions	Electrophile	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₆	\sim	Zn, DMF	I ₂	()	(80)	468
	, I	PdCl ₂ (dppf) (2%) Et ₂ Zn, THF, -78 to 25°, 2 h	CO ₂ Et	CuCN•2LiCl, -78 to 25°, 1 h	CO ₂ Et (80)	165, 167
C ₂		Ni(acac) ₂ , THF, NMP, Cl(CH ₂) ₄ Zn, -78 to -40°, 20 h	(—)	(—)	Cl (68)	610
-,	(TI	PdCl ₂ (dppf) (2%) Et ₂ Zn, THF, -78 to 25°, 4 h	I	CuCN•2LiCl, -78 to 0°, 12 h	(62) cis:trans = 78:22	167
		Ni(acac) ₂ (2%), THF, Et ₂ Zn, –78 to 25°, 2 h	CO ₂ Et Br	CuCN•2LiCl, 0°, 12 h	(83)	171
		Ni(acac) ₂ (2%), THF, Et ₂ Zn, -78 to 25°, 2 h	PhCOCI	CuCN -2LiCl , 0°, 12 h	$ \overset{H}{\overset{H}{}} \overset{H}{} \overset{Ph}{} \overset{(64)}{} $	470, 171
		Ni(acac) ₂ (2%), THF, El ₂ Zn, -78 to 0°, 2 h	≡− CO₂Eι	CuCN•2LiCl, -78 to 0°, 12 h	CO_2Et (63) dr = 15:85	171
C ₈	S.	PdCl ₂ (dppf) (2%) Et ₂ Zn, THF, -78 to 25°, 4 h		CuCN•2LiCl, -78 to -10°, 12 h	(81) cis:trans ≈ 75:25	167
		PdCl ₂ (dppf) (2%) Et ₂ Zn, THF, -78 to 25°, 2 h	CO ₂ Et	CuCN•2LiCl, 78 to 25°, 1 h	CO ₂ Et (85) cis:trans = 75:25	167
		Zn, π, 5 d	H ₂ O	_	CO ₂ Me (66)	79
		PdCl ₂ (MeCN) ₂ Et ₂ Zn, THF, 25°, 4 h	H ₂ O		CO_2Me (73)	167
	N Me CO ₂ Me	 LDA, Et₂O, -40 to 0° ZnBr₂, Et₂O, -40° 	<i>₿</i> r	CuCN•2LiCl, 40 to 25°, 12 h	Ne (55)	226, 222
		Zn, rt, 50 min	H ₂ O	_	(56) O	89
	AcO	Rieke zinc, Et ₂ O rt, 3 h	H ₂ O		$\int \frac{\partial Ac}{\int (52) + \int \frac{\partial Ac}{\int (38)}}$	468
	1	Et ₂ Zn, Et ₂ O, CuCN+2LiCl, 25°	П2О		I(51) + II(41)	468
		Rieke zinc, Et ₂ O 20°, 3 h	I ₂	_	$\int \frac{\partial Ac}{\partial t} = I (41) + \int \frac{\partial Ac}{\partial t} I (29)$	468
		Et ₂ Zn, Et ₂ O, CuCN•2LiCl, 25°	I ₂	_	I (50) + II (40)	468

TABLE XVIII. INTRAMOLECULAR CARBOZINCATION OF FUNCTIONALIZED ALKENES OR ALKYNES

	Alkene/ Alkyne	Cyclization Conditions	Electrophile	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₀		Zn, THF, 25°, 24 h	H ₂ O		(74)	89
		Zn, THF, TMSCl, 25°, 48 h	H ₂ O	_	(51)	89
	I n-Bu	PdCl ₂ (dppf) (2%) Et ₂ Zn, THF, -78 to 25°, 5 h	Ph NO ₂	CuCN•2LiCl, THF, -78 to 0°	$\begin{bmatrix} & & \\ & $	165, 167
	i-Pr O OEt	Ni(acac) ₂ (2%), THF, Et ₂ Zn, 40°, 0.5 h	Ph CO ₂ Et	CuCN•2LiCl, 0 to 25°, 6 h	EtO_2C Ph $EtO^{}Pt^{-i}$ CO_2Et (61)	171, 470
		Ni(acac) ₂ (2%), THF. Et ₂ Zn, 40°, 0.5 h	Ph CO ₂ Et	1. CuCN•2LiCl, 0 to 25°, 6 h 2. MCPBA, BF ₃ •OEt	EtO_2C CO_2Et Ph (53) 2O	171, 470
		Ni(acac) ₂ (2%), THF, Et ₂ Zn, 40°, 0.5 h	CO ₂ Et	1. CuCN•2LiCl, 0 to 25°, 6 h 2. MCPBA, BF3•OEu	$_{2} O - Pr-i$ (50)	171, 470
					EtO ₂ C	
	i-Pr O OEi	Ni(acac) ₂ , LiI, THF, Et ₂ Zn, –78 to –40°, 12 h	Ph CO ₂ Et	CuCN•2LiCl, -78 to 25°, 12 h	$Ph \qquad (61)$	171, 470
		PdCl ₂ (dppf) (2%) Et ₂ Zn, THF, 25°, 5 h	──CO ₂ Et	CuCN•2LiCl, THF, -78 to -10°	CO ₂ Et (88) CN cis:trans = 81:19	167
		PdCl ₂ (dppf) (2%) Et ₂ Zn, THF, 25°, 5 h	CO ₂ Et Br	CuCN•2LiCl, THF, -78 to 0°	CO ₂ Et (71) CN cis:trans = 81:19	167
	CHO Br	MnBr ₂ , CuCl, Et ₂ Zn, DMPU, 60°	H ₂ O	_	(95) OH	611
Gu	Contraction of the second seco	Ni(acac) ₂ (2%), THF, Et ₂ Zn, -78 to 0°, 2 h	CO ₂ Et Br	CuCN•2LiCl, 78 to 0°, 1.5 h	CO ₂ Et (67)	171
CII	Bu-t O	Zn, THF, 25°, 1 h	H ₂ O	_	Bu- <i>t</i> O (63)	89
	Et ₂ NCO ₂	Rieke zinc, Et ₂ O, 20°, 1-3 h	H ₂ O	_	(49) + (36)	468

TABLE XVIII. INTRAMOLECULAR CARBOZINCATION OF FUNCTIONALIZED ALKENES OR ALKYNES (Continued)

Alkene/ Alkyne	Cyclization Conditions	Electrophile	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
N(M	(c) ₂	Br	THF, 0°	N ^{-N(Me)} 2 (78)	227
I VI	PdCl ₂ (dppf) (2%) Et ₂ Zn, THF, 25°, 5 h	CO ₂ Et Br	CuCN•2LiCl, THF, 78 to 0°	H H H H H H H (85) exo:endo = 1:2	165, 167, 131
	Rieke zinc, Et ₂ O, 20°, 1-3 h	H ₂ O	_	$OPiv \qquad (48) + OPiv \qquad (39)$	468
	Rieke zinc, Et ₂ O, 20°, 1-3 h	I ₂	_	$\int I (40) + \int I (33)$	468
	Rieke zinc, Et ₂ O, 20°, 1-3 h	MeCOCI	CuCN•2LiCł, THF	OPiv $OPiv$	468
Br O Pr-i	Ni(acac) ₂ (2%), THF, Et ₂ Zn, 78 to40°, 12 h	CO ₂ Et Br	CuCN•2LiCl. THF, -78 to 25°, 1 h	CO ₂ Et (66)	171
C ₁₂ Ph Br	Ni(acac) ₂ , LiI, THF, Et ₂ Zn, -78 to -40°, 2.5 h	O ₂	_	Ph OH (63)	612
	MnBr ₂ , CuCl, Et ₂ Zn, DMPU, 60°, 7 h	I ₂	_	(80)	611
	MnBr ₂ , CuCl, Et ₂ Zn, DMPU, 60°, 7 h	CO ₂ Et	CuCN+2LiCl, THF, DMPU, -30 to -10°	Ph, CO ₂ Et	611
Ph	PdCl ₂ (dppf) (2%) Et ₂ Zn, THF, -78 to 25°, 5 h	I ₂	_	Ph (90)	165, 167
	PdCl ₂ (dppf) (2%) Et ₂ Zn, THF, 78 to 25°, 5 h	──CO ₂ Et	CuCN•2LiCl, -78 to -10°, 2 h	CO ₂ Et (64)	165, 167
	PdCl ₂ (dppf) (2%) Et ₂ Zn, THF, -78 to 25°, 5 h		CuCN•2LiCl, -78 to 0°. 8 h	Ph, (80)	165, 167
	PdCl ₂ (dppf) (2%) Et₂Zn, THF, -78 to 25°, 5 h	CO ₂ Et Br	CuCN•2LiCl, 25°, 0.5 h	Ph, CO ₂ Et (73)	165, 167
	PdCl ₂ (dppf) (2%) Et ₂ Zn, THF, -78 to 25°, 5 h	PhCOC1	CuCN•2LiCl, -78 to 25°, 2 h	$Ph \qquad \qquad Ph \qquad \qquad Ph \qquad \qquad Ph \qquad \qquad Ph \qquad \qquad (76)$	165, 167

TABLE XVIII. INTRAMOLECULAR CARBOZINCATION OF FUNCTIONALIZED ALKENES OR ALKYNES (Continued)

Alkene Alkyn	e/ Cyclization e Conditions	Electrophile	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
r	PdCl2(dppf) (2%) Et2Zn, THF, 25°, 5 h	CO ₂ Et	CuCN•2LiCl, THF, -78 to 0°	H (63) H (63) exo:endo = 1:2	165, 167
OPiv	PdCl2(dppf) (2%) Et2Zn, THF, -78 to 25°, 5 h	───CO ₂ Et	CuCN•2LiCl, -78 to -10°, 2 h	CO_2Ei (80) dr = 78:22 OPiv	166, 167
	PdCl ₂ (dppf) (2%) Et ₂ Zn, THF, -78 to 25°, 5 h	CO ₂ Et	CuCN•2LiCl. 0°, 2 h	CO_2Et $OPiv$ (87) dr = 78:22	166, 167
	PdCl ₂ (dppf) (2%) Et ₂ Zn, THF, -78 to 25°, 5 h	CO ₂ Et Br	CuCN•2LiCl, 0°, 2 h	CO ₂ Et (75) dr = 77:23	166
	PdCl ₂ (dppf) (2%) Et ₂ Zn, THF, -78 to 25°, 5 h	──CO ₂ Et	CuCN•2LiCl, 0°, 2 h	CO ₂ Et (67) dr = 77:23	167
	PdCl ₂ (dppf) (2%) Et ₂ Zn, THF, -78 to 25°, 5 h	OAc	CuCN-2LiCl, 0°, 2 h	OAc (52) dr = 77:23 OAc	166
EtO ₂ C	PdCl ₂ (2%) (dppf) Et ₂ Zn, THF, 25°, 5 h	CO ₂ Et Br	CuCN•2LiCl, THF78 to 0°	EtO_2C EtO_2C CO_2Et (73)	165, 167
EtO ₂ C EtO ₂ C	$M_{n}Br_{2}, CuCl, Et_{2}Zn,$ $DMPU, 60^{\circ}, 7 h$	H ₃ O ⁺	-	$EtO_2C $ (71) EtO_2C	611
Cu	MnBr ₂ , CuCl, Et ₂ Zn, DMPU, 60°, 7 h	I ₂	_	EtO_2C EtO_2C I (75)	611
C ₆ H ₄ CN-4	PdCl ₂ (dppf) (2%) Et ₂ Zn, THF, -78 to 25°, 5 h	CO ₂ Et	CuCN•2LiCl, 0°, 2 h	$C_{6}H_{4}CN-4$ (83)	165, 167
RO	PdCl ₂ (dppf) (2%) Et ₂ Zn, THF, –78 to 25°, 5 h	CO ₂ Et Br	CuCN+2LiCl, 0°, 2 h	$\begin{array}{c} OR \\ \hline \\ R \\ Bz \\ Bn \\ \end{array} \begin{array}{c} - S99:1 \\ - S99:1 \\$	166
n-C4H13	Br Ni(acac) ₂ (2%), THF, Et ₂ Zn, OEt 40°, 0.5 h	CO ₂ Et	CuCN•2LiCl, -30°, 6 h	EtO C_6H_{13} - <i>n</i> (60) dr > 99:1	171, 470
	Ni(acac)₂ (2%), THF, Et₂Zn, 40°, 0.5 h	≡−CO ₂ Et	1. CuCN•2LiCl, 30°, 6 h 2. MCPBA, BF3•0F	$O = \underbrace{O_{C_6}H_{13} \cdot n}_{CO_2Et}$ (56) dr > 99:1	171, 470
	Ni(acac) ₂ (2%), THF, Et ₂ Zn, –78 to 40°, 12 h	CO ₂ Et Br	CuCN+2LiCl, -78 to 25°, 1 h	$E_1O \sim C_6H_{13} \sim n$ (61) dr > 99:1	171, 470
	Ni(acac) ₂ (2%), THF, Et ₂ Zn, -78 to 40°, 12 h	Ph CO_2Et CO_2Et CO_2Et	CuCN•2LiCl, -78 to 10°, 12 h	EtO C_{O} $C_{O}H_{13} \cdot n$ (60) $dr > 99:1$ $C_{O}Et$	171, 470

TABLE XVIII. INTRAMOLECULAR CARBOZINCATION OF FUNCTIONALIZED ALKENES OR ALKYNES (Continued)
Alkene/ Alkyne	Cyclization Conditions	Electrophile	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
	I. s-BuLi, Et ₂ O, ~78° 2. ZnBr ₂ , -40°, 5 min	Br	CuCN•2LiCl. THF	(74) TMS	617
	1 MS 1. s-BuLi, Et ₂ O, -78° 2. ZnBr ₂ , -40°, 5 min	Ĩ	Pd(PPh ₃) ₄ , THF	(50)	617
PhO ₂ S PhO ₂ S	OAc Pd(PPh ₃) ₄ , Et ₂ Zn, Et ₂ O, 35°, 1.5 h	x	_	$\begin{array}{ccc} PhO_2S \\ PhO_2S \\ PhO_2S \end{array} \begin{array}{c} R \\ R \\ I_2 \\ I_2 \\ I \end{array} \begin{array}{c} R \\ R $	613
23	$Pd(PPh_3)_4$, Et_2Zn , Et_2O , 35° , $1.5 h$	TsCN	1. CuCN•2LiCl, Et ₂ O, -78°, 1 h 230°, 16 h	PhO ₂ S PhO ₂ S (58)	613
C ₆ H ₁₁	1. s-BuLi, Et ₂ O, -78° 2. ZnBr ₂ , -40°, 5 min	Br	_	C_6H_{11} N_{Me} (70) Me TMS cis:trans = 85:15	222
	PAC $Pd(PPh_3)_4$, Et_2Zn , Et_2O , 35°, 1.5 h	NH₄CI	_	Tr-N (79)	613
PhO ₂ S PhO ₂ S	SiEt ₃ OAc Pd(PPh ₃) ₄ , Et ₂ Zn, $E_{t_2}O$, 35°, 1.5 h	NH₄Cl	-	PhO ₂ S PhO ₂ S (87)	613
PhO ₂ S PhO ₂ S	Si(Pr- <i>i</i>) ₃ OAc Pd(PPh ₃) ₄ , Et ₂ Zn, Et ₂ O, 35°, 1.5 h	I ₂		$\begin{array}{c} Si(Pr-i)_{3} \\ PhO_{2}S \\ PhO_{2}S \end{array} \tag{81}$	613

TABLE XVIII. INTRAMOLECULAR CARBOZINCATION OF FUNCTIONALIZED ALKENES OR ALKYNES (Continued)

FG-RZnX	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
(FG-R)	Ph	Co(acac) ₂ . THF, NMP, 55°, 12 h	Ph CN (75)	537
	Aco	PdCl ₂ (dppf), THF, DMPU, -30 to 65°, 12 h	Aco (72)	176
	OHC	Ni/C. PPh ₃ . THF, 55°	OHC CN (80)	623
CI CI	N Br	PdCl ₂ (PPh ₃) ₂ , C ₆ H ₆ , DMAC, 50°, 1 h	N (95)	490
		PdCl ₂ (PPb ₃) ₂ , C ₆ H ₆ , DMAC, 50°, 1 h	N (77)	490
		PdCl2(PPh3)2, C6H6. DMAC, 50°, 1 h	N (28)	490
		PdCl ₂ (PPh ₃) ₂ , C ₆ H ₆ , DMAC, 50°, 1 h	Cl (76)	49()
	Br	Pd(PPh ₃) ₄ , THF. 25°, 10 min	$\begin{array}{c} X \\ O \\ X \end{array} \qquad \qquad$	624 ^{<i>b</i>}
s S		Pd(PPh ₃) ₄ , DMF. 60°, 2 h	(81)	160 ^b
	NC	Pd(PPh ₃) ₄ , DMF. 60°, 2 h	NC (47)	160*
	CI	Ni $(BF_4)_2$ bpy ₃ , DMF, 25°, 1 h	(50)	625°
	Br CO ₂ Me	Pd(PPh ₃) ₄ , DMF. 60°, 2 h	CO ₂ Me (40)	160 ^b
N H	N $P(O)(OEt)_2$ N O	Pd(PPh ₃) ₄ , THF, 65°, 5 h	$HN \xrightarrow{N} N \xrightarrow{P(O)(OE_{1})_{2}} (83)$	626
	N $P(O)(OEt)_2$	Pd(PPh ₃) ₄ , THF. 65°, 14 h	$N = N = P(O)(OEt)_2 $ (74)	626
	n-C ₆ H ₁₃	Pd(dba) ₂ , (2-C4H3O)3P THF 25° 24 h	$n-C_6H_{13}$ (70)	627

641

FG-RZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P THF, 25°, 72 h	O Me (85)	627
ž, Co	Br Br	$Pd(PPh_3)_4$, THF. 25°	0 B 0 (63)	628 ^b
·€	Br B O	Pd(PPh ₃) ₄ , THF, 25°	EtO B O (62)	628 ^b
ده کر ۲۰۰۰ Cl	NC	Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P THF, 25°, 5 h	NC Cl (74)	622 ^b
-{	R	Pd(PPh ₃) ₂ Cl ₂ , THF, C ₆ H ₁₄ , 25°, 4 h	$\begin{array}{c ccc} OPr-i & R & & \\ & 3 \text{-}Cl & (85) \\ \hline & & 4 \text{-}Cl & (58) \\ H & (73) \\ & & 4 \text{-}Me & (53) \end{array}$	480 ^b
E: Z = 11:89	I C ₆ H ₁₃ -n	Pd(dba) ₂ , PPh ₃ , THF, 25°, 5 h	EtO_2C (81) 100% 2Z. 4E	88
		Pd(dba) ₂ , PPh ₃ , THF, 25°, 24 h	O (88) <i>E</i> : <i>Z</i> = 88:12	88
	I Me	Pd(dba) ₂ , PPh ₃ , THF, 25°, 26 h	$Me \xrightarrow{O}_{CO_2Et} (87)$	88
	C_0H_{13} - n Ts	Pd(dba) ₂ , PPh ₃ , THF, 25°, 24 h	$T_{S} \xrightarrow{n-C_{6}H_{13}} CO_{2}Et $ (87)	88
CO2Et	N Br	Pd(PPh ₃) ₂ Cl ₂ , DMAC, C ₆ H ₆ , 70°, 12 h	(68)	490
	N	Pd(PPh ₃) ₂ Cl ₂ , DMAC, C ₆ H ₆ , 25°, 0.5 h	N CO ₂ EI (32)	490
	R	Pd[P(Tol-0)3]2Cl2, THF, 60°, 1 h	CO ₂ Et <u>R</u> Br (67) R NO ₂ (80)	137
	I I	Pd[P(Tol-0)3]2Cl2, THF, 60°, 1 h	CO ₂ Et (90)	137, 140 ^d
	I	Pd[P(Tol-0)3]2Cl2, THF, 25°	CO ₂ Et (83)	140 ^d , 27
		Pd(PPh ₃) ₂ Cl ₂ , DMAC, C ₆ H ₆ , 60°, 16 h	$\bigvee_{i=1}^{N} \bigvee_{i=1}^{N} CO_2 Et $ (60)	490
		Pd(PPh ₃) ₂ Cl ₂ , DMAC, C ₆ H ₆ , 25°, 2 h	$\bigcup_{\substack{ \\N }}^{N} \sum_{\substack{CO_2 E i}} (64)$	490

FG-RZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		Pd(PPh ₃) ₂ Cl ₂ . DMAC, C_6H_6 , 50°, 14 h	N CO ₂ Et (20)	490
		Pd(PPh ₃) ₂ Cl ₂ , DMAC, C ₆ H ₆ , 25°, 0.5 h	CO ₂ Ei N (47)	490
	I OMe	Pd(PPh ₃) ₂ Cl ₂ , THF, 60°, 1 h	CO ₂ Et (90)	137
	CO ₂ Me	Pd(PPh ₃) ₂ Cl ₂ , THF, 60°, 1 h	CO ₂ Et (95) CO ₂ Me	137
	MeO	Pd[P(Tol-0)3}2Cl2, THF, 60°, 1 h	MeO (96)	137
	Br TMS	Pd[P(Tol-0)3]2Cl2, THF, 25°	CO ₂ Et (87) TMS	140 ^d
	Br	Pd[P(Tol- <i>o</i>) ₃] ₂ Cl ₂ . THF, 25°	CO ₂ Et (85)	140
	o Br	Pd{P(Tol-0)3]2Cl2, THF, 25°	$\int_{O} -CO_2 Et $ (49)	27. 140 ^d
	Г	Pd[P(Tol- <i>o</i>) ₃] ₂ Cl ₂ , THF. 25°	CO ₂ Ei OMOM	27, 140 ^d
	t-Bu OTf	Pd(PPh ₃) ₄ , THF. 60°, 0.5 h	r-Bu (74)	140
	Br	Pd[P(Tol- σ) ₃] ₂ Cl ₂ , THF. 25°	CO ₂ Et (79)	140 ^d
S ²⁵ CO ₂ Me		Pd[P(Tol- <i>o</i>) ₃] ₂ Cl ₂ . THF, 25°	CO ₂ Me (79)	140 ^d
	Br	Pd[P(Tol- <i>o</i>) ₃] ₂ Cl ₂ , THF, 25°	CO ₂ Me (85)	140 ^d
;š ^z Cl	Pr-i	Pd(PPh ₃) ₄ , THF, 0 to 20°	Pr.i (42)	470
j ^{zf} CN	EtO ₂ C MeO	Ni/C, PPh3, THF, 55°	EtO ₂ C MeO	623
-}TMS	I CO ² H	Pd(MeCN) ₂ Cl ₂ . DMF, Et ₂ O. 25°, 12 h	TMS(81)	629 ^e
	r CO ₂ H	Pd(MeCN) ₂ Cl ₂ , DMF. Et ₂ O, 25°, 12 h	TMS	629 ^e

TABLE VIV. CDOCC COUNTRY OF THIC DE ACENTE WITH ADVIDUATION TO THE AND OUT F		
TABLE ATA, CRUSS COUPLING OF ZINC REAGENTS WITH ARYL/VINYL HALIDES AND SULF	JNATES (Continued)"	

FG-RZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Br Br CO ₂ Et	Pd(OAc) ₂ , AsPh ₃ , THF, 20°, 4 h	TMS Br (91) CO ₂ Et	476 [¢]
CF3	R II	Pd(PPh ₃) ₄ , THF, 50°, X h	$R \xrightarrow{[1]{}} CF_3 \qquad \frac{R}{H} \qquad \frac{X}{6} \qquad (95)$ $+Br \qquad 7 \qquad (94)$ $OEt \qquad 4.NO_2 \qquad 7 \qquad (94)$	630
	R II Br	Pd(PPh3)4, THF, 70°, X h	$R \xrightarrow{I} OEt \\ OEt \\ 0Et \\ 4-NO_2 \\ 8 \\ (90) \\ (90) \\ (92)$	630
		Pd(PPh3)4. THF. 70°, 6 h	$\bigcup_{N}^{CF_3} OEt $ (91)	630
	K Br	Pd(PPh ₃) ₄ , THF, 70°, 7 h	EtO (85) CF3	630
	X <u>X</u> <u>Pr</u>	Pd(PPh ₃) ₄ , THF	OEt (00)	630
	I OTf	50°, 7 h 50°, 7 h	E = (90) Z:E = 1:1 (93) E = (86)	
	Br	Pd(PPh ₃) ₄ , THF, 70°, 7 h	CF ₃ (91) Z:E = 1:1	630
-≹-√N_ MOM	$N = N = N = P(O)(OEt)_2$	Pd(PPh ₃) ₄ , THF. 65°, 14 h	$N = N = P(O)(OE()_2 (73))$	626
y y y y y y y y y y y y y y y y y y y	Br Br	Pd(PPh ₃) ₄ , THF, 25°		628 ^b
λ λ Me	$N = N = N = O(O)(OEt)_2$	Pd(PPh ₃)4, THF, 65°, 14 h	$N - Me$ $N - Me$ $P(O)(OEt)_2 (60)$	626
2.5. N	$N = N P(O)(OEt)_2$	Pd(PPh ₃)4, THF, 65°, 6 h	$N = N = P(O)(OEt)_2 (84)$	626
	NO ₂	Pd(dba) ₂ . (2-C ₄ H ₃ O) ₃ P THF. 25°, 14 h	NO ₂ (84)	627

FG-RZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	N Br	Pd(PPh ₃) ₄ . THF, 25°, 48 h	N (81)	631
		Pd(PPh ₃) ₄ , THF, 25°, 45 h	N (73)	631
C ₆	I N	Pd(PPh ₃)₄, THF, 65°, 14 h		631
r Cl	Cl CO ₂ Et	Pd(dppb)Cl ₂ , THF, 25°, 8 h	CI CI CO ₂ Et (81)	632 ^e
³ e ⁴ − Cl	Cl CO ₂ Et	Pd(dppb)Cl ₂ , THF, 25°, 8 h	Cl CO ₂ Et (81)	632 ^e
	NC Br	Pd(PPh ₃) ₂ Cl ₂ , DMF, 25°. 2 h	CI CN (59)	159
	THO	Pd(dba) ₂ , dppf, THF, C ₆ H ₁₄ , 60°, 12-48 h	OMe (93)	633
	R	Pd(dba) ₂ . (2-C ₄ H ₃ O) ₃ P THF, 25°, X h	$R = \begin{bmatrix} CI & X & R \\ 6 & 4 \cdot CO_2 Et & (88) \\ - & 4 \cdot NO_2 & (71) \\ - & 4 \cdot OAc & (71) \\ 15 & 2 \cdot CO_2 Me & (79) \end{bmatrix}$) 634 ^b
	I	Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P THF, 25°, 5 h		620
	CF3 ONf	Pd(dba) ₂ , dppf, THF, 60°, 3 h	CF_3 C_6H_4Cl-4 (96)	620
	CF ₃	Pd(dba) ₂ , dppf, THF, 60°, 1.5 h	CF ₃	620
	NFO-NO2	Pd(dba) ₂ , dppf, THF, 60°, 1.5 h		635
	TfO	Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P THF, 25°, 0.5-2 h	Cl	635
	TfO-CO2Et	Pd(dba) ₂ , dppf, THF, 60°, 0.5 h	Cl- (83)	634 ^b

FG-RZnX	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
(FG-R)				
-È-Br	Ph-	Br Pd(PPh ₃) ₄ , THF, 25°, 3 h	$Ph \longrightarrow O \longrightarrow C_6H_4Br-4 $ (80)	636 [*]
	NfO CO2Et	Pd(dba)2. dppf, THF, 65°, 28 h	Cl (77) Cl CO_2El	637 ^b
-§F	ONF CO2Et	Pd(dba) ₂ , dppf. THF. 65°, 5 h	$F \longrightarrow (91)$	637 ^{<i>b</i>}
	Me ^{-N} CO ₂ Et	Pd(dba) ₂ , dppf, THF, 65°, 25 h	$F \longrightarrow N-Me$ (57) EtO ₂ C	637 ^{<i>b</i>}
	Br Br	Pd(PPh ₃) ₄ . THF, 20°	$F \longrightarrow CO_2Et$ Br (84)	499 ⁶
	X X	Pd(dppb)Cl ₂ , THF, 25°, 8 h	$F \xrightarrow{X} Cl (89)$	632"
	ГС ₆ Н ₁₃ -л	Pd(dba) ₂ , dppf, THF, 25°, 2 h	$NC = N C_6 H_{13} \cdot n $ $NC = N M_e $ (85)	627.133
	R	Pd(dba) ₂ , dppf, THF, 70°, 12 h	$\begin{array}{c c} CN \\ R \\ N \\ N \\ Me \\ CO_2Et \\ CN \\ C$	627
	N I	Pd(dba) ₂ , dppf, THF, 70°, 12 h	$ \begin{array}{c c} N \\ N \\ N \\ Me \end{array} $ (83)	627
2 2 2 2 2 2 2 2 2 0	I I	Pd(PPh ₃) ₄ , PPh ₃ , THF, 25°, 8 h	Ph (71)	27, 88
	Me V V V N Me	Pd(PPh ₃) ₄ , PPh ₃ , THF, rt, 24 h	$ \begin{array}{c} $	87, 88
	IС ₆ Н ₁₃ -п	Pd(PPh ₃) ₄ , PPh ₃ , THF, rt, 1 h	OC ₆ H ₁₃ - <i>n</i> (73)	88
Zz CO2Pr-i	BuBr	$Pd[P(Tol-o)_3]_2Cl_2,$ THE rt	$Bu \xrightarrow{CO_2 \Pr - i} (76)$	140 ^d
	lBu	Pd[P(Tol- o) ₃] ₂ Cl ₂ , THF rt	Bu $CO_2 P_{T} \cdot i$ (90)	140 ^d
	ITO	Pd[P(Tol- o) ₃] ₂ Cl ₂ , THF, rt	$CO_2 Pr-i$ (55)	140 ^d
	Bryph	Pd[P(Tol-0)3]2Cl2, THF, rt	Ph CO ₂ Pr- <i>i</i> (76)	140 ^d

FG-RZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Br	Pd[P(Tol- <i>o</i>) ₃] ₂ Cl ₂ , THF, 25°	CO ₂ Pr- <i>i</i> (76)	27, 140 ^d
بُحْرُ CO ₂ Et	X X	$Pd(PPh_3)_2Cl_2, C_6H_6,$ DMAC, Cond.	$\begin{array}{c cccc} N & & \underline{X} & Cond. \\ \hline & & CO_2Et & \hline Cl & 80^\circ, 24 \ h & (14) \\ & & Br & 25^\circ, 0.5 \ h & (89) \end{array}$	490
	€ N ×	$Pd(PPh_3)_2Cl_2, C_6H_6,$ DMAC, 25°, 1 h	$\begin{array}{c c} & X \\ \hline & Br & (43) \\ N & I & (44) \end{array}$	490
	Br	Pd[P(Tol-0)3]2Cl2, THF, 60°, 0.5 h	Br CO ₂ Et (78)	137
	Br NO ₂	Pd(PPh ₃) ₄ , THF, 25°. 3 h	CO ₂ Et (90)	120, 176
	CI	Pd(dppf)Cl ₂ , THF, DMPU, ~30 to 65°, 12 h	CI CO ₂ Et (73)	176
	I I	Pd[P(Tol- <i>o</i>)₃]₂Cl₂, THF, 60°, 0.5 h	CO ₂ Et (90)	137
	X N N	Pd(PPh ₃) ₂ Cl ₂ , C ₆ H ₆ , DMAC, T ^o , 2 h	$\begin{array}{c c} N & & X & T \\ \hline & & CO_2Et & Br & 60 & (28) \\ \hline & & & I & 70 & (33) \end{array}$	490
	X N N	Pd(PPh ₃) ₂ Cl ₂ , C ₆ H ₆ , DMAC, Cond.	$N = CO_2Et = \frac{X - Cond.}{C1 - 80^\circ, 24 h} (30)$ $I = 25^\circ, 2 h (91)$	490
		$Pd(PPh_3)_2Cl_2, C_6H_6,$ DMAC, 25°, 2 h.	$\begin{array}{c} & X \\ CO_2E_1 & \frac{X}{Cl} & (65) \\ N & I & (90) \end{array}$	490
	OTF OTF 9:1	Pd(PPh ₃₎₄ , THF, 60°, 4 h	CO_2E_I I + I + II (83) I:II = 9:1	137
			CO ₂ Et II	
	<i>n</i> -Bu Br	Pd(PPh3)4, THF, 60°, 4 h	<i>n</i> -Bu (89)	137
	IBu-n	Pd(PPh3)4, THF, 60°, 4 h	n-Bu CO ₂ Et (71)	137
	Br	Pd(PPh ₃) ₄ , THF, 25°, 3 h	NC CO ₂ Et (93)	120, 17
	R	Pd(PPh ₃) ₄ , THF, 60°, 4 h	R CO ₂ Et R (95) 4-MeO (75)	137
	N N	Pd(PPh ₃) ₂ Cl ₂ , DMAC, C ₆ H ₆ , rt. 0.5 h	CO ₂ Et (78)	490
	OTf Bu-n	Pd(PPh3)4, THF, 70°, 2 h	n-Bu CO ₂ Et (75)	137

TABLE XIX, CROSS COUPLING OF ZINC REAGENTS WITH ARYL/VINYL HALIDES AND SULFONATES (Continued)^a

652

	TABLE XIX. C	ROSS COUPLING OF ZINC REAGE	ENTS WITH ARYL/VINYL HA	LIDES AND SULFONATES (Continued) ^a	
	FG-RZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Rets.
		Br	Pd(PPh ₃) ₄ , THF, 25°, 3 h	OCO_2Et (86)	120
		IPh	Pd(PPh ₃) ₄ . THF. 70°, 2 h	PhCO ₂ Et (79)	137
		Aco	Pd(dppf)Cl ₂ , THF, DMPU, -30 to 65°, 12 h	AcO CO ₂ Et (72)	176
		CO ₂ Me	Pd[P(Tol-0) ₃] ₂ Cl ₂ , THF, 60°, 0.5 h	CO ₂ Me (100)	137
			Pd(dppf)Cl ₂ , THF, DMPU, -30 to 65°, 12 h	CO ₂ Et (71)	176
	Me	MeO Br OMe	Pd(PPh ₃) ₄ . THF. 55°, 12 h	MeO EtO ₂ C Me Me	638
		R	Pd(dba) ₂ , dppf, THF, 25°, 0.5 h	$R \xrightarrow{N} O = O = \frac{R}{2 \cdot CF_3} (78)$ $H = (83)$ $H = (83)$ $H = (80)$	627
			Pd(dba) ₂ , dppf, THF, 25°, 0.5 h	Me $N = 0$ $N = 0$ Me $Bn = N$ $N = 0$ Me Me	627
	-\$	R	Pd(PPh3)4, THF, 60°	$R \xrightarrow{\qquad O} O \xrightarrow{\begin{array}{c} R \\ 2 - OMc \\ 4 \cdot NO_2 \end{array}} (94)$	639 ⁶
		Br	Pd(PPh ₃) ₄ , THF, 60°, 20 h	(62)	639 [#]
			Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P THF, 25°, 16 h	$R = \begin{bmatrix} R \\ CF_3 \\ NO_2 \\ 0 \end{bmatrix} (85) \\ CO_2Et (78) \end{bmatrix}$	630
		n-C ₆ H ₁₃	Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P THF, 25°, 1 h	(80)	49 ^b
			Pd(dba) ₂ , dppf, THF, 25°, 0.5 h	(60)	49 ^b
			Pd(dba)₂, (2-C₄H₃O)₃P THF, 25°, 4 h	0 (71)	49 ⁶
C ₇	ştCN	PivO	Pd(dba) ₂ , PPh ₃ THF, 25°	PivO CN (81)	634 ^b
-,	je OAc	Cl	Co(acac) ₂ , THF, NMP, 55°, 12 h	Cl (77)	537

FG-RZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	n-Bu I	1. Pd(PPh ₃) ₄ , THF, rt, 2 h 2. HCl	О Ви-л (85)	483
	i-	1. Pd(PPh ₃) ₄ , THF, π, 2 h 2. HCl	(80)	483
	IC ₆ H ₁₃ -n	1. Pd(PPh ₃) ₄ , THF, st, 2 h 2. HCl	$C_{6}H_{13}-n \qquad (92)$	483
oMe	$Br \longrightarrow CO_2Et$ Br	Pd(OAc) ₂ , AsPh ₃ , THF, rt, 3 h	MeO CO ₂ Et (77)	476 [*]
	TBDMSO CO2Et	Pd(OAc) ₂ , AsPh ₃ , THF, π, 5.5 h	MeO OTBDMS (68)	476 ⁶
		Рd(OAc) ₂ , AsPh ₃ , THF, гг, 3 h Br	(83) O O	636 ^b
	MeO Br OMe	Pd(PPh ₃) ₄ , THF, 55°, 12 h	MeO MeO OMe (53)	638 ^b
	ONF	Pd(dba) ₂ , dppf, THF, DMF, 65°, 15 h	(38) C ₆ H ₄ OMe-4	637 ^b
	TFO	Pd(dba) ₂ , dppf, THF, C ₆ H ₁₄ , 65°, 12-48 h O ₂ Et	EtO ₂ C	633
	TIO	Pd(dba) ₂ , dppf, THF, C ₆ H ₁₄ , 65°, 12-48 h IO ₂	O ₂ N C ₆ H ₄ OMe-4 (81)	633
	OTI CO-Et	Pd(dba) ₂ , dppf, THF, C ₆ H ₁₄ , 65°. 12-48 h	C ₀ H ₄ OMe-4 (90) EtO ₂ C	633
	TFO	Pd(dba) ₂ , dppf, THF, C ₆ H ₁₄ , 65°. 12-48 h)Tf	4-MeOC ₆ H ₄ (70)	633)
Br	R	Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P THF, 25°	R Br Cl (82)	633
·ś	∑Br	Pd(PPh ₃) ₄ , THF, 25°, 44 h	N (67)	631
N MeO N	c	Pd(PPh ₃) ₂ Cl ₂ , THF, 65°, 12 h	$C \xrightarrow{N}_{MeO} N \xrightarrow{N}_{4} (34)$	640 ^b

FG-RZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	R	Pd(PPh ₃) ₂ Ci ₂ , THF, 50°, 5 h	$\begin{array}{c c} & R \\ \hline Br & (69) \\ H & (91) \\ CN & (67) \\ CHO & (78) \\ COMe & (86) \\ CO_2Me & (90) \\ CH_2SMe & (93) \end{array}$	84
	I C	Pd(dba) ₂ , AsPh ₃ , THF, 50°, 3 h		85
	I Bu-n	Pd(dba) ₂ , AsPh ₃ , THF, 50°, 3 h	n-Bu O (55)	85
	Br R	Pd(PPh ₃) ₄ , THF. 50°. 3 h	$R \xrightarrow{O} \xrightarrow{H} Ph (68)$	85
	IPh	Pd(PPh ₃) ₄ , THF, 50°, 3 h	$Ph \xrightarrow{B} \xrightarrow{O} (54)$	85
	I R	Pd(PPh ₃) ₂ Cl ₂ , THF, 50°, 5 h	$\mathbf{R} \xrightarrow{\mathbf{B}} \mathbf{O} \xrightarrow{\mathbf{R}} \mathbf{O} \xrightarrow{\mathbf{CO}_2 \mathbf{M} \mathbf{c}} (76) \\ \mathbf{O} \xrightarrow{\mathbf{O}} \mathbf{O} \operatorname{MOM} (80)$	84
	Br	Pd(OAc) ₂ , PPh ₃ , THF, C ₆ H ₆ , 70°, 3 h	(47) OH	86
	Br O O	Pd(OAc) ₂ , PPh ₃ , THF, C ₆ H ₆ , 70°. 3 h		86
	Br CHO	Pd(OAc) ₂ , PPh ₃ , THF, C ₆ H ₆ , 70°, 3 h	HO(78)	86, 85
	Br CO ₂ Et	Pd(OAc) ₂ , PPh ₃ , THF, C ₆ H ₆ , 70°, 3 h	$= \underbrace{\langle \bigcup_{i=1}^{CO_2Et} (71) \\ OH }$	86
	Br CO ₂ Me	Pd(OAc) ₂ , PPh ₃ , THF, C ₆ H ₆ , 70°, 3 h	OH (71)	86
	Br CHO	Pd(OAc)_2, PPh3, THF, $C_6H_6,$ 70°, 3 h	(80) HO	86
	I B O	Pd(dba) ₂ , PPh ₃ , THF, 40°, 12 h	$ \xrightarrow{n \cdot B u}_{O - B} \xrightarrow{B - O}_{O - B} \xrightarrow{(86)}_{O - A - O} $	62
	Br O	$Pd(OAc)_2,$ $PPh_3,$ THF, $C_6H_6,$ 70°, 3 h	HO CO ₂ Et (64)	86

FG-RZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Ref
342 OTf	R (i)	Pd(dba) ₂ , (2-C ₄ H;O) ₂ P, THF, 25°, 2-18 h	$R \xrightarrow{f_1} V \xrightarrow{I} V I$	63(
Tfo	R	Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P, THF, 2-18 h	R	49 [/]
	$\frac{R}{COE}$	65	(03)	
	NO ₂ EI	65°	(90)	
	CI	65°	(88)	
	OAc	25°	(82)	
۲۶ OTf	R	Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P, THF, 2-18 h	R	49 [/]
		25°	(79)	
	NO	25°	(85)	
	Cl	65°	(85)	
	OTf	25°	(74)	
OPiv	CI	Co(acac) ₂ , THF, NMP, 55°, 12 h	Cl OPiv (77)	53'
MeO OMe	Et ₂ NOC	Ni(acac) ₂ , MeMgBr, PPh ₃ , THF, 25°	CONEt ₂ (92)	48
	Br MeO Br	Pd(PPh ₃)4, THF, 55°, 12 h	MeO MeO OMe MeO OMe (65)	63
MeO ₂ C	Br McO Br	Pd(PPh3)4, THF. 55°, 12 h	MeO ₂ C MeO OMe CO ₂ Me	63
set NMe2	CI N CI	Ni(BF ₄) ₂ bpy ₃ . DMF, 25°, 1 h	Me ₂ N (60)	62
d ^a	NfO CO ₂ Et	Pd(dba) ₂ , dppf, THF, 65°, 22 h	(85)	6
-}-OEt	I CO ₂ Et	Pd(PPh ₃) ₂ Cl ₂ , DMF, Et ₂ O, 25°, 12 h	EtO OEt (69)	6
or N		$Pd(dba)_2$. $(2-C_4H_3O)_3P$. THE 65° 2 h	$R = \frac{R}{H} $	5

FG-RZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Br	Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P, THF, 65°, 2 h	(63)	572
	N	Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P, THF, 25°	(55)	572
	N Br	Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P, THF, 65°, 2 h		572
O y y		Pd(PPh ₃) ₄ , THF		639 ^b
	4-Cl 3-F	65°, 8 h 20 to 65°, 85 h	(88) (70)	
	MeOBr	Pd(PPh ₃) ₄ , THF, 65°, 22 h	MeO (84)	639 ^b
^{s²}	I CO ₂ Et	Pd(PPh ₃) ₂ Cl ₂ , DMF, 25°, 24 h	O CO ₂ Et (93)	88
	I C ₆ H ₁₃ -n	Pd(PPh ₃) ₂ Cl ₂ , DMF, 25°, 1.5 h	O C ₆ H ₁₃ - <i>n</i> (82)	88
H O C5H11-n	1 C6H13-n	Pd(PPh ₃) ₂ Cl ₂ , DMF. 25°, 4 h	$n - C_6 H_{13} $ (55) $C_5 H_{11} - n$	88
DPiv	Cl	Co(acac) ₂ . THF,	ClOPiv (65)	537
CO ₂ Me		55°, 12 h Pd(PPh ₃) ₄ , THF, 25°, 16 h	MeO ₂ C (80)	642
	Ph N Cl	Pd(PPh ₃) ₄ , THF, 25°, 16 h	Ph N (70)	642
p ² N	N Br	Pd(PPh ₃) ₄ , THF, 25°, 67 h	CO ₂ Me (60)	631
	I C6H13-n	Pd(PPh ₃) ₂ Cl ₂ , DMF, 25°, 5 h	C ₆ H ₁₃ - <i>n</i> 0 0 (71)	88

FG-RZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
245 N	1 C ₆ H ₁₃ - <i>n</i>	Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P, THF, 25°, 4 h	<i>n</i> -C ₆ H ₁₃ (61)	627
⁵ ⁵ ⁵ ⁵ ⁵ ⁵ ⁵ ⁵ ⁵ ⁵	Br	Pd(PPh ₃) ₄ , THF, 25°, 3 h	NC CO ₂ Et (82)	120
CO2Et	J Bu-n	Pd(dba) ₂ , PPh ₃ , THF, 25°, 12 h	EtO ₂ C (81)	133
	Br	Pd(PPh ₃) ₄ , THF, 25°, 3 h	NC (80)	120
	I CO ₂ Et	Pd(PPh ₃) ₄ , TI1F, 25°, 3 h	(94) EtO ₂ C	120
CONMe ₂	TfO. R	Pd(PPh ₃) ₄ , THF. reflux 4 h	$R = \frac{R}{O_2Ft} (80)$	643
Z CI	[С ₆ Н ₁₃ - <i>n</i>	Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P, THF, 25°, 4 h	$CI \xrightarrow{N} C_6 H_{13} \cdot n $ (72)	627
		Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P, THF, 45°, 24 h	$Cl \xrightarrow{N} O Me (73)$	627
	i-Pr	Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P, THF, 25°, 3 h	Cl Pr-i (55)	627
	O I I	Pd(dba) ₂ . (2-C ₄ H ₃ O) ₃ P, THF, 45°, 24 h	N (71)	627
	NO2	Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P, THF, 60°, 2 h		627
	TFO	Pd(PPh ₃) ₂ Ct ₂ , <i>n</i> -BuLi, THF, 65°, 1 h	(67)	621 ^b
	TfOCO2Et	Pd(PPh ₃) ₂ Cl ₂ , <i>n</i> -BuLi, THF, 65°, 1 h	$Ph \underbrace{\bigcirc}_{N} (84)$	621 ^b
	Tf0CO2Me	Pd(PPh ₃) ₂ Cl ₂ , <i>n</i> -BuLi, THF, 65°, 1 h	MeO ₂ C (67)	621 ^b

(FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
CO ₂ Me NHBoc	I C	Pd2(dba)3, (<i>o-</i> Tol)3P, DMF, 50°	NHBoc CO ₂ Me (69)	644
	R II	Pd2(dba)3, (o-Tol)3P		644
	<u>Р</u> Н 2-F	DMF, 50°	(64)	
	2-NO ₂	DMF, 50°	(28)	
	4-F	DMF, 50°	(58)	
	2-OMe	DMF, 50°	(57)	
Co	4-NO ₂	THF, 50°	(62)	
O Set Ph		$Pd[P(Tol-o)_3]_2Cl_2,$	Ph (99)	138
	I Bu-n	Pd[P(Tol- o) ₃] ₂ Cl ₂ , HMPA, 40°, 1 h	<i>n</i> -Bu	138
	OTf Bu-n	Pd[P(Tol- <i>o</i>) ₃] ₂ Cl ₂ , HMPA. 40°. 1 h	Ph (67) Bu-n O	138
Me NMe2	I Bu-n	1. Pd(PPh ₃) ₄ , THF, 22° 2. HCl (2 M)	$\bigcup_{n-\mathbf{Bu}}^{\mathbf{O}}$ (80)	483
		1. Pd(PPh ₃) ₄ , THF, 22° 2. HCl (2 M)	о (76)	483
	I C6H13-n	1. Pd(PPh ₃) ₄ , THF, 22° 2. HCl (2 M)	$\overset{O}{\longleftarrow} C_{6}H_{13} \cdot n \qquad (78)$	483
\$	I Bu-n	Pd(dba) ₂ , (<i>o</i> -Tol) ₃ P, THF, 0 to 25°, 12 h	Bu-n (35), 56% ee trans:cis = 99:1	40
² ² ² ¹ CO ₂ Me NHBoc	R	Pd ₂ (dba) ₃ , (<i>o</i> -Tol) ₃ P, DMF, 25°, 3 h		99
	Н		(73)	
	4- M e		(73)	
	2-OMe		(56)	
	4-OMe		(68)	
	2-NH ₂		(33)	
	2-Br		(58)	
	2-F 4 E		(40)	
	4-F 2-NO2		(20)	
	3-NO ₂		(47)	
	4-NO ₂		(89)	
	\sim		Mulber	

	FG-RZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		<u></u>		\square	
	j ² NBoc	N Br	Pd ₂ (dba) ₃ , (2-C ₄ H ₃ O) ₃ P, THF, DMA, 80°, 2 h	Boch (70)	572
	-}OTHP	I CO ₂ H	PdCl ₂ (MeCN) ₂ , DMF, Et ₂ O, 25°, 12 h	THPO (96)	629 ^e
	BnO NNN	$R \xrightarrow{I}_{U}$ $R \xrightarrow{I}_{2-F}$	Pd(PPh ₃) ₄ , THF, DMF, 85°, 2 h	BnQ R (78)	645 ^b
		2-OMe 4-OH 2-NH ₂ 2-NO ₂		(91) (66) (88) (80)	
		2-СНО		(83) BnO	
		N Br	Pd(PPh ₃) ₄ , THF, DMF, 85°, 2 h		645 ^b
		⟨ _s ↓ _l	Pd(PPh ₃) ₄ , THF, DMF, 85°, 2 h	BnO N N (84)	645 ^b
			Pd(PPh3)4. THF, DMF, 85°, 2 h	N $N $ OBn $N $ OBn (86) (86)	645 ⁶
				o ONf	
	² ^{2⁴} ONf	R	$Pd(dba)_2, (2-C_4H_3O)_3P, THF, 25^{\circ}$		620
		<u>R</u> 4-OAc 3-CO ₂ Et	12 h 0.5 h	(86) (83)	
	, de la companya de l	Ph Ph Et	1. Pd(dba) ₂ , PPh ₃ , THF, 55°, 10 h 2. HC1	$\begin{array}{c} Ph \\ Ph \\ Et \\ Me_2NH \\ O \end{array} $ (75)	646
	N Bn	I CO2Et	Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P, THF, 65°, 2.5 h	$ \begin{array}{c} Bn \\ N \\ N \\ N \\ N \\ N \end{array} $ (68)	627
C11	₹ S COPh	Br	Pd(dba) ₂ , PPh ₃ , THF, 25°, 12 h	PhCO S (74)	133
	EtO ₂ C	Br R	Pd(PPh ₃)4, THF, 25°, 3 h	R H (95) CO2Et Me (93)	120
		I C6H13-n	Pd(dba) ₂ , PPh ₃ , THF, 25°, 12 h	$C_6H_{11} \xrightarrow{O} C_6H_{13} \cdot n $ (78)	133
	FINCO	TfOCONEt2	Ni(acac) ₂ , <i>i</i> -PrMgCl, THF, 25°, 12 h	$Et_2NOC \qquad \qquad$	489 ^b

	FG-RZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
Cia		EtO ₂ C	Pd(PPh ₃) ₄ , Et ₂ O, C ₆ H ₁₄ , 35° Pd(PPh ₃) ₄ , Et ₂ O, C ₆ H ₁₄ , 35°	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	643 ^b 643 ^b
012	o ₂ CNEt ₂	Et ₂ NCO OTf	Ni(acac) ₂ , i-PrMgCl, THF, 25°, 12 h	Et_2NCO_2 (65)	489 ^b
	n-Bu H O	I C ₆ H ₁₃ .n	Pd(dba) ₂ , PPh ₃ , THF, 20 to 35°, 12 h	0 B0 (77) n-C ₆ H ₁₃ Bu-n	62
	OMe	J Bu-n	Pd(dbà) ₂ , (<i>o</i> -Tol) ₃ P, THF, 0 to 25°, 12 h	OMe (40), 83% ee <i>trans:cis</i> = 98:2	40
	NBz	R R	Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P, THF, 25°, 1 h	$\begin{array}{c} 0 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	49 ⁶
		F Br	Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P, THF, 25°, 1 h	F Br (73)	49 ^b
	-{-} N N NBn	R	Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P, THF, 60°, 4 h	$R \xrightarrow{N} N \xrightarrow{K} H (80)$ $R \xrightarrow{N} 2-CF_3 (74)$ $N \xrightarrow{NBn} 4-CO_2Et (70)$	627
C ₁₃	CO ₂ Bn	R	Pd2(dba)3, (<i>o</i> -Tol)3P. THF, 50°, 1 h	$\begin{array}{c cccc} R & & CO_2Bn & & R \\ & & & F & (65) \\ & & & N & & Br & (42) \\ & & & & NO_2 & (54) \\ & & & & H & (61) \end{array}$	101
		I	Pd2(dba)3, (0-T0l)3P, THF, 50°, 1 h	(26)	101
		McO McO	Pd2(dba)3, (<i>o</i> -Tol)3P, THF, 50°, 1 h	$MeO \xrightarrow{CO_2Bn} N \xrightarrow{N} O $ (41)	101

^a Unless otherwise indicated, the organozinc reagents were prepared by insertion of zinc metal into an organic halide.

 b The organozinc reagent was prepared by a transmetallation reaction.

690

^c The organozinc reagent was prepared by Nakamura's method (ref. 140).

^d The organozinc reagent was prepared by ultrasonic irradiation of an ether solution of (ethoxycyclopropyloxy)trimethylsilane and zinc chloride.

" The organozinc reagent was prepared by halide-zinc exchange.

FG-RZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C5 0	RCI	Pd(PPh ₃) ₄ , HMPA, C ₆ H ₆ , 40°, 2 h	$\begin{array}{c} O \\ R \\ O \\ O \\ \end{array} \begin{array}{c} Ph \\ Ph \\ r-C_7H_{15} \end{array} (53) \\ n-C_7H_{15} \end{array} (62)$	138
p ^r ^d	o Cl	Pd(PPh ₃) ₄ , HMPA, C ₆ H ₆ , 40°, 2 h	(85)	138
بر CO2Et	CI	Pd(PPh ₃) ₄ , THF, reflux 4 h	CO_2Et (84)	105
	COCI	Pd(PPh ₃) ₄ , THF, reflux 4 h	CO ₂ Et (90)	105
	CI	Pd(PPh ₃) ₄ , THF, reflux 4 h	Cl CO ₂ Et (100)	105
	COCI	Pd(PPh ₃) ₄ , THF, 25°, 4 h	CO ₂ Et (100)	105, 140 ^b , 408
		Pd(PPh ₃) ₄ , HMPA, C ₆ H ₆ , 60°, 4 h	$R \xrightarrow{I} CO_2Et = \frac{R}{2 \cdot OMe} $ (81) 4-OMe (94)	105
	n-C ₇ H ₁₅ Cl	Pd(PPh ₃) ₄ , HMPA, C ₆ H ₆ , 60°, 4 h	n-C ₇ H ₁₅ CO ₂ Et (100)	105

TABLE XX. PALLADIUM-CATALYZED ACYLATION OF FUNCTIONALIZED ZINC REAGENTS^a

FG-RZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Ph COCI	Pd(PPh ₃) ₄ , HMPA, C ₆ H ₆ , 60°, 4 h	Ph CO ₂ Et (92)	105
	Ph COCI	Pd(PPh 3)4, HMPA, 60°, 4 h	Ph CO ₂ Et (83)	140 ^b
	O ₂ CPh	Pd(PPh ₃) ₄ , HMPA, CO, THF, 25°, 60 h	CO_2Et (24)	496
	O ₂ CPh	Pd(PPh ₃) ₄ , HMPA, CO, THF, 25°, 90 h	CO_2Et (24)	496
[×] ζζγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγ	PhCOCI	Pd(PPh ₃₎₂ Cl ₂ , THF, 25°, 4 h	Ph CO_2Me (93)	140
Me CO ₂ Me		Pd(PPh ₃) ₂ Cl ₂ , DMF, C_6H_6 , 35°, 40 min	$ \begin{array}{c} & & \\ & & $	36
		Pd(PPh ₃) ₂ Cl ₂ , DMF, C ₆ H ₆ , 35°, 40 min	O Ph N O O CO_2Me (57)	36
CO ₂ Me	O Ph N- COCI	Pd(PPh ₃) ₂ Cl ₂ , DMF, C ₆ H ₆ , 35°, 40 min	$ \begin{array}{c} O & Ph \\ N & \longrightarrow \\ O & O \end{array} \right) \rightarrow CO_2 Me (47) $	36
C		Pd(PPh ₃) ₂ Cl ₂ , DMF, C ₆ H ₆ , 35°, 40 min	(1)	36
ζ ₆ ζ _ζ CO ₂ Pr- <i>i</i>	COCI	Pd(PPhȝ)₄, HMPA, THF, 25°, 4 հ	0 (81)	140 ⁶
	ℓ-BuCOCl	Pd(PPh ₃) ₄ , HMPA, THF, 25°, 4 h	0 (50)	140 ^b
, ³⁴ Cl	PhCOC1	Pd(PPh ₃) ₄ , THF, 25°, 6 h		25
.22 CO2Et	COCI	Pd(PPh3)4, DMAC, C6H6, 25°, 1 h	O CO ₂ Et (88)	496
	MeO ₂ C COCl	Pd(PPh3)4, DMAC, C ₆ H6, 60°, 4 h	MeO ₂ C O (90)	105
	n-C7H15COCI	Pd(PPh ₃) ₄ , DMAC, C ₆ H ₆ , 60°, 4 h	$n-C_7H_{15}$ CO ₂ Et (94)	105
	O ₂ CPh	Pd(PPh3)4, HMPA, CO, THF, 25°, 4 h	CO ₂ Et (78)	496
	MeO ₂ C COCI	Pd(PPh ₃) ₄ , DMAC, C ₆ H ₆ , 60°, 4 h	CO ₂ Et (89)	105

$\mathsf{TABLE}\ \mathsf{XX}.\ \mathsf{PALLADIUM}\text{-}\mathsf{CATALYZED}\ \mathsf{ACYLATION}\ \mathsf{OF}\ \mathsf{FUNCTIONALIZED}\ \mathsf{ZINC}\ \mathsf{REAGENTS}\ (Continued)^a$

TABLE	E XX. PALLADIUM-CATALYZED ACY	LATION OF FUNCTIONAL	IZED ZINC REAGENTS (Continued) ^a	203
FG-RZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	O ₂ CPh	Pd(PPh ₃) ₄ , HMPA, CO, PhMe, 25°, 24 h	CO ₂ Et (37)	496
	O ₂ CPh	Pd(PPh ₃) ₄ , HMPA, CO, PhMe, 25°, 24 h	CO ₂ Et (60)	496
	O2CPh	Pd(PPh ₃) ₄ , HMPA, CO, PhMe, 25°, 17 h	CO ₂ Ei (64)	496
	O ₂ CPh	Pd(PPh ₃) ₄ , THF, CO, DMAC, 40°, 24 h	CO_2Et (60)	496
	[∞] ^O ₂ CPh	Pd(PPh3)4, HMPA, CO, PhMe, 25°, 24 h	CO ₂ Et (85)	496
	MeO ₂ C COCI	Pd(PPh ₃)4, DMAC, C ₆ H ₆ , 60°, 4 h	CO ₂ Et (72)	105
	PhO2CPh	Pd(PPh ₃) ₄ , THF, CO, DMAC, 25°, 20 h	O Ph CO ₂ Et (74)	496
	MeCOC1	Pd(PPh ₃) ₄ , DMAC, C ₆ H ₆ , 40°, 2 h	0 0 0 (74)	138
5 ⁵⁵ TMS	COCI	_	(63) TMS	656
δ ₈ Ο Π	PhCOCI	Pd(dba) ₂ , PPh ₃ ,	0 (72)	88
224		THF, 25°, 1 h	O Ph	
		Pd(PPh ₃) ₂ Cl ₂ , DMF, C ₆ H ₆ , 35°, 40 min	O Ph O_2Et O O Ph O_2Et I (23) +	36
			$ \begin{array}{c} O & Ph \\ & & \\ &$	
		Pd(PPh ₃) ₂ Cl ₂ , DMF, C ₆ H ₆ , 35°, 40 min	I (13) + II (22)	36
момо	RCOCI	Pd(PPh ₃) ₄ , Et ₂ O, 0 to 25°, 12 h	$\begin{array}{c} \begin{array}{c} & R \\ & R \end{array} \\ \hline \\ OMOM \end{array} \\ \begin{array}{c} R \\ c^{-}C_{3}H_{9} \end{array} \\ \begin{array}{c} (97) \\ (93) \end{array}$	657 ^c
10		Pd(PPh ₃) ₄ , Et ₂ O, 0 to 25°, 12 h	Et (75)	657 ^c
-}-	PhCOCI	Pd(dba) ₂ , (2-C ₄ H ₃ O) ₃ P, THF, 25°	Ph N-Boc (38)	336

FG-RZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
o o p	RCOCI	Pd(PPh ₃) ₄ , HMPA, C ₆ H ₆ , 40°, 2 h	$R \xrightarrow{O} O R \xrightarrow{Ph} (90) C_7 H_{15} \cdot n (80)$	138
	RCOCI	Pd ₂ (dba) ₃ , (<i>o</i> -Tol) ₃ P, dioxane, 0 to 25°, 12 h	$ \begin{array}{c} R \\ O \\ O \\ O \\ \end{array} \begin{array}{c} R \\ Ph \\ O \\ Bu-n \\ (39) \\ 64 \\ 92:8 \end{array} \begin{array}{c} R \\ ee(\%) \\ transcis} \\ transcis} \\ 0 \\ 95:5 \\ Bu-n \\ (39) \\ 64 \\ 92:8 \end{array} $	40
2	n-BuCOC!	Pd ₂ (dba) ₃ , (<i>o</i> -Tol) ₃ P, dioxane, 0 to 25°, 12 h	<i>n</i> -Bu (45), 88% ee anti:syn = 90:10	40
EtO ₂ C	PhCOCI	Pd(PPh ₃) ₄ , THF, 25°, 64 h	Ph (56) EtO ₂ C N	631
-}-N BNO	MeCOCI	Pd(PPh ₃) ₄ , THF, 25°, 64 h	O N-N (85) BRO	645
	RCOCI	Pd(PPh ₃) ₄ , THF, 20°, 2 h	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	645 ⁴
С ₁₁ О 25 рр	RCOCI	Pd(PPh ₃) ₄ , HMPA, C_6H_6 , 40°, 2 h	$\begin{array}{c} 0 \\ R \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	138
and the second sec	n-BuCOCI	Pd <u>2</u> (dba)3, (<i>o</i> -Tol)3P, dioxane, 0 to 25°, 12 h	Bu-n (43). 60% ee anti:syn = 92:8	631 ^d
NPr2-i	RCOCI	Pd[P(Tol-0) ₃] ₄ , dioxane, 25°	$i - \Pr_2 N$ R	601
	Ph 4-MeC ₆ H ₄ 4-MeOC ₆ H ₄ 2-MeOC ₆ H ₄	15 h 13.5 h 1 h 19 h	(89) (70) (55) (30)	
	RCOCI	Pd(PPh ₃) ₄ , Et ₂ O, 0 to 25°, 4 h	$ \begin{array}{c} O \\ R \\ Ph \\ O \\ O \\ O \end{array} $ $ \begin{array}{c} R \\ Ph \\ C \\ C$	657°
		Pd(PPh3)4, Et2O, 0 to 25°	Et (83)	657 ^c
NEt ₂	RCOCI	Pd(PPh3)4, Et2O, THF, 0 to 70°, 16 h	$\begin{array}{c} Et_2 N \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	657 ^r

${\tt TABLE~XX.~PALLADIUM-CATALYZED~ACYLATION~OF~FUNCTIONALIZED~ZINC~REAGENTS~(Continued)^a}$

FG-RZnX (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	<u> </u>	<u></u>	Et ₂ N O	
	,cı	Pd(PPh_), Et.O	(57)	657¢
` 12	\sim	THF, 0 to 70°		037
Q			o o	
ja ^s Ph	EtCOCI	$Pd(PPh_3)_4$, HMPA,	Ph (85)	138
\land		$C_6H_6, 40^\circ, 2 h$	\sim	
OMe			Meg	
-se	n-BuCOCl	Pd ₂ (dba) ₃ , (o-Tol) ₃ P,	(58), 81% ee	40 ^d
		dioxane, 0 to 25°, 12 h	$\bigcup_{n \in \mathbb{N}} Bu-n anti:syn = 99:1$	
-13 ,			O II B	
s ^{it}	RCOCI	$Pd(PPh_3)_4, Et_2O,$	R Ph (95)	6579
i-Pr ₂ NCO		THF, 0 to 25°, 12 h	$\bigcirc \qquad \qquad$	
	COCI			
		$Pd(PPh_3)_4$, Et_2O ,	Et (76)	6579
	Eť `	0 to 25°	CONPr-i2	
	E(COC)	Pd(PPha)4. HMPA.	$\sim \frac{0}{10}$ $\sim \sim \sim 2$ Ph (91)	138
$\zeta \sim \sim \gamma_{\rm Ph}$		C_6H_6 , 40°, 2 h	\checkmark \checkmark \checkmark \checkmark \checkmark	
-14 Bu-n			Bu-n	
ZZ OTHP	MeCOCI	$Pd(PPh_3)_4$	THPO (64)	280
THPOBu-n	MeCOCI	Pd(PPh ₃) ₄ , THF, 25°, 16 h	THPO Bu-n (64)	566
			0	
NHBoc	RCOC)	Pd(PPh ₃) ₄ , DMAC.	O CO ₂ Bn	
CO ₂ Bn	R	C ₆ H ₆ ,	R ² NHBoc	08
	Me	25°, 0.5 h	(80)	98
	EtO	30°, 1 h	(10)	95
	AcOCH ₂	25°, 0.5 h	(64)	98
	EtO ₂ C	20°, 2 h	(34)	95
	COCI	$Pd(PPh_3)_2Cl_2$		658
	<u></u>		O CO ₂ Bn	
	COCI	Pd(PPh ₃) ₂ Cl ₂ , THF, 50°, 2 h	(83) NHBoc	98
		D4/DDk \ TTUE	$O CO_2Bn$	05
	I-rt U2UU	rg(rrn ₃)4, 1HF, 50°, 2 h	i-Pr 0 NHBoc (10)	75
	RCOC!	Pd(PPh_3)2Cl2, DMAC,	O CO ₂ Bn	
	<u>R</u>	C ₆ H ₆ , 25°	R	
	2-C ₄ H ₃ O	0.5 h	(90)	98
	i-Bu	0.5 h	(76)	98
	r-BuCH ₂	0.5 h	(04)	90 98
	Dh		1101	20
	Ph	1.5 1	(45)	95
	Ph PhO Bu	1h 0.5h	(45)	95 98
	Ph PhO Bn 4 MaOC 11	1 h 0.5 h 0.5 b	(45) (41) (43)	95 98 98
	Ph PhO Bn 4-MeOC ₆ H ₄ PhCH=CH	1 h 0.5 h 0.5 h	(45) (41) (43) (72)	95 98 98 98

TABLE XX. PALLADIUM-CATALYZED ACYLATION OF FUNCTIONALIZED ZINC REAGENTS (Continued)^a

TABLE XX. PALLADIUM-CATALYZED ACYLATION OF FUNCTIONALIZED ZINC REAGENTS (Continued)4

^a Unless otherwise indicated, the organozinc reagents were prepared by insertion of zinc metal into an organic halide.

^b The organozinc reagent was prepared by ultrasonic irradiation of an ether solution of (ethoxycyclopropyloxy)trimethylsilane and zinc chloride.

^c The organozinc reagent was prepared by halide-zinc exchange.

 d The organozinc reagent was prepared by a transmetallation reaction.

 $\ensuremath{^e}$ The organozinc reagent was prepared by an electrochemical reaction.

(FG-R) ₂ Zn	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
<u>(ro-k)</u>		A. Reactions of Organozincs	OH	
ترکی Cl	OHC Br	122 ^b (8 mol%), PhMe, Ti(OBu-t) ₄ , 0°, 6 h	СІ Рг- <i>п</i> (68) 95% ее Br	164
	OHC R	122 ⁶ (8 mol%), PhMe, Ti(OPr-i) ₄		
	TMS	–55°. 3 h	(59) 70	522
	CH2OTIPS	-78 to -15°, 6 h	(76) 96	524
	$Sn(Bu-n)_3$	-60°. 2 h	(69) 95	517
	Ph	-45 to -20° . 16 h	(71) 80	565
	Pr-n	-45 to -25°, 16 h	(71) 80	659
	EtCHO	122 ^b (8 mol%), PhMe, Ti(OPr-i) ₄ , -20°	OH CI CI CI CI CI CI CI CI CI CI CI CI CI	660
	PhCHO	122 ^b (8 mol%), PhMe, Ti(OPr- <i>i</i>) ₄ ,60 to -20°, 2 h	Cl Ph (95) 93% ee	64
	OHC	122 ^b (8 mol%), PhMe, Ti(OPr- <i>i</i>) ₄ , -60 to -20°, 2 h	CI (95) 97% et	•
	OTBDPS OHC	122^b (8 mol%), PhMe, Ti(OPr- <i>i</i>) ₄ , -75 to -20°, 6 h	$Cl \qquad (68) \\ OTBDPS \qquad dr = 97;$	369, 51 3

	$(FG-R)_2Zn$	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
-	(10-K)			<u></u>	-
			1776 (8 mall/L) DhMa		
		Onc R	THODE (8 mor%), Prime,		
		R	II(OPT-1) ₄	Yld % ee	
		OTIPS	–20°, 12 h	(70) 85	532
		CH ₂ SiMe ₂ Ph	–20°, 12 h	(70) 96	526
		$CH_2Sn(Bu-n)_3$	–35°, 16 h	(79) 95	517
		(CH ₂) ₂ OTIPS	0°, 6 h	(58) 96	524
			····		
5.	~ ~		122^{o} (8 mol%), PhMe,	OH	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	⊾ ∽ `OAc	PhCHO	$Ti(OPr-i)_4$ , -60 to -20°,	AcOPh (75) 86% ee	64
			2 h	-	
5.	$\sim \sim \sim$		,	OH ,	
<i>.</i> ``	→ → `Br	n-C ₉ H ₁₉ CHO	$122^{b}$ (8 mol%), Et ₂ O,	Br (69) 92% ee	515
			Ti(OPr-i) ₄ , -20°, 10 h	C9xx19-77	
				ŎН	
`	$\sim \sim$		121a ^c (10 mol%), Et ₂ O,		
	Ϋ́́	PhCHO	$Ti(OPr-i)_4$ , -78 to -30°,	$\int \int Ph$ (10) 84% ee	512 ^d
	0		20 h	$\checkmark$ ⁰	
			1990 (9 malo/) DLL (-	OH	
×-		DECHO	Ti(OD-i) 40 - 200	<b>FIG.C</b> . 1 (75) 50/7	64
· S,	+ CO2EI	PICHO	$\Pi(OPT-1)_4$ , -60 to -20 ,	Ph (73) 60% ee	04
			2 h	011	
رمې مر			122 ^b (8 mol%) PhMe		
	01	OUC OTIPS	T:(OD= i) 79 to 15°	011PS (60) 97% an	524
		OHC	$\Pi(OPF-1)_4, -18$ to $-15^\circ$ ,	(60) 87% 66	324
	,		6 h	OAc	
		OTBDPS		ŎН	
			122 ^b (8 mol%) PhMe	OAc (69)	524
		OHC V	$\frac{122}{122} \left( \frac{3}{101} \frac{10}{0} \right), \frac{1}{100} \frac{15}{0}$		-6
		AcO	$\Pi(OPT-1)_4$ , $-75$ to $-15^\circ$ ,	OTBDPS dr = 94.	.0
			on		
			122 ^b (8 mol%), PhMe,	ОН	
		PhCHO	$Ti(OPT-i)_{4} = -60 \text{ to } -20^{\circ}$ .	(72) 92% ee	64
			2 h	$AcO' \lor \lor Ph$	
			- 11	ОН	
			$122^{b}$ (8 mol%) PhMe		
			Ti(OPr-i)	$AcO' \sim \sim R$	
		ĸ	11(011-7)4	Yld %ee	
		OTIPS		(80) 05	
		1 / I II · ·	-20°, 12 h	(89) 85	532
		OTROPS	-20°, 12 h	(89) 85	532 532
		OTBDPS	-20°, 12 h -20°, 12 h	(89) 85 (62) 86 (62) 00	532 532 526 ⁴
		OTBDPS CH ₂ OTIPS	-20°, 12 h -20°, 12 h -20°, 12 h	(89) 85 (62) 86 (62) 99 (20) 02	532 532 526 ^d
		OTBDPS CH ₂ OTIPS CH ₂ Sn(Bu-n) ₃	-20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h	(89)         85           (62)         86           (62)         99           (85)         93	532 532 526 ^d 517
		OTHIS OTHIS CH ₂ OTIPS CH ₂ Sn(Bu-n) ₃ (CH ₂ ) ₂ OTIPS	-20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -78 to -15°, 6 h	(89)       85         (62)       86         (62)       99         (85)       93         (65)       89	532 532 526 ⁴ 517 524
		OTBDPS CH ₂ OTIPS CH ₂ Sn(Bu-n) ₃ (CH ₂ ) ₂ OTIPS	-20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -78 to -15°, 6 h	(89) 85 (62) 86 (62) 99 (85) 93 (65) 89 OH	532 532 526 ^d 517 524
5) -	∧ ∧ ∧ . ^{Br}	OTBDPS CH ₂ OTIPS CH ₂ Sn(Bu-n) ₃ (CH ₂ ) ₂ OTIPS RCHO	-20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -78 to -15°, 6 h <b>122</b> ^b (8 mol%), PhMe,	(69) 85 (62) 86 (62) 99 (85) 93 (65) 89 OH	532 532 526 ⁴ 517 524
وريكور	Br	OTBDPS CH ₂ OTIPS CH ₂ Sn(Bu-n) ₃ (CH ₂ ) ₂ OTIPS RCHO	-20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -78 to -15°, 6 h <b>122</b> ^b (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -20°, 12 h	(89) 85 (62) 86 (62) 99 (85) 93 (65) 89 OH	532 532 526 ⁴ 517 524
ۍ برې	Br	CH ₂ OTIPS CH ₂ OTIPS CH ₂ Sn(Bu-n) ₃ (CH ₂ ) ₂ OTIPS RCHO	-20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -78 to $-15^\circ$ , 6 h <b>122</b> ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h	(62) 86 (62) 99 (85) 93 (65) 89 OH Br Yld %ee	532 532 526 ⁴ 517 524
ۍ بې	Br	$\frac{OTBJ}{OTBDPS}$ $CH_2OTIPS$ $CH_2Sn(Bu-n)_3$ $(CH_2)_2OTIPS$ $RCHO$ $\frac{R}{n-C_5H_{11}}$	-20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -78 to -15°, 6 h <b>122</b> ^b (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -20°, 12 h	$(62) 86 (62) 99 (85) 93 (65) 89 OH Br \frac{Yld}{(77)} \frac{\%ee}{90}$	532 532 526 ^{<i>d</i>} 517 524
م بربر م	Br	$\frac{OTBDPS}{OTBDPS}$ $CH_2OTIPS$ $CH_2Sn(Bu-n)_3$ $(CH_2)_2OTIPS$ $RCHO$ $\frac{R}{n-C_5H_{11}}$ $n-C_6H_{13}$	-20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -78 to -15°, 6 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h	$(69) 85 (62) 86 (62) 99 (85) 93 (65) 89 OH Br \\ H \\ \hline Yld \\ (77) 90 (70) 90 \\ (70) 90 \\ \hline H \\ \hline H \\ R \\ H \\ $	532 532 526 ^{<i>d</i>} 517 524 515 242 ^{<i>d</i>}
مربر مربر	Br	$\frac{OTBDPS}{OTBDPS}$ $CH_2OTIPS$ $CH_2Sn(Bu-n)_3$ $(CH_2)_2OTIPS$ RCHO $\frac{R}{n-C_5H_{11}}$ $n-C_6H_{13}$ $C_6H_{11}$	-20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -78 to -15°, 6 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h	$(69) 85 (62) 86 (62) 99 (85) 93 (65) 89 OH$ $Br \xrightarrow{Vld \ \%ee}_{(77) 90} R$ $(77) 90 (11) 60$	532 532 526 ^{<i>d</i>} 517 524 515 242 ^{<i>d</i>} 242 ^{<i>d</i>}
كركركم	Br	$\frac{OTBOPS}{OTBOPS}$ $CH_{2}Sn(Bu-n)_{3}$ $(CH_{2})_{2}OTIPS$ RCHO $\frac{R}{n-C_{5}H_{11}}$ $n-C_{6}H_{13}$ $C_{6}H_{11}$ $4-NCC_{6}H_{4}$	-20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -78 to $-15^\circ$ , 6 h 122 ^b (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -20°, 12 h	$(89) 85  (62) 86  (62) 99  (85) 93  (65) 89  OH  Br  \frac{Yld \%ee}{(77) 90} R(70) 90(11) 60(85) 88$	532 532 526 ^{<i>d</i>} 517 524 515 242 ^{<i>d</i>} 242 ^{<i>d</i>} 242 ^{<i>d</i>}
۶۰ ۲۰۰۶	Br	$\frac{OTBDPS}{OTBDPS}$ $CH_2OTIPS$ $CH_2Sn(Bu-n)_3$ $(CH_2)_2OTIPS$ $RCHO$ $\frac{R}{n-C_5H_{11}}$ $n-C_6H_{13}$ $C_6H_{11}$ $4-NCC_6H_4$	-20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -78 to -15°, 6 h <b>122^b</b> (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -20°, 12 h	$(89) 85  (62) 86  (62) 99  (85) 93  (65) 89  OH  Br  \frac{Y1d}{(77)} 90  (70) 90  (11) 60  (85) 88  EXAMPLE 10  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 89  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  (85) 88  ($	532 532 526 ^{<i>d</i>} 517 524 515 242 ^{<i>d</i>} 242 ^{<i>d</i>} 242 ^{<i>d</i>}
ۍ مې	Br	$\frac{OTBDPS}{OTBDPS}$ $CH_2OTIPS$ $CH_2Sn(Bu-n)_3$ $(CH_2)_2OTIPS$ RCHO $\frac{R}{n-C_5H_{11}}$ $n-C_6H_{13}$ $C_6H_{11}$ $4-NCC_6H_4$	-20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -78 to $-15^\circ$ , 6 h 122 ^b (8 mol%), PhMe, Ti(OPr-i) ₄ , -20°, 12 h	(89) 85 (62) 86 (62) 99 (85) 93 (65) 89 (65) 89 (65) 89 (77) 90 (70) 90 (70) 90 (11) 60 (85) 88 (65) 88 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65) 60 (65)	532 532 526 ^{<i>d</i>} 517 524 515 242 ^{<i>d</i>} 242 ^{<i>d</i>} 242 ^{<i>d</i>}
	Br	$\frac{OTBOPS}{OTBOPS}$ $CH_2OTIPS$ $CH_2Sn(Bu-n)_3$ $(CH_2)_2OTIPS$ RCHO $\frac{R}{n-C_5H_{11}}$ $n-C_6H_{13}$ $C_6H_{11}$ $4-NCC_6H_4$	$-20^{\circ}$ , 12 h $-20^{\circ}$ , 12 h $-20^{\circ}$ , 12 h $-20^{\circ}$ , 12 h $-78 \text{ to } -15^{\circ}$ , 6 h 122 ^b (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -20^{\circ}, 12 h	(89) 85 (62) 86 (62) 99 (85) 93 (65) 89 (65) 89 (65) 89 (77) 90 (70) 90 (11) 60 (85) 88 (65) 88 (77) 90 (70) 90 (11) 60 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70) 90 (70)	532 532 526 ^{<i>d</i>} 517 524 515 242 ^{<i>d</i>} 242 ^{<i>d</i>} 242 ^{<i>d</i>} 242 ^{<i>d</i>}
ېمې دې مې د کې	Br Cl	$\frac{\text{OTBDPS}}{\text{CH}_2\text{OTIPS}}$ $\frac{\text{CH}_2\text{Sn}(\text{Bu-}n)_3}{(\text{CH}_2)_2\text{OTIPS}}$ $\frac{\text{R}}{n \cdot \text{C}_5\text{H}_{11}}$ $n \cdot \text{C}_6\text{H}_{13}$ $\frac{\text{C}_6\text{H}_{11}}{4 \cdot \text{NCC}_6\text{H}_4}$ $\frac{\text{CHO}}{\text{CHO}}$	$-20^{\circ}, 12 h$ $-20^{\circ}, 12 h$ $-20^{\circ}, 12 h$ $-20^{\circ}, 12 h$ $-78 \text{ to } -15^{\circ}, 6 h$ $122^{b}$ (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -20°, 12 h $122^{0}$ (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -20°, 12 h	(89) 85 (62) 86 (62) 99 (85) 93 (65) 89 (65) 89 (65) 89 (77) 90 (70) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 80 (71) 90 (11) 60 (85) 80 (71) 90 (11) 60 (85) 80 (71) 90 (11) 60 (85) 80 (71) 90 (11) 60 (85) 80 (71) 90 (11) 60 (85) 80 (71) 90 (11) 60 (85) 80 (71) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11) 90 (11)	532 532 526 ^{<i>d</i>} 517 524 515 242 ^{<i>d</i>} 242 ^{<i>d</i>} 242 ^{<i>d</i>} 242 ^{<i>d</i>}
مېرمې مرب	Br	$\frac{OTBDPS}{CH_2OTIPS}$ $CH_2Sn(Bu-n)_3$ $(CH_2)_2OTIPS$ RCHO $\frac{R}{n-C_5H_{11}}$ $n-C_6H_{13}$ $C_6H_{11}$ $4-NCC_6H_4$ TIPSO CHO	-20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -78 to -15°, 6 h <b>122^b</b> (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -20°, 12 h <b>122^b</b> (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -20°, 12 h	(89) 85 (62) 86 (62) 99 (85) 93 (65) 89 (65) 89 (65) 89 (65) 89 (65) 89 (77) 90 (70) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) 88 (71) 90 (11) 60 (85) (85) (85) (85) (85) (85) (85) (85)	532 532 526 ^{<i>d</i>} 517 524 515 242 ^{<i>d</i>} 242 ^{<i>d</i>} 242 ^{<i>d</i>} 242 ^{<i>d</i>}
مري مريد	Br Cl	$\frac{OTBJPS}{CH_2OTIPS}$ $CH_2Sn(Bu-n)_3$ $(CH_2)_2OTIPS$ RCHO $\frac{R}{n-C_5H_{11}}$ $n-C_6H_{13}$ $C_6H_{11}$ $4-NCC_6H_4$ TIPSO CHO	-20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -78 to -15°, 6 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h	(89) 85 (62) 86 (62) 99 (85) 93 (65) 89 OH Br $\frac{Yld}{(77)}$ 90 (70) 90 (11) 60 (85) 88 OH (59) 66% ee OH (59) 66% ee	532 532 526 ^{<i>d</i>} 517 524 515 242 ^{<i>d</i>} 242 ^{<i>d</i>} 242 ^{<i>d</i>} 242 ^{<i>d</i>}
ىرىر مىرىر مەربىر		OTBDPS CH ₂ OTIPS CH ₂ Sn(Bu-n) ₃ (CH ₂ ) ₂ OTIPS RCHO $\frac{R}{n-C_5H_{11}}$ $n-C_6H_{13}$ $C_6H_{11}$ $4-NCC_6H_4$ TIPSO CHO PhCHO	-20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -78 to -15°, 6 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h	(89) 85 (62) 86 (62) 99 (85) 93 (65) 89 (65) 89 (65) 89 (65) 89 (77) 90 (70) 90 (11) 60 (85) 88 (65) 88 (65) 88 (65) 88 (65) (70) 90 (11) 60 (85) 88 (70) (70) 90 (11) 60 (85) 88 (70) (70) 90 (11) 60 (85) 88 (70) (70) 90 (11) 60 (85) 88 (70) (70) 90 (11) 60 (85) 88 (70) (70) 90 (11) 60 (85) 88 (70) (70) 90 (11) 60 (85) 88 (70) (70) 90 (11) 60 (85) 88 (70) (70) 90 (11) 60 (85) 88 (70) (70) 90 (11) 60 (85) (85) (85) (85) (85) (85) (85) (85)	532 532 526 ^{<i>d</i>} 517 524 515 242 ^{<i>d</i>} 242 ^{<i>d</i>} 242 ^{<i>d</i>} 242 ^{<i>d</i>} 526 ^{<i>d</i>} 515, 242 ^{<i>d</i>}
کمې کمې	Br Cl	OTBDPS $CH_2OTIPS$ $CH_2Sn(Bu-n)_3$ $(CH_2)_2OTIPS$ RCHO $\frac{R}{n-C_5H_{11}}$ $n-C_6H_{13}$ $C_6H_{11}$ $4-NCC_6H_4$ TIPSO CHO PhCHO	-20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -78 to -15°, 6 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 5 h	(89) 85 (62) 86 (62) 99 (85) 93 (65) 89 OH Br Yld %ee (77) 90 (70) 90 (11) 60 (85) 88 OH (S5) 88 OH (S5) 66% ee (S5) 659) 66% ee (S5) 659) 66% ee	532 532 526 ^{<i>d</i>} 517 524 515 242 ^{<i>d</i>} 242 ^{<i>d</i>} 242 ^{<i>d</i>} 242 ^{<i>d</i>} 526 ^{<i>d</i>} 515, 242 ^{<i>d</i>}
ىرىرى مىرىرى	Br Cl	OTBDPS $CH_2OTIPS$ $CH_2Sn(Bu-n)_3$ $(CH_2)_2OTIPS$ RCHO $\frac{R}{n-C_5H_{11}}$ $n-C_6H_{13}$ $C_6H_{11}$ $4-NCC_6H_4$ TIPSO CHO PhCHO	-20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -78 to -15°, 6 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 5 h	(89) 85 (62) 86 (62) 99 (85) 93 (65) 89 OH $\frac{Yld  \% ee}{(77)  90}$ (70) 90 (11) 60 (85) 88 OH (85) 88 OH (59) 66% ee I	532 532 526 ^{<i>d</i>} 517 524 515 242 ^{<i>d</i>} 242 ^{<i>d</i>} 242 ^{<i>d</i>} 242 ^{<i>d</i>} 526 ^{<i>d</i>} 515, 242 ^{<i>a</i>}
ىرىچى مېخى	Br Cl	OTBOPS $CH_2OTIPS$ $CH_2Sn(Bu-n)_3$ $(CH_2)_2OTIPS$ RCHO $\frac{R}{n-C_5H_{11}}$ $n-C_6H_{13}$ $C_6H_{11}$ $4-NCC_6H_4$ TIPSO CHO PhCHO i-BuCHO	-20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -20°, 12 h -78 to -15°, 6 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 5 h 122 ^b (8 mol%), PhMe	(89) 85 (62) 86 (62) 99 (85) 93 (65) 89 OH $\frac{Y1d}{(77)} \frac{\% ee}{90}$ (70) 90 (11) 60 (85) 88 OH (85) 88 OH (59) 66% ee (58) 86% ee OH (58) 86% ee (32) 73% ee	532 532 526 ^{<i>d</i>} 517 524 515 242 ^{<i>d</i>} 242 ^{<i>d</i>} 242 ^{<i>d</i>} 526 ^{<i>d</i>} 515, 242 ^{<i>a</i>}
(FG-R) ₂ Zn	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.	
----------------------------	-------------------------------------------------	---------------------------------------------------------------------	-----------------------------------------------------------------------	------------------	
(FG-R)	· · · · · · · · · · · · · · · · · · ·				
	OHC A	122 ^b (8 mol%), PhMe,	ОН		
; ^{z^z}	one	$Ti(OPr-i)_4$ , -60 to -20°.	Ac0 (77) 80% ee	164	
	Br	10 h	Pr-		
		1330 (9 mal (2) Dh Ma	BI		
	OHC.	$T_{22}^{2}$ (8 mor $\pi$ ), Findle,	Qn (05) 04(7 an	164	
	F PT-n	$\Pi(OPT-1)_4$ , -60 to -20°,	Aco. Pr-n (93) 94% ee	104	
	Вг	10 h	Br		
	I.	1990 (9 mal (2) Dh Ma	OH .		
	онс	$T_{22}^{2}$ (8 mor $\pi$ ), 1 more:		164	
		10 FT-1)4, -60 10 -20°.	Aco. (68) 68% ee	104	
	Br	10 n	Br		
			ОН		
	OHC.	122 [°] (8 mol%), PhMe,	$\frac{R}{R}$ Yid $\frac{\% ee}{R}$		
	R	$Ti(OPr-i)_4$ , -60 to -20°,	CAA	64	
	Ι	10 h	$OAC$ $CO_2Et$ (78) 80	164	
		122 ^b (8 mol%), PhMe,	ОН		
	RCHO	$Ti(OPr-i)_{4}$ , -60 to -20°.	AcQ.		
	Nello	2 h	$\sim$		
	<u>R</u>	- "	Yld %cc		
	$C_{6}H_{11}$		(83) 97	64	
	<i>n</i> -C ₅ H ₁₁		(62) 97	64	
	Ph		(79) 93	64, 660	
			ОН		
	OHC	122 ^b (8 mol%), PhMe,	AcO		
	∽ R	Ti(OPr-i)4	°°°° k		
	R		Yld %ee		
	SiEt ₃	–30°, 12 h	(61) 93	522	
	$Sn(Bu-n)_{\beta}$	–35°, 16 h	(75) 91	517	
	Pr-n	−60 to −20°, 10 h	(75) 83	164	
	OHCR R	122 ^b (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄	Aco. $R$ <u>Yld %ee</u> (70) 96	526	
	SiMe ₂ Ph	-20°, 12 h	(70) 98	520	
	OTIPS	-20°, 12 h	(71) 91	517	
	$\operatorname{Sn}(\operatorname{Bu}_{-n})_{3}$	-35°, 16 h	(81) 92	517	
			ŎН		
		122 ^b (8 mol%), PhMe,	BH3		
	OHC BH3	$Ti(OPr-i)_4$ , -35 to -20°,	P (56) 94% ee	661 ^d	
	Ph ₂	14 h	UAC Ing		
	- 2		он		
OPiv	OHC	122 ^b (8 mol%), PhMe,	Pivo		
	P-	Ti(OPr-i)4	Br		
	Br <u>R</u>		<u>Yld %ee</u>		
	Me	-30°	(63) 95	164, 6	
	Pr-n	-60 to -20°, 10 h	(68) 95	662	
	Ph	-30°	(73) 90	662	
			ОН		
	RCHO	$122^{b}$ (8 mol%) PhMe.	PivO.		
	inchio.	Ti(OPr- <i>i</i> )	$\sim \sim R$		
	R		<u>Yld</u> %ee		
	Et	-20°	(81) 96	660 ^a	
	$C_6H_{11}$	–20°, 12 h	(22) 78	242 ^d	
	Ph	-60 to -20°, 2 h	(90) 93	515, 6	
			OH		
		100 (0			
	OHC R	122° (8 mol%), PhMe,			
	<u>R</u>	11(OPr-1) ₄ , -20°, 12 h	Yld %ee		
	OTBDPS		(47) 92	532	
			(74) 00	532	
	OTIPS		(74) 90	552	

(FG-P)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
(FO-K)				
	OHC	133k (9 mal@) DhMa	OH	
	R	Trioph	PIVO	
	P	n(OK')4		
	<u></u>	<u>R'</u>	Yid %ee	
	Me	$Pr-i = -45 \text{ to } -20^\circ, 16 \text{ h}$	(74) 92	565 ^a
	Pr-n	Bu- $t = 0^\circ$ , 12 h	(49) 93	516
	Ph	Pr- <i>i</i> -45 to -20°, 16 h	(91) 90	565 ^d
	SiMe ₃	Pr- <i>i</i> $-55$ to $-5^{\circ}$ , 12 h	(62) 90	522
	SiEt ₃	Pr- <i>i</i> -5°, 12 h	(71) 90	522
	Sn(Bu-n) ₃	Bu- $t = -60^{\circ}$ , 2 h	(67) 90	517
			014	
		$122^{b}$ (8 mol@) PhMo	On	
	OHC OTTRS		OTIPS	
	OTIFS	$\Pi(OPT-i)_4$ , $-75$ to $-20^\circ$ ,	(63) 97% ee	524
		6 h		
			ŎН	
		122 ^b (8 mol%), PhMe,	OTIPS	
	OHCOTIPS	$Ti(OPr-i)_4$ , -75 to -20°,	(62) 96% ee	524
	~ ~	6h	OPiv	02.
			011	
	<b>OTBDPS</b>		OH	
	$\sim$	122 ^b (8 mol%), PhMe,	OPiv	
	OHC >	$Ti(OPr-i)_4$ , -75 to -15°.	PivO (73) dr >97:3	524
	PivO	12 b	TEDESO	521
			IBDF30	
			ОН	
		a tack of the Dist	ÍÍ	
		ent-122" (8 mol%), PhMe,	Pivo	
		$Ti(OPr-i)_4$ , -75 to -15°,	(64) dr >97:3	524
		12 h	TBDPSO	
	OTBDPS		, OH	
	. 1	122 ^b (8 mol%). PhMe.	OPin	
	OHC	$Ti(OPt-i) = -75 to = 15^{\circ}$	PivO (61) dt = 96/4	574
	PivO_	12.6	(01) d1 = 90.4	524
	~	1211	TBDPSO ~	
		122 ^b (15 mol%), PhMe.	ОН	
	OHC	Ti(OPr-i), $Ti(OBu-t)$ ,	PivO	
				667
		25 10 250		662
	<u>R</u>	-35 to -25°	Yid %ee R	662
	<u>R</u> Bu- <i>n</i>	-35 to -25°	<u>Yld %ee</u> (83) 90	662
	<u>R</u> Bu- <i>n</i> Ph	-35 to -25°	<u>Yid %ee</u> (83) 90 (85) 88	662
	R Bu- <i>n</i> Ph TIPS	-35 to -25°	$\frac{\text{Yid}}{(83)}  \begin{array}{c} \% ee \\ 90 \\ (85) \\ 88 \\ (71) \\ 92 \end{array}$	662
	R Bu-n Ph TIPS	-35 to -25°	<u>Yid %ee</u> (83) 90 (85) 88 (71) 92 (76) 04	662
	R Bu-n Ph TIPS CH2OTBDPS	-35 to -25°	<u>Yid %ee</u> (83) 90 (85) 88 (71) 92 (76) 94	662
	R Bu-n Ph TIPS CH2OTBDPS	-35 to -25°	Y <u>Id %ee</u> (83) 90 (85) 88 (71) 92 (76) 94 OH	662
	$\frac{R}{Bu \cdot n}$ Ph TIPS CH ₂ OTBDPS	-35 to -25° <b>122</b> ^b (8 mol%). PhMe	$\frac{Y_{1d}}{(83)} = \frac{90}{90}$ (85) 88 (71) 92 (76) 94 OH PivQ = 0 OTIPS (71)	662
	R Bu-n Ph TIPS CH ₂ OTBDPS OHC OTIPS	$-35 \text{ to } -25^{\circ}$ <b>122^b</b> (8 mol%), PhMe, Ti(OPr.), -40 to -25°	YId         %ee         R           (83)         90         (85)         88           (71)         92         (76)         94	662 369, 598
	R Bu-n Ph TIPS CH ₂ OTBDPS OHC OTIPS	$-35 \text{ to } -25^{\circ}$ <b>122</b> ^b (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -40 to -25^{\circ}	$\frac{Y_{Id}}{(83)} = \frac{90}{90}$ (85) 88 (71) 92 (76) 94 OTIPS (71) syn:anti > 9	662 369, 598 3:2
	R Bu-n Ph TIPS CH ₂ OTBDPS OHC OTIPS	$-35 \text{ to } -25^{\circ}$ <b>122</b> ^b (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -40 to -25^{\circ}	YId     %ee     R       (83)     90       (85)     88       (71)     92       (76)     94       OH       PivO       TIPSO	662 369, 598 8:2
	R Bu-n Ph TIPS CH ₂ OTBDPS OHC OTIPS	$-35 \text{ to } -25^{\circ}$ <b>122</b> ^b (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -40 to -25^{\circ}	<u>YId %ee</u> R (83) 90 (85) 88 (71) 92 (76) 94 ОН PivO OH TIPSO OH	662 369, 598 3:2
	R Bu-n Ph TIPS CH2OTBDPS OHC OTIPS	-35 to -25° <b>122</b> ^b (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -40 to -25° <i>ent</i> - <b>122</b> ^b (8 mol%), PhMe.	$\frac{\text{YId}}{(83)} = \frac{\% ee}{90} \text{ R}$ (83) 90 (85) 88 (71) 92 (76) 94 OH PivO OH PivO OH PivO OH PivO OH PivO (71) syn:anti > 9	662 369, 598 3:2 369, 598
	R Bu-n Ph TIPS CH2OTBDPS OHC OHC OHC OHC	$-35$ to $-25^{\circ}$ <b>122</b> ^b (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -40 to $-25^{\circ}$ <i>ent</i> - <b>122</b> ^b (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -40 to $-25^{\circ}$	YId         %ee         R           (83)         90         (85)         88           (71)         92         (76)         94           OH         OTIPS         (71)         syn:anti > 9           TIPSO         OH         Fivo         (61)           Syn:anti > 9         (61)         Syn:anti > 2	662 369, 598 3:2 369, 598 98
	R Bu-n Ph TIPS CH2OTBDPS OHC OTIPS OHC OHC OTIPS	$-35 \text{ to } -25^{\circ}$ $122^{b}$ (8 mol%), PhMe, $\text{Ti}(\text{OPr-}i)_{4}$ , -40 to $-25^{\circ}$ <i>ent</i> -122 ^b (8 mol%), PhMe, $\text{Ti}(\text{OPr-}i)_{4}$ , -40 to $-25^{\circ}$	$\frac{\text{YId}}{(83)} = \frac{\% ee}{90} \text{ R}$ (83) 90 (85) 88 (71) 92 (76) 94 OH PivO OH PivO OH PivO OH PivO OH Syn:anti > 9 TIPSO OH TIPSO	662 369, 598 3:2 369, 598 98
	R Bu-n Ph TIPS CH2OTBDPS OHC OTIPS OHC OHC OTIPS	$-35 \text{ to } -25^{\circ}$ $122^{b}$ (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -40 to -25^{\circ} <i>ent</i> -122^{b} (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -40 to -25^{\circ}	$\frac{\text{YId}}{(83)} = \frac{\% ee}{90} \text{ R}$ (83) 90 (85) 88 (71) 92 (76) 94 OH PivO OH PivO OH PivO OH FivO	662 369, 598 8:2 369, 598 98
	R Bu-n Ph TIPS CH2OTBDPS OHC OTIPS OHC OHC OTIPS	$-35 \text{ to } -25^{\circ}$ $122^{b}$ (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -40 to -25^{\circ} <i>ent</i> -122^{b} (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -40 to -25^{\circ}	$\frac{Y_{\text{Id}}}{(83)} = \frac{9}{90}$ (85) 88 (71) 92 (76) 94 $\frac{OH}{PivO} = \frac{OH}{syn:anti > 9}$ $\frac{OH}{TIPSO} = \frac{OH}{syn:anti > 2}$ $OH$	662 369, 598 3:2 369, 598 98
	$\frac{R}{Bu \cdot n}$ $Ph$ $TIPS$ $CH_2OTBDPS$ $OHC \longrightarrow OTIPS$ $OHC \longrightarrow OTIPS$ $OHC \longrightarrow OTIPS$ $OHC \longrightarrow Boc$	$-35 \text{ to } -25^{\circ}$ $122^{b}$ (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -40 to -25^{\circ} <i>ent</i> -122^{b} (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -40 to -25^{\circ} $122^{b}$ (8 mol%), Et ₂ O,	$\frac{\text{YId}}{(83)} = \frac{90}{90}$ (85) 88 (71) 92 (76) 94 OTIPS (71) syn:anti > 9 TIPSO OH PivO OH PivO OH PivO OH PivO OH PivO OH PivO OH OH Syn:anti > 2 TIPSO	662 369, 598 3:2 369, 598 98 663 ^d
	$\frac{R}{Bu \cdot n}$ $Ph$ $TIPS$ $CH_2OTBDPS$ $OHC \longrightarrow OTIPS$ $OHC \longrightarrow OTIPS$ $OHC \longrightarrow N$ $Bn$	$-35 \text{ to } -25^{\circ}$ $122^{b}$ (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -40 to -25^{\circ} <i>ent</i> -122^{b} (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -40 to -25^{\circ} $122^{b}$ (8 mol%), Et ₂ O, Ti(OPr- <i>i</i> ) ₄ , -20^{\circ}	$\frac{Y_{\text{Id}}}{(83)} = \frac{90}{90}$ (85) 88 (71) 92 (76) 94 OTIPS (71) syn:anti > 9 TIPSO OH PivO OH PivO OH PivO OH PivO OH PivO OH Syn:anti > 2 TIPSO OH PivO OH PivO OH Syn:anti > 2 TIPSO	662 369, 598 3:2 369, 598 98 663 ⁴
	$\frac{R}{Bu \cdot n}$ Ph TIPS CH ₂ OTBDPS OHC OHC OHC OTIPS OHC OHC Bn	$-35 \text{ to } -25^{\circ}$ $122^{b}$ (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -40 to -25^{\circ} <i>ent</i> -122^{b} (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -40 to -25^{\circ} $122^{b}$ (8 mol%), Et ₂ O, Ti(OPr- <i>i</i> ) ₄ , -20^{\circ}	$\frac{Y_{\text{Id}}}{(83)} = \frac{90}{90}$ (85) 88 (71) 92 (76) 94 OTIPS (71) syn:anti > 9 TIPSO OH PivO OH PivO OH PivO OH PivO OH FivO OH FivO OH OH FivO OH FivO OH OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO O OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO OH FivO FirO FirO FirO FirO FirO FirO FirO Fir	662 369, 598 3:2 369, 598 98 663 ^d
	$\frac{R}{Bu \cdot n}$ $Ph$ $TIPS$ $CH_2OTBDPS$ $OHC  OTIPS$ $OTIPS$ $OHC  OTIPS$ $OTIPS$ $OTIP$	$-35 \text{ to } -25^{\circ}$ $122^{b} (8 \text{ mol}\%), \text{PhMe},$ $\text{Ti}(\text{OPr-}i)_{4}, -40 \text{ to } -25^{\circ}$ $ent-122^{b} (8 \text{ mol}\%), \text{PhMe},$ $\text{Ti}(\text{OPr-}i)_{4}, -40 \text{ to } -25^{\circ}$ $122^{b} (8 \text{ mol}\%), \text{Et}_{2}O,$ $\text{Ti}(\text{OPr-}i)_{4}, -20^{\circ}$ $122^{b} (8 \text{ mol}\%), \text{Et}_{2}O,$	$\frac{\text{YId}}{(83)} = \frac{\% ee}{90} \text{ R}$ (83) 90 (85) 88 (71) 92 (76) 94 OTIPS (71) syn:anti > 9 TIPSO OH PivO OH PivO OH PivO OH PivO OH Bn EvO (90) 95% ee Bn OH Bn EvO (61) 577	662 369, 598 3:2 369, 598 98 663 ^d
	$\frac{R}{Bu \cdot n}$ Ph TIPS CH ₂ OTBDPS OHC OHC OHC OHC OHC OHC DHC OHC M Bn OHC M Bn OHC M Bn	$-35 \text{ to } -25^{\circ}$ $122^{b} (8 \text{ mol}\%), \text{PhMe},$ $\text{Ti}(\text{OPr-}i)_{4}, -40 \text{ to } -25^{\circ}$ $ent-122^{b} (8 \text{ mol}\%), \text{PhMe},$ $\text{Ti}(\text{OPr-}i)_{4}, -40 \text{ to } -25^{\circ}$ $122^{b} (8 \text{ mol}\%), \text{Et}_{2}\text{O},$ $\text{Ti}(\text{OPr-}i)_{4}, -20^{\circ}$ $122^{b} (8 \text{ mol}\%), \text{Et}_{2}\text{O},$ $\text{Ti}(\text{OPr-}i)_{4}, -20^{\circ}$	$\frac{\text{YId}}{(83)} = \frac{\% ee}{90} \\ (85) = 88 \\ (71) = 92 \\ (76) = 94 \\ OH \\ PivO \\ OH \\ Bn \\ Bn \\ PivO \\ OH \\ Bn \\ Bn \\ Bn \\ Boc \\ (66) 79\% ec \\ Bn \\ Bn \\ PivO \\ OH \\ Bn \\ Bn \\ PivO \\ OH \\ Bn \\ PivO \\ OH \\ Bn \\ B$	662 369, 598 3:2 369, 598 98 663 ^d € 663 ^d
	$\frac{R}{Bu \cdot \pi}$ $Ph$ $TIPS$ $CH_2OTBDPS$ $OHC \longrightarrow OTIPS$ $OHC \longrightarrow OTIPS$ $OHC \longrightarrow Bn$ $OHC \longrightarrow Bn$	-35 to -25° <b>122</b> ^b (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -40 to -25° <i>ent</i> - <b>122</b> ^b (8 mol%), PhMe, Ti(OPr- <i>i</i> ) ₄ , -40 to -25° <b>122</b> ^b (8 mol%), Et ₂ O, Ti(OPr- <i>i</i> ) ₄ , -20° <b>122</b> ^b (8 mol%), Et ₂ O, Ti(OPr- <i>i</i> ) ₄ , -20°	$\frac{\text{YId}}{(83)} = \frac{\% ee}{90} \text{ R}$ $(83) = 90$ $(85) = 88$ $(71) = 92$ $(76) = 94$ $PivO \qquad OH$ $Bn$ $PivO \qquad OH$ $Bn$ $Bn$ $PivO \qquad OH$ $Bn$ $Bn$ $Bn$ $PivO \qquad OH$ $Bn$ $Bn$ $Bn$ $Bn$ $Bn$ $Bn$ $Bn$ $Bn$	662 369, 598 3:2 369, 598 98 663 ^d 663 ^d
	$\frac{R}{Bu \cdot \pi}$ Ph TIPS CH ₂ OTBDPS OHC OHC OHC OHC OHC OHC DHC OHC M Bn OHC Bn	$-35 \text{ to } -25^{\circ}$ $122^{b} (8 \text{ mol}\%), \text{PhMe},$ $\text{Ti}(\text{OPr-}i)_{4}, -40 \text{ to } -25^{\circ}$ $ent-122^{b} (8 \text{ mol}\%), \text{PhMe},$ $\text{Ti}(\text{OPr-}i)_{4}, -40 \text{ to } -25^{\circ}$ $122^{b} (8 \text{ mol}\%), \text{Et}_{2}\text{O},$ $\text{Ti}(\text{OPr-}i)_{4}, -20^{\circ}$ $121a^{c} (10 \text{ mol}\%), \text{Et}_{2}\text{O}$	$\frac{\text{YId}}{(83)} = \frac{\% ee}{90} \text{ R}$ (83) 90 (85) 88 (71) 92 (76) 94 OH PivO OH Bn PivO OH Bn PivO OH DH OH OH OH OH	662 369, 598 3:2 369, 598 98 663 ^d 663 ^d
	$\frac{R}{Bu \cdot n}$ $Ph$ $TIPS$ $CH_2OTBDPS$ $OHC \longrightarrow OTIPS$ $OHC \longrightarrow OTIPS$ $OHC \longrightarrow Bn$ $OHC \longrightarrow Bn$ $OHC \longrightarrow Bn$	$-35 \text{ to } -25^{\circ}$ $122^{b} (8 \text{ mol}\%), \text{PhMe},$ $\text{Ti}(\text{OPr-}i)_{4}, -40 \text{ to } -25^{\circ}$ $ent-122^{b} (8 \text{ mol}\%), \text{PhMe},$ $\text{Ti}(\text{OPr-}i)_{4}, -40 \text{ to } -25^{\circ}$ $122^{b} (8 \text{ mol}\%), \text{Et}_{2}\text{O},$ $\text{Ti}(\text{OPr-}i)_{4}, -20^{\circ}$ $122^{b} (8 \text{ mol}\%), \text{Et}_{2}\text{O},$ $\text{Ti}(\text{OPr-}i)_{4}, -20^{\circ}$ $121a^{c} (10 \text{ mol}\%), \text{Et}_{2}\text{O},$ $\text{Ti}(\text{OPr-}i)_{4}, -20^{\circ}$ $121a^{c} (10 \text{ mol}\%), \text{Et}_{2}\text{O},$ $\text{Ti}(\text{OPr-}i)_{4}, -20^{\circ}$	$\frac{\text{YId}}{(83)} = \frac{90}{90}$ (85) 88 (71) 92 (76) 94 OH PivO OH PivO OH PivO OH PivO OH PivO OH PivO OH PivO OH N_Boc (90) 95% ee Bn PivO OH DH PivO OH PivO OH PivO OH (66) 79% ee	662 369, 598 3:2 369, 598 98 663 ^d 663 ^d



(FG-R) ₂ Zn	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
(FG-R)			ОН	
		took of the too	Boc	ccai
	OHC	$122^{\circ}$ (8 mol%), Et ₂ O,	$\sim$ N (81) 31% ee Tf	003*
	Tf	n(Ort-1)4, -20"	OPiv	
			он	
	OHC	122 ^b (8 mol%), Et ₂ O,	N ^{Boc} (87) 96% ee	663 ^d
	N Bn	$Ti(OPr-i)_4, -20^\circ$	Bn	
	ы		OPiv	
			OH Bn	
	2	122 ^b (8 mol%), Et ₂ O,	N Boc (85) 87% ee	663 ^d
	OHC N BOC	Ti(OPr- <i>i</i> ) ₄ , -20°	OPin	
	Bn		ou	
	NBn ₂			
	OHC	$122^{b}$ (8 mol%), Et ₂ O,	Ph (47) $syn:anti = 16:84$	663 ^d
	one	$Ti(OPr-i)_4, -20^\circ$	OPiv NBn ₂	
			ŌН	
	NBn ₂		Dh (26) mm and = 95.15	ccad
	OHC Ph	$ent-122$ (8 mor#), $Et_2O$ , Ti(OPr-i), $=20^{\circ}$	NBna	003
		11(0117)4, 20	OPiv	
		122 ^b (8 mol%), PhMe,	он	
	OHC BH3	Ti(OPr-i)4, -35 to -20°,	$P^{BH_3}$ (61) 95% ee	661 ^d
	P Ph ₂	14 h	Ph ₂	
			ОН	
	OHC	122 ^b (8 mol%). Et ₂ O	p:	661 ^d
		$Ti(OPr-i)_4, -20^\circ$		001
			~	
			ou.	
	OHC-	<b>122</b> ^{$p$} (8 mol%), Et ₂ O,	PivO (61) 91% ee	661ª
	BEt ₃	$11(OPT-1)_4, -20^\circ$		
		122 ^b (5 mol%), PhMe,	OAc OH	
32 OAc	OHC	Ti(OPr- <i>i</i> ) ₄ , -45 to -25°,	AcO (69) 83% cc	659 ^d
ÓAc	~~ ~	16 h	· · · · · ·	
0			OH	
3 ² OPiv	OHC	122 th (8 mol%), Et ₂ O,	Pivo	515, 242 ^d
		$Ti(OBu-t)_4$ , $-20^\circ$ , 12 h	>95% ee	
	OHC.	122 ^b (8 mol%). Et-O.		
	R	$Ti(OPr-i)_4, -30^\circ$	$\sim \sim \sim \sim R$	
	Br R		Br Yld %ee	662
	Me		(76) 84	
	Ph		(72) 86	
			ОН	
	OHC.	122 ^b (8 mol%), PhMe.	PivO	
	✓ ✓ OTIPS	$Ti(OPr-i)_4$ , -40 to -25°	(59)	369, 598
	OTIPS		TIPSO syn:anti = 94:	6
			он	
	OHC	ent-122 ^b (8 mol%), PhMe,	PivO OTIPS	369 598
	ÓTIPS	$Ti(OPr-i)_4$ , -40 to -25°	svn:anti = 5:9	5
			08	
	OHC,	122 ^b (5 mol%). PhMe	Pivo, c,	
	R	Ti(OPr-i) ₄	$\sim \sim $	
	<u>R</u>		Yld %ee	
	Bu-t	-45 to -25°, 16 h	(54) 97	565ª
	Ph TMC	-20°, 16 h 40° 12 h	(91) 93 (67) 95	303" 522
	11/13	-+0,12 II	(07) 00	

TABLE XXI. ENANTIOSELECTIVE ADDITIONS OF FUNCTIONALIZED DIORGANOZINC REAGENTS TO ALDEHYDES (Continued)^d

(FG-R) ₂ Zn (FG-R)	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		-	ŎН	
	^		R	
	OHC R	$122^{b}$ (8 mol%), PhMe.		
		Ti(OPr-i) ₄ , -20°, 12 h	UPIV	
	<u>R</u>		Yid %ee_	
	Bn		(79) 82	$660^d$
	OTIPS		(75) 93	532
	CH ₂ OTIPS		(72) 91	526
	OTBDPS		(39) 70	532
			01	
		1776 (5 mal (7) Dh Ma	UH	
	OHC A OTIPS	$Ti(OPr, i) = 60 to -20^{\circ}$	(90) 97% as	164
		10 h	OPiv	104
		10 11	~ ОН	
	OHC Boc	122 ^b (8 mol%), Et ₂ O,	N 90) 97% ee	663 ^d
	Bn	Ti(OPr- <i>i</i> ) ₄ , -20°	OPiv Bn	
			OH	
			Bn A N	
	OUC N BOC	122 ^b (8 mol%), Et ₂ O,	Boc (75) 90% ee	663 ^d
	Bn	Ti(OPr- <i>i</i> ) ₄ , -20°	OPiv	
			он	
	+ -		$\sim$	
	OHC N-BEt3	122 ^b (8 mol%), Et ₂ O,	(42) 88% ee	661 ⁴
		Ti(OPr- <i>i</i> ) ₄ , -20°	OPiv N	
			он	
				d
	OHC V	<b>122</b> ^{<i>n</i>} (8 mol%), Et ₂ O,	(54) 93% ee	661"
		$T_1(OPT-1)_4, -20^\circ$	N N	
	DE13			
	DE13			
	DE43		ОН	
	DE(3	<b>122</b> ^b (8 mol%). PhMe,	OH	
	OHC. OTIPS	<b>122</b> ^b (8 mol%). PhMe, Ti(OPr- <i>i</i> )4, -55 to -15°.	OH OTIPS (43) 96% ee	524
	OHCOTIPS	<b>122</b> ^b (8 mol%). PhMe, Tì(OPr-i)₄, −55 to −15°, 6 h	OH OTIPS OPiv (43) 96% ee	524
	OHC. OTIPS	<b>122</b> ^b (8 mol%). PhMe. Ti(OPr- <i>i</i> ) ₄ 55 to -15°. 6 h	OH OPiv OH	524
	OHCOTIPS	<b>122</b> ^b (8 mol%). PhMe. Ti(OPr- <i>i</i> ) ₄ , -55 to -15°. 6 h	OH OPiv OH OH	524
	OHC OTIPS	<b>122</b> ^b (8 mol%). PhMe, Ti(OPr- <i>i</i> ) ₄ , -55 to -15°, 6 h <b>122</b> ^b (8 mol%), PhMe,	OH OPiv OH (43) 96% ee (81) 95% ee	524 664 ^d
	OHC OTIPS	<b>122</b> ^b (8 mol%). PhMe, Ti(OPr- <i>i</i> ) ₄ , −55 to −15°, 6 h <b>122</b> ^b (8 mol%). PhMe, Ti(OPr- <i>i</i> ) ₄ , −20°, 12 h	OH OPiv OH OH OPiv (81) 95% ee	524 664 ^d
	OHC OTIPS	<b>122</b> ^b (8 mol%). PhMe. Ti(OPr- $i$ ) ₄ , -55 to -15°, 6 h <b>122</b> ^b (8 mol%). PhMe. Ti(OPr- $i$ ) ₄ , -20°, 12 h	OH OPiv OPiv OH (81) 95% ee OPiv OH	524 664 ^d
3~~~~	OHC OTIPS	<b>122</b> ^b (8 mol%). PhMe. Ti(OPr- <i>i</i> ) ₄ , −55 to −15°, 6 h <b>122</b> ^b (8 mol%). PhMe. Ti(OPr- <i>i</i> ) ₄ , −20°, 12 h <b>122</b> ^b (5 mol%). PhMe.	OH OPiv OPiv OH (81) 95% ee OPiv OPiv OH (81) 95% ee (82) 94% ee	524 664 ^d 565 ^d
, ²	OHC OHC PhCHO OHC Pr-n	<b>122</b> ^b (8 mol%). PhMe, Ti(OPr- <i>i</i> ) ₄ , −55 to −15°, 6 h <b>122</b> ^b (8 mol%). PhMe, Ti(OPr- <i>i</i> ) ₄ , −20°, 12 h <b>122</b> ^b (5 mol%). PhMe, Ti(OPr- <i>i</i> ) ₄ , −45°, 20 h	OH OPiv OPiv OH OPiv OH (81) 95% ee OPiv OH (82) 94% ee	524 664 ^d 565 ^d
کر OPiv	OHC OHC PhCHO OHC Pr-n	<b>122</b> ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -55 to -15°, 6 h <b>122</b> ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h <b>122</b> ^b (5 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -45°, 20 h	OH OTIPS OPiv OH OPiv OH (81) 95% ee OPiv OPiv OH (82) 94% ee	524 664 ^d 565 ^d
کر OPiv	OHC OHC PhCHO OHC Pr-n	<b>122</b> ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -55 to -15°, 6 h <b>122</b> ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h <b>122</b> ^b (5 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -45°, 20 h <b>122</b> ^b (5 mol%), PhMe,	OH OPiv OH OH (43) 96% ee OH (81) 95% ee OPiv OH (81) 95% ee OPiv OPiv OH (81) 95% ee OPiv (82) 94% ee	524 664 ^d 565 ^d
کر OPiv	OHC OHC OHC OHC OHC OHC OHC OHC OHC	<b>122</b> ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -55 to -15°, 6 h <b>122</b> ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h <b>122</b> ^b (5 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -45°, 20 h <b>122</b> ^b (5 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -45 to -25°,	OH OPiv OH OH (43) 96% ee OFiv OH (81) 95% ee OPiv OH (81) 95% ee OPiv OH (82) 94% ee (82) 94% ee	524 664 ^d 565 ^d 565 ^d
کر OPiv	OHC OHC OHC OHC PhCHO OHC Pr-n OHC Bu-r	<b>122</b> ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -55 to -15°. 6 h <b>122</b> ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h <b>122</b> ^b (5 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -45°, 20 h <b>122</b> ^b (5 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -45 to -25°, 16 h	OH OPiv OH (43) 96% ee OPiv OH (81) 95% ee OPiv OH (82) 94% ee OPiv OH (82) 94% ee (82) 94% ee	524 664 ^d 565 ^d 565 ^d
کر OPiv	OHC OHC PhCHO OHC Pr-n OHC Bu-1	122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -55 to -15°, 6 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (5 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -45°, 20 h 122 ^b (5 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -45 to -25°, 16 h	OH OPiv OH OH (43) 96% ee OFiv OH (81) 95% ee OPiv OH (82) 94% ee OPiv OH (82) 94% ee OPiv OH (82) 94% ee OH OH OH OH OH OH OH OH OH OH	524 664 ^d 565 ^d 565 ^d
COPIU	OHC OHC OHC OHC PhCHO OHC Pr-n OHC Bu-r PhCHO	<b>122</b> ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -55 to -15°. 6 h <b>122</b> ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h <b>122</b> ^b (5 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -45°, 20 h <b>122</b> ^b (5 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -45 to -25°, 16 h <b>122</b> ^b (8 mol%). PhMe,	OH OPiv OH OFiv OH (43) 96% ee OFiv OH (81) 95% ee OPiv OH (82) 94% ee OPiv OH (82) 94% ee OH (82) 94% ee OH (82) 94% ee OH (82) 94% ee OH (82) 94% ee OH (82) 92% ee	524 664 ^d 565 ^d 515
کر OPiv	OHC OHC OHC OHC PhCHO OHC Pr-n OHC Bu-r PhCHO	122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -55 to -15°. 6 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (5 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -45°, 20 h 122 ^b (5 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -45 to -25°, 16 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h	OPiv OPiv OPiv OPiv OH (43) 96% ee OH (81) 95% ee OPiv OPiv OH Pr-n (82) 94% ee OPiv OH (82) 94% ee OH (82) 94% ee OH (82) 94% ee OH (82) 92% ee	524 664 ^d 565 ^d 515
Jacobi Contraction of the second seco	OHC OHC OHC OHC PhCHO OHC Bu-1 PhCHO	122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -55 to -15°, 6 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (5 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -45°, 20 h 122 ^b (5 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -45 to -25°, 16 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h	OH OPiv OH (43) 96% ee OPiv OH (81) 95% ee OPiv OH (82) 94% ee OPiv OH (82) 94% ee OH TBDMSO Tf OH (82) 92% ee OH (82) 92% ee	524 664 ^d 565 ^d 515
	OHC OHC OHC OHC OHC Pr-n OHC Bu-1 PhCHO	122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -55 to -15°, 6 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (5 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -45°, 20 h 122 ^b (5 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -45 to -25°, 16 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%), PhMe,	OH OPiv OH (43) 96% ee OPiv OH (81) 95% ee OPiv OH (82) 94% ee OPiv OH (82) 94% ee OPiv OH (82) 94% ee OH TBDMSO OH (82) 92% ee (82) 92% ee	524 664 ^d 565 ^d 515 164
DPiv OPiv N Bn	OHC OHC OHC OHC OHC Bu-1 PhCHO	122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -55 to -15 [°] , 6 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (5 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -45°, 20 h 122 ^b (5 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -45 to -25°, 16 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h	OPiv OPiv OPiv OPiv OPiv OPiv OPiv OH (81) 95% ee OPiv (82) 94% ee (82) 94% ee OPiv OH (82) 94% ee (82) 94% ee OPiv OH (82) 94% ee (82) 94% ee (82) 94% ee (82) 94% ee (82) 94% ee (82) 92% ee Tf Bu-r (82) 92% ee (82) 92% ee	524 664 ^d 565 ^d 515 164
Zanger Stranger Stran	DEL3 OHC OTIPS PhCHO OHC $Pr-n$ OHC $Bu-r$ PhCHO OHC $GHC$ DHC DHC DHC DHC Bu-r	122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -55 to -15°, 6 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (5 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -45°, 20 h 122 ^b (5 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -45 to -25°, 16 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h	OH OPiv OH (43) 96% ee OPiv OH (81) 95% ee OPiv OH (82) 94% ee OPiv OH (82) 94% ee OPiv OH (82) 94% ee OH TBDMSO OH TBDMSO OH CH OH OH OH (82) 94% ee OH (82) 94% ee (82) 94% ee OH (82) 94% ee (82) 94% ee OH (82) 95% ee (82) 95% ee (8	524 664 ^d 565 ^d 515 164
CPiv OPiv	DEL3 OHC OTIPS PhCHO OHC $P_{r-n}$ OHC $B_{u-r}$ PhCHO OHC $P_{r-n}$	122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -55 to -15°. 6 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (5 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -45°, 20 h 122 ^b (5 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -45 to -25°, 16 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h	OH $(43) 96% ee$ $OFiv$ $(43) 96% ee$ $OH$ $(81) 95% ee$ $OFiv$ $OH$ $(82) 94% ee$ $(82) 94% ee$ $OFiv$ $OH$ $(82) 94% ee$ $(82) 92% ee$ $(82) 92% ee$ $OH$ $(82) 92% ee$	524 664 ^d 565 ^d 515 164
COPiv OPiv COPiv Sacon OTBDMS	DEL3 OHC OTTPS PhCHO OHC $P_{T-n}$ OHC $B_{U-1}$ PhCHO OHC $P_{T-n}$	122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -55 to -15°. 6 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (5 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -45°, 20 h 122 ^b (5 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -45 to -25°, 16 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%), PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h	OH OPiv OH (43) 96% ee OPiv OH (81) 95% ee OPiv OH (82) 94% ee OPiv OH (82) 94% ee OPiv OH (82) 94% ee OH TBDMSO OH (82) 92% ee OH (82) 92% ee OH (56) 86% ce	524 664 ^d 565 ^d 515 164
COPiv OPiv COPiv Star OTBDMS	DEL3 OHC OTIPS PhCHO OHC $P_{T-n}$ OHC $B_{U-1}$ PhCHO OHC $DHC$ DHC $DHC$ DHC $DHC$ OHC $DHC$ DHC	122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -55 to -15°. 6 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (5 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -45°, 20 h 122 ^b (5 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -45 to -25°, 16 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -75 to -15°, Ti(OPr- $i$ ) ₄ , -75 to -15°,	OH OFiv OH (43) 96% ee OFiv OH (43) 96% ee OH (81) 95% ee OFiv OH (82) 94% ee OFiv OH (82) 94% ee OFiv OH (82) 94% ee OH TBDMSO OH TBDMSO OH Bu-r (82) 92% ee Tf OH Bn N OH (82) 92% ee (82) 92% ee OH (82) 92% ee (82) 92% ee (82) 92% ee (82) 92% ee (82) 92% ee (82) 92% ee (82) 92% ee Tf OH (82) 92% ee (82) 92% ee (82) 92% ee (82) 92% ee (82) 92% ee TF OH (82) 92% ee (82) 92% ee (82	524 664 ⁴ 565 ⁴ 515 164 524
2-3 OPiv 2-3 COPiv 2-3 COTBDMS 2-3 COTBDMS 2-3 Tf	DEI3 OHC OTIPS PhCHO OHC $P_{r-n}$ OHC $B_{u-r}$ PhCHO OHC $DHC$ OHC	122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -55 to -15°. 6 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (5 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -45°, 20 h 122 ^b (5 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -45 to -25°, 16 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -75 to -15°, 6 h	OH $(43) 96% ee$ $OFiv$ $OH$ $(81) 95% ee$ $OFiv$ $OH$ $(81) 95% ee$ $OFiv$ $OH$ $(82) 94% ee$ $(82) 94% ee$ $OFiv$ $OH$ $(82) 92% ee$ $TBDMSO$ $OH$ $(82) 92% ee$ $OH$ $(82) 92% ee$	524 664 ^d 565 ^d 515 164 524
23 OPiv 23 23 OTBDMS 23 32 NBn Tf	DEI3 OHC OTIPS PhCHO OHC $P_{Pr-n}$ OHC $B_{u-r}$ PhCHO OHC $DHC$ OHC $OHC$ OHC $OHC$ OHC OTIPS	122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -55 to -15°. 6 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (5 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -45°, 20 h 122 ^b (5 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -45 to -25°, 16 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h	OH $(43) 96% ee$ $OFiv$ $OH$ $(81) 95% ee$ $OFiv$ $OH$ $(81) 95% ee$ $OFiv$ $OH$ $(82) 94% ee$ $(82) 94% ee$ $OFiv$ $OH$ $(82) 92% ee$ $TBDMSO$ $OH$ $(82) 92% ee$ $OH$ $(82) 92% ee$	524 664 ^d 565 ^d 515 164 524
CPiv OPiv COPiv COTBDMS	DEI3 OHC OTIPS PhCHO OHC $P_{Pr-n}$ OHC $B_{u-t}$ PhCHO OHC OTIPS OHC OTIPS OHC OTIPS	122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -55 to -15°. 6 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (5 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -45°, 20 h 122 ^b (5 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -45 to -25°, 16 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -75 to -15°, 6 h	OH OFiv OFiv OH (43) 96% ee OFiv OH (43) 96% ee OFiv OH (81) 95% ee OFiv OH (82) 94% ee OFiv OH (82) 94% ee OFiv OH (82) 94% ee OFiv OH (82) 94% ee OH (82) 92% ee (82) 92% ee OH (82) 82% ee (82) 8	524 664 ^d 565 ^d 515 164 524
کر OPiv کر کر NBn Tf	DE13 OHC OTIPS PhCHO OHC $Pr-n$ OHC $Bu-r$ PhCHO OHC $Trow otips$ OHC $Trow otips$ OHC $Sn(Bu-n)_3$	122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -55 to -15°. 6 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (5 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -45°, 20 h 122 ^b (5 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -45 to -25°, 16 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -20°, 12 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -75 to -15°, 6 h 122 ^b (8 mol%). PhMe, Ti(OPr- $i$ ) ₄ , -75 to -15°,	OH OFiv OFiv OH (43) 96% ee OFiv OH (81) 95% ee OFiv OH (82) 94% ee OFiv OH (82) 94% ee OFiv OH (82) 94% ee OFiv OH (82) 94% ee OH (82) 92% ee TBDMSO OH (82) 92% ee OH (82) 92% ee (82) 92% ee OH (82) 92% ee (82) 92% ee OH (82) 92% ee (82) 92% ee OH (82) 92% ee (82) 92% ee (82) 92% ee (82) 92% ee OH (82) 92% ee (82) 92% ee (82) 92% ee OH (82) 92% ee (82) 92% ee OH (82) 92% ee (82) 92%	524 664 ^d 565 ^d 515 164 524

(FG-R) ₂ Zn	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
(FG-R)				
OBir		1220 (8 molth) PhMa		7474
22 OFiv	one	Ti(OBu-t) ₄ , -20°, 12 h		242
		11(050 1)4, 50 , 12 1	OPiv	
2 ²	DI OLIO	anahiro 100 DIA	OH TIDEO	<i></i>
i Comps	PhCHO	<b>122</b> " (8 mol%), PhMe, Ti(OPr i) $20^{\circ}$ 12 h	Ph (60) 50% ce	515
		n(0r1- <i>n</i> 4, -20 , 12 n	ОН	
	OHC SiMo-Ph	122 ^b (8 mol%), PhMe,	TIPSO SiMe Ph (67)	522
	> Shwe ₂ r n	Ti(OPr- <i>i</i> ) ₄ , -40°, 12 h	93% ee	
, 	D.CHO	1000/00 100 Ex O	OH	5770
2 OTIPS	RCHO	$122^{\circ}$ (8 mol%), Et ₂ O, Ti(OPr-i), =20° 12 h	TIPSO R	5/3"
	<u>R</u>	$\Pi(Ort-i)_4, -20, 12 \Pi$	Yld %ee	
	i-Bu		(60) 92	
	$n-C_5H_{11}$		(66) 91	
	Ph		(77) 96	
	0110		OH TIDEO	end
	Ph	$122^{\circ}$ (8 mol%), Et ₂ O, Ti(OPr i), 20° 12 h	Ph (55) 85% ee	5734
		$\Pi(0r(-i)_4, -20, 12)$	OH	
	OHC	122 ^b (8 mol%), Et ₂ O,	TIPSO. (45) 96% ee	573 ^d
		Ti(OPr- <i>i</i> ) ₄ , -20°, 12 h		
5			он	
		122 ^b (8 mol%), PhMe,	OTIPS	
Z CO ₂ Menthyl	OHCOTIPS	Ti(OBu-t) ₄ , -70 to -15°,	(48) 81% ee	524
2	,	6 h	CO ₂ Menthyl	
		122 ^b (5 mol%), PhMe,	OPiv OH	
22 OPiv	OHC	Ti(OPr- <i>i</i> ) ₄ , -45 to -25°,	Piv0 (82)	565 ^d
ÓPiv		16 h	92% ee	
		122 ^b (5 mol%), PhMe,	OPiv OH	
ζ Υ OPiv	OHC	$Ti(OPr-i)_4$ , -45 to -25°,	PivO Ph (80)	565 ^d
OPiv		16 h	93% ee	
			$\bigcap$	
3	_	127 (1 mol%), C ₆ H ₁₅ ,	(75) 92% ee	238
онс		0°, 4 h	On	
7				
0			ОН	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	—	ent-127 (1 mol%),	0 ⁷ ¹ 0 (52) 79% ee	533 ^d
		C ₆ H ₁₅ , 0°		
СНО				
8				
0			, on	
.22 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_	ept-127 (1 mol%)	$0 \qquad \qquad$	5220
\sim		C_6H_{15} , 0°, 2.5 h	(00) syntami - 91.9	000
.CHO			\sim \sim	
			OH	
	-	127 (1 mol%),	O' O' O (40) syn:anti = 15:85	533 ^d
		$C_6H_{15}, 0^\circ, 2.5 h$		

 $^{\it d}$ The organozinc reagent was prepared by a transmetallation reaction.

7. Acknowledgments

The authors thank the Alexander von Humboldt Foundation for the generous support of N.M. and A.L.R.

References

- 1. Frankland, E. Liebigs Ann. Chem. 1849, 71, 171, 213.
- Nützel, K. In Methoden der Organischen Chemie, Metallorganische Verbindungen Be, Mg, Ca, Sr, Ba, Zn, Cd, Volume **13/2a**, Thieme: Stuttgart, 1973, p. 552.
- 3. Reformatsky Chem Ber. 1887, 20, 1210; 1895, 28, 2842.
- 4. Fürstner, A. Synthesis 1989, 571.
- 5. Fürstner, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 164.
- 6. Shriner, R. L. Org. React. 1942, 1, 1.
- 7. Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1985, 80, 5323.
- 8. Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256.
- Blanchard, E. P.; Simmons, H. E. J. Am. Chem. Soc. 1964, 86, 1337, 1347.
- Simmons, H. E.; Cairns, T. L.; Vladuchick, A.; Hoiness, C. M. Org. React. 1972, **20**, 1.
- 11. Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron Lett. 1966, 3353.
- 12. Furukawa, J.; Kawabata, N. Adv. Organomet. Chem. 1974, 12, 83.
- 13. Sawada, S.; Inouye, Y. Bull Chem. Soc. Jpn. 1969, 42, 2669.
- 14. Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117.
- 15. Knochel, P. Synlett 1995, 393.
- Knochel, P.; Vettel, S.; Eisenberg, C. Applied Organomet. Chem. 1995, 9, 175.
- 17. Knochel, P.; Langer, F.; Rottländer, M.; Stüdemann, T. Chem. Ber. 1997, **130**, 387.
- 18. Knochel, P.; Almena, J.; Jones, P. Tetrahedron 1998, 54, 8275.
- Knochel, P.; Jones, P. Organozinc Reagents. A Practical Approach, Oxford University Press, 1999.
- 20. Skinner, H. A. Adv. Organometal. Chem. 1964, 2, 49.
- 21. Negishi, E. Organometallics in Organic Synthesis, Volume 1, Wiley: New York, 1980.
- 22. Negishi, E.; Valente, L. F.; Kobayashi, M. J. Am. Chem. Soc. 1980, **102**, 3298.
- 22a. Erdik, E. Tetrahedron 1992, 48, 9577.
- 23. Kobayashi, M.; Negishi, E. J. Org. Chem. 1980, 45, 5223.
- 24. Negishi, E. Acc. Chem. Res. 1982, 15, 340.
- Negishi, E.; Bagheri, V.; Chatterjee, S.; Luo, F.-T.; Miller, J. A.; Stoll, A. T. Tetrahedron Lett. 1983, 24, 5181.

- 26. Grey, R. A. J. Org. Chem. 1984, 49, 2288.
- 27. Nakamura, E.; Kuwajima, I. Tetrahedron Lett. 1986, 27, 83.
- 28. Sato, T.; Naruse, K.; Enokiya, M.; Fujisawa, T. Chem. Lett. 1981, 1135.
- 29. Hunsdiecker, H.; Erlbach, H.; Vogt, E., German Patent 722467, 1942; Chem. Abstr. 1943, **37**, 5080.
- 30. Wittig, G.; Jautelat, M. Liebigs Ann. Chem. 1967, 702, 24.
- 31. Wittig, G.; Schwarzenbach, K. Angew. Chem. 1959, **71**, 652.
- 32. Wittig, G.; Schwarzenbach, K. Liebigs Ann. Chem. 1961, 650, 1.
- 33. Wittig, G.; Wingler, F. Liebigs Ann. Chem. 1962, 656, 18.
- 34. Wittig, G.; Wingler, F. Chem. Ber. 1964, 97, 2139, 2146.
- Rajagopal, D.; Eckhardt, M.; Furlong, M.; Knoess, H. P.; Berger, S.; Knochel, P. Tetrahedron 1994, **50**, 2415.
- 36. Sakurai, M.; Hata, T.; Yabe, Y. Tetrahedron Lett. 1993, 34, 5939.
- Sakami, S.; Houkawa, T.; Asaoka, M.; Takei, H. J. Chem. Soc., Perkin Trans. 1, 1995, 285.
- Houkawa, T.; Ueda, T.; Sakami, S.; Takei, H. Tetrahedron Lett. 1996,
 37, 1045.
- 39. Witanowski, M.; Roberts, J. D. J. Am. Chem. Soc. 1966, 88, 737.
- 40. Boudier, A.; Knochel, P. Tetrahedron Lett. 1999, 40, 687.
- 41. Wang, F.; Labaudinière, L.; Marek, I.; Normant, J.-F. Synlett 1995, 723.
- 42. Darcel, C.; Flachsmann, F.; Knochel, P. Chem. Commun. 1998, 205.
- Brown, H. C.; Mandal, A. K.; Yoon, N. M.; Singaram, B.; Schwier, J. R.; Jadhav, P. K. J. Org. Chem. 1982, 47, 5069.
- 44. Boudier, A.; Flachsmann, F.; Knochel, P. Synlett 1998, 1438.
- 44a. Hupe, E.; Knochel, P. Org. Lett. 2001, 3, 127.
- 45. Gaudemar, M. Bull. Soc. Chim. Fr. 1962, 974.
- 46. Erdik, E. Tetrahedron 1987, 43, 2203.
- Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem. 1988, 53, 2390.
- 48. Majid, T. N.; Knochel, P. Tetrahedron Lett. 1990, **31**, 4413.
- 49. Prasad, A. S. B.; Knochel, P. Tetrahedron 1997, 53, 16711.
- 50. Berk, S. C.; Knochel, P.; Yeh., M. C. P. J. Org. Chem. 1988, 53, 5798.
- Berk, S. C.; Yeh, M. C. P.; Jeong, N.; Knochel, P. Organometallics 1990, 9, 3053.
- 52. Yeh, M. C. P.; Knochel, P.; Butler, W. M.; Berk, S. C. Tetrahedron Lett. 1988, **29**, 6693.
- 53. Chen, H. G.; Gage, J. L.; Barrett, S. D.; Knochel, P. Tetrahedron Lett. 1990, **31**, 1829.

- 54. Yeh, M. C. P.; Knochel, P.; Santa, L. E. Tetrahedron Lett. 1988, **29**, 3887.
- 55. Yeh, M. C. P.; Knochel, P. Tetrahedron Lett. 1989, 30, 4799.
- 56. Retherford, C.; Yeh, M. C. P.; Schipor, I.; Chen, H. G.; Knochel, P. J. Org. Chem. 1989, **54**, 5200.
- 57. Tucker, C. E.; AchyuthaRao, S.; Knochel, P. J. Org. Chem. 1990, **55**, 5446.
- 58. Knochel, P.; Chou, T.-S.; Chen, H. G.; Yeh, M. C. P.; Rozema, M. J. J. Org. Chem. 1989, **54**, 5202.
- 59. Chou, T.-S.; Knochel, P. J. Org. Chem. 1990, 55, 4791.
- Knochel, P.; Chou, T.-S.,; Jubert, C.; Rajagopal, D. J. Org. Chem. 1993, 58, 588
- 61. Knochel, P. J. Am. Chem. Soc. 1990, **112**, 7431.
- Waas, J. R.; AchyuthaRao, S.; Knochel, P. Tetrahedron Lett. 1992, 33, 3717.
- 63. Retherford, C.; Knochel, P. Tetrahedron Lett. 1991, 32, 441.
- 64. Rozema, M. J.; AchyuthaRao, S.; Knochel, P. J. Org. Chem. 1992, **57**, 1956.
- Knochel, P.; Rozema, M. J.; Tucker, C. E.; Retherford, C.; Furlong, M.; AchyuthaRao, S. Pure Appl. Chem. 1992, 64, 361.
- 66. AchyuthaRao, S.; Knochel, P. J. Org. Chem. 1991, 56, 4591.
- 67. Rozema, M. J.; Rajagopal, D.; Tucker, C. E.; Knochel, P. J. Organomet. Chem. 1992, **438**, 11.
- 68. Yeh, M. C. P.; Sun, M.-L.; Lin, S.-K. Tetrahedron Lett. 1991, 32, 113.
- 69. Yeh, M. C. P.; Tau, S.-J. J. Chem. Soc., Chem. Commun. 1992, 13.
- 70. Yeh, M. C. P.; Tsou, C.-J.; Chuang, C.-N.; Lin, H.-C. J. Chem. Soc., Chem. Commun. 1992, 890.
- 71. Blankenfeldt, W.; Liao, J.-W.; Lo, L.-C.; Yeh, M. C. P. Tetrahedron Lett. 1996, **37**, 7361.
- 72. Yeh, M. C. P.; Shen, B.-A.; Fu, H.-W.; Tau, S. I.; Chuang, L. W. J. Am. Chem. Soc. 1993, **115**, 5941.
- 73. Yeh, M.C.P.; Chuang, C.-N. J. Chem. Soc., Chem. Commun. 1994, 703.
- 74. Jubert, C.; Knochel, P. J. Org. Chem. 1992, 57, 5431.
- 75. Yeh, M. C. P.; Knochel, P. Tetrahedron Lett. 1988, 29, 2395.
- 76. Majid, T. N.; Yeh, M. C. P.; Knochel, P. Tetrahedron Lett. 1989, **30**, 5069.
- 77. Chen, H. G.; Hoechstetter, C.; Knochel, P. Tetrahedron Lett. 1989, **30**, 4795.
- 78. Knoess, H. P.; Furlong, M. T.; Rozema, M. J.; Knochel, P. J. Org. Chem.

1991, **56**, 5974.

- 79. Yeh, M. C. P.; Chen, H. G.; Knochel, P. Org. Synth. 1991, 70, 195.
- 80. Tamaru, Y. In *New Trends in Organometallic Chemistry*, Sakurai, H., Ed., Tohoku University, Sendai, Japan, 1990, 304.
- 81. Knochel, P.; Yeh, M. C. P. 1988, unpublished results.
- 82. AchyuthaRao, S.; Tucker, C. E.; Knochel, P. Tetrahedron Lett. 1990, **31**, 7575.
- 83. AchyuthaRao, S.; Chou, T.-S.; Schipor, I.; Knochel, P. Tetrahedron, 1992, **48**, 2025.
- 84. Kanai, G.; Miyaura, N.; Suzuki, A. Chem. Lett. 1993, 845.
- 85. Watanabe, T.; Miyaura, N.; Suzuki, A. J. Organomet. Chem. 1993, **444**, C1.
- 86. Watanabe, T.; Sakai, M.; Miyaura, N.; Suzuki, A. J. Chem. Soc., Chem. Commun. 1994, 467.
- 87. JanakiramRao, C.; Knochel, P. J. Org. Chem. 1991, 56, 4593.
- 88. Knochel, P.; JanakiramRao, C. Tetrahedron 1993, 49, 29.
- Bronk, B. S.; Lippard, S. J.; Danheiser, R. L. Organometallics 1993, 12, 3340.
- Retherford, C.; Chou, T.-S.; Schelkun, R. M.; Knochel, P. Tetrahedron Lett. 1990, **31**, 1833.
- 91. Jackson, R. F. W.; James, K.; Wythes, M. J.; Wood, A. J. Chem. Soc., Chem. Commun. 1989, 644.
- Jackson, R. F. W.; Wythes, M. J.; Wood, A. Tetrahedron Lett. 1989, 30, 5941.
- 93. Jackson, R. F. W.; Wood, A.; Wythes, M. J. Synlett 1990, 735.
- 94. Dunn, M. J.; Jackson, R. F. W. J. Chem. Soc., Chem. Commun. 1992, 319.
- 95. Jackson, R. F. W.; Wishart, N.; Wythes, M. J. J. Chem.Soc., Chem. Commun. 1992, 1587.
- 96. Dunn, M. J.; Jackson, R. F. W.; Stephenson, G. R. Synlett 1992, 905.
- 97. Jackson, R. F. W.; Wishart, N.; Wythes, M. J. Synlett 1993, 219.
- 98. Jackson, R. F. W.; Wishart, N.; Wood, A.; James, K.; Wythes, M. J. J. Org. Chem. 1992, **57**, 3397.
- 99. Dexter, C. S.; Jackson, R. F. W. J. Chem.Soc., Chem. Commun. 1998, 75.
- 99a. Dunn, M.; Jackson, R.F.W.; Pietruszka, J.; Turner, D. J. Org. Chem. 1995, 60, 2210.
- 100. Dunn, M. J.; Jackson, R. F. W.; Pietruszka, J.; Wishart, N.; Ellis, D.; Wythes, M. J. Synlett 1993, 499.

- 101. Fraser, J.L.; Jackson, R.F.W.; Porter, B. Synlett 1994, 379.
- 102. Dow, R.L.; Bechler, B.M. Synlett 1994, 293.
- 103. Jubert, C.; Knochel, P. J. Org. Chem. 1992, 57, 5425.
- 104. Tamaru, Y.; Ochiai, H.; Yoshida, Z. Tetrahedron Lett. 1984, 25, 3861.
- 105. Tamaru, Y.; Ochiai, H.; Nakamura, T.; Tusbaki, K.; Yoshida, Z. Tetrahedron Lett. 1985, **26**, 5559.
- 106. Haszeldine, R. N.; Walaschewski, E. G. J. Chem. Soc. 1953, 3607.
- 107. Miller, W. T.; Bergmann, E.; Fainberg, A. H. J. Am. Chem. Soc. 1957, **79**, 4159.
- 108. Chambers, R. D.; Musgrave, W. K. R.; Savory, J. J. Chem. Soc. 1962, 1993.
- 109. Kumai, S.; Munekata, S.; Yamabe, M. Asahi Garasu Kenkyu Hokoku 1981, **31**, 91; Chem. Abstr. 1982, **97**, 23253b.
- 110. Blancou, H.; Commeyras, A. J. Fluorine Chem. 1982, 20, 255.
- 111. Benefice, S.; Blancou, H.; Commeyras, A. J. Fluorine Chem. 1983, 23, 47.
- 112. Benefice-Malouet, S.; Blancou, H.; Commeyras, A. J. Fluorine Chem. 1985, **30**, 171.
- 113. Burton, D. J. Tetrahedron 1992, 48, 189.
- 114. Burton, D.J.; Yang, Z.-Y.; Morken, P.A. Tetrahedron 1994, 50, 2993.
- 115. Blancou, H.; Moreau, P.; Commeyras, A. Tetrahedron 1977, 33, 2061.
- 116. Burton, D. J.; Wiemers, D. M. J. Am. Chem. Soc. 1985, 107, 5014.
- 117. Wiemers, D. M.; Burton, D. J. J. Am. Chem. Soc. 1986, 108, 832.
- 118. Stevenson, T.; Prasad, B. A. S.; Citineni, J. R.; Knochel, P. Tetrahedron Lett. 1996, **37**, 8375.
- 119. Prasad, B. A. S.; Stevenson, T.; Citineni, J. R.; Nyzam, V.; Knochel, P. Tetrahedron. 1997, **53**, 7237.
- 120. Zhu, L.; Wehmeyer, R. M.; Rieke, R. D. J. Org. Chem. 1991, 56, 1445.
- 121. Rieke, R. D.; Kim, S.-H.; Wu, X. J. Org. Chem. 1997, 62, 6921.
- 122. Zhu, L.; Rieke, R. D. Tetrahedron Lett. 1991, 32, 2865.
- 123. Rieke, R. D.; Soll, M. S.; Xiong, H. J. Am. Chem. Soc. 1995, **117**, 5429.
- 124. Rieke, R. D.; Uhm, S. J.; Hudnall, P. M. J. Chem. Soc., Chem. Commun. 1973, 269.
- 125. Rieke, R. D.; Li, P. T.-J; Burns, T. P.; Uhm, S. T. J. Org. Chem. 1981, 46, 4323.
- 126. Rieke, R. D.; Uhm, S. J. Synthesis 1975, 452.
- 127. Rieke, R. D. Science 1989, 246, 1260.
- 128. Hanson, M. V.; Brown, J. D.; Rieke, R. D. Tetrahedron Lett. 1994, **35**, 7205.

- 129. Hanson, M. V.; Rieke, R. D. Synth. Comm. 1995, 25, 101.
- 130. Hanson, M. V.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 10775.
- 131. Rieke, R. D.; Hanson, M. V.; Brown, J. D. J. Org. Chem. 1996, 61, 2726.
- 132. Guijarro, A.; Rieke, R. D. Angew. Chem., Int. Ed. Engl. 1998, 37, 1679.
- 133. Fürstner, A.; Singer, R.; Knochel, P. Tetrahedron Lett., 1994, **35**, 1047.
- Stadtmüller, H.; Greve, B.; Lennick, Chair, A.; Knochel, P. Synthesis 1995, 69.
- 135. Ochiai, H.; Nishihara, T.; Tamaru, Y.; Yoshida, Z. J. Org. Chem. 1988, 53, 1343.
- Tamaru, Y.; Ochiai, H.; Sanda, F.; Yoshida, Z. Tetrahedron Lett. 1985, 26, 5529.
- 137. Tamaru, Y.; Ochiai, H.; Nakamura, T.; Yoshida, Z. Tetrahedron Lett. 1986, **27**, 955.
- 138. Tamaru, Y.; Ochiai, H.; Nakamura, T.; Yoshida, Z. Angew. Chem. 1987, **99**, 1193.
- 139. Nakamura, E.; Sekiya, K.; Kuwajima, I. Tetrahedron Lett. 1987, 28, 337.
- 140. Nakamura, E.; Aoki, S.; Sekiya, K.; Oshino, H.; Kuwajima, I. J. Am. Chem. Soc. 1987, **109**, 8056.
- 141. Ochiai, H.; Tamura, Y.; Tsubaki, K.; Yoshida, Z. J. Org. Chem. 1987, **52**, 4418.
- 142. Tamaru, Y.; Tanigawa, H.; Yamamoto, T.; Yoshida, Z. Angew. Chem., Int. Ed. Engl. 1989, **28**, 351.
- 143. Einhorn, C.; Einhorn, J.; Luche, J.-L. Synthesis 1990, 787.
- 144. Petrier, C.; de Souza Barbosa, J. C.; Dupuy, C.; Luche, J.-L. J. Org. Chem. 1985, **50**, 5761.
- 145. de Souza Barbosa, J. C.; Petrier, C.; Luche, J.-L. Tetrahedron Lett. 1985, **26**, 829.
- 146. Corey, E. J.; Link, J. O.; Shao, Y. Tetrahedron Lett. 1992, 33, 3435.
- 147. Petrier, C.; Dupuy, C.; Luche, J. L. Tetrahedron Lett. 1986, 27, 3149.
- 148. Einhorn, C.; Luche, J.-L. J. Organomet. Chem. 1987, 322, 177.
- 149. Luche, J.-L.; Einhorn, C.; Einhorn, J.; Sinisterra-Gago, J. V. Tetrahedron Lett. 1990, **31**, 4125.
- 150. Jiang, B.; Xu, Y. J. Org. Chem. 1991, 56, 7336.
- 151. Morken, P. A.; Lu, H.; Nakamura, A.; Burton, D. J. Tetrahedron Lett. 1991, **32**, 4271.
- 152. Hansen, S. W.; Spawn, T. D.; Burton, D. J. J. Fluorine Chem. 1987, **35**, 415.
- 153. Morken, P. A.; Burton, D. J. J. Org. Chem. 1993, **58**, 1167.
- 154. Gillet, J. P.; Sauvetre, R.; Normant, J. F. Synthesis 1986, 538.

- 155. Habeeb, J. J.; Osman, A.; Tuck, D. G. J. Organomet. Chem. 1980, **185**, 117.
- 156. Sibille, S.; Ratovelomanana, V.; Périchon, J. J. Chem. Soc., Chem. Commun. 1992, 283.
- 157. Chaussard, J.; Folest, J.-C.; Nédélec, J.-Y.; Périchon, J.; Sibille, S.; Troupel, M. Synthesis 1990, 369.
- 158. Durandetti, M.; Devaud, M.; Périchon, J. New J. Chem. 1996, 20, 659.
- 159. Sibille, S.; Ratovelomanana, V.; Nédélec, J.-Y.; Périchon, J. Synlett 1993, 425.
- 160. Gosmini, C.; Nédélec, J. Y.; Périchon, J. Tetrahedron Lett. 1997, **38**, 1941.
- 161. Zylber, N.; Zylber, J.; Rollin, Y.; Dunach, E.; Périchon, J. J. Organomet. Chem. 1993, **444**, 1.
- 162. Rollin, Y.; Derien, S.; Dunach, E.; Gébéhenne, C.; Périchon, J. Tetrahedron, 1993, **49**, 7723.
- 163. Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833.
- 164. Rozema, M. J.; Eisenberg, C.; Lütjens, H.; Ostwald, R.; Belyk, K.; Knochel, P. Tetrahedron Lett. 1993, 34, 3115.
- 165. Stadtmüller, H.; Lentz, R.; Tucker, C. E.; Stüdemann, T.; Dörner, W.; Knochel, P. J. Am. Chem. Soc. 1993, **115**, 7027.
- 166. Stadtmüller, H.; Tucker, C. E.; Vaupel, A.; Knochel, P. Tetrahedron Lett. 1993, **34**, 7911.
- 166a Vettel, S.; Vaupel, A.; Knochel, P. J. Org. Chem. 1996, 61, 7473.
- 167. Stadtmüller, H.; Vaupel, A.; Tucker, C. E.; Stüdemann, T.; Knochel, P. Chem. Eur. J. 1996, **2**, 1204.
- 168. Knochel, P. unpublished results, Marburg, 1992–1993.
- 169. Stadtmüller, H.; Knochel, P. Synlett 1995, 463.
- 170. Vaupel, A.; Knochel, P. Tetrahedron Lett. 1995, 36, 231.
- 171. Vaupel, A.; Knochel, P. J. Org. Chem. 1996, 61, 5743.
- 172. Agrios, K. A.; Srebnik, M. J. Org. Chem. 1993, 58, 6908.
- 173. Mukhopadhyay, T.; Seebach, D. Helv. Chim. Acta 1982, 65, 385.
- 174. Seebach, D.; Beck, A. K.; Mukhopadhyay, T.; Thomas, E. Helv. Chim. Acta 1982, **65**, 1101.
- 175. Bengtsson, M.; Liljefors, T. Synthesis 1988, 250.
- 176. Klement, I.; Chau, K.; Cahiez, G.; Knochel, P. Tetrahedron Lett. 1994, **35**, 1177.
- 177. Charette, A. B.; Beauchemin, A.; Marcoux, J.-F. J. Am. Chem. Soc. 1998, **20**, 5114.

- 178. Micouin, L.; Knochel, P. Synlett 1997, 327.
- 179. Berger, S.; Langer, F.; Lutz, C.; Knochel, P.; Mobley, T. A.; Reddy, C. K. Angew. Chem., Int. Ed. Engl. 1997, **36**, 1496.
- 180. Jones, P.; Reddy, C. K.; Knochel, P. Tetrahedron 1998, 54, 1471.
- 181. Wakefield, B. J. In Organolithium Methods, Academic: London, 1988.
- 182. Stowell, J. C. In *Carbanions in Organic Synthesis*, Wiley: New York, 1979.
- 183. Brandsma, L.; Verkruijsse, H. In Preparative Polar Organometallic Chemistry, Volume **1**; Springer-Verlag: Berlin, 1987.
- 184. Piers, E.; Karunaratne, V. Can. J. Chem. 1984, 62, 629.
- 185. Piers, E.; Karunaratne, V. J. Chem. Soc., Chem. Commun. 1983, 935.
- 186. Piers, E.; Karunaratne, V. J. Chem. Soc., Chem. Commun, 1984, 959.
- 187. Piers, E.; Karunaratne, V. J. Org. Chem. 1983, 48, 1774.
- 188. Piers, E.; Yeung, B. W. A. J. Org. Chem. 1984, 49, 4567.
- 189. Najera, C.; Yus, M. J. Org. Chem. 1988, 53, 4708.
- 190. Peterson, P. E.; Nelson, D. J.; Risener, R. J. Org. Chem. 1986, **51**, 2381.
- 191. Herrmann, J. L.; Berger, M. H.; Schlessinger, R. H. J. Am. Chem. Soc. 1979, **101**, 1544.
- 192. Midland, M. M.; Tramontano, A.; Cable, J. R. J. Org. Chem. 1980, **45**, 28.
- 193. Parham, W. E.; Jones, L. D.; Sayed, Y. J. Org. Chem. 1975, 40, 2394.
- 194. Parham, W. E.; Jones, L. D. J. Org. Chem. 1976, 41, 1187.
- 195. Parham, W. E.; Jones, L. D. J. Org. Chem. 1976, 41, 2704.
- 196. Parham, W. E.; Piccirilli, R. M. J. Org. Chem. 1977, 42, 257.
- 197. Parham, W. E.; Boykin, D. W. J. Org. Chem. 1977, 42, 260.
- 198. Parham, W. E.; Bradsher, C. K. Acc. Chem. Res. 1982, 15, 300.
- 199. Bolitt, V.; Mioskowski, C.; Reddy, S. P.; Falck, J. R. Synthesis 1988, 388.
- 200. Köbrich, G.; Buck, P. Chem. Ber. 1970, 103, 1412.
- 201. Buck, P.; Köbrich, G. Chem. Ber. 1970, **103**, 1420.
- 202. Cameron, J. F.; Fréchet, J. M. J. J. Am. Chem. Soc. 1991, 113, 4303.
- 203. Caine, D.; Frobese, A. S. Tetrahedron Lett. 1978, 5167.
- 204. Negishi, E.; Boardman, L. D.; Tour, J. M.; Sawada, H.; Rand, C. L. J. Am. Chem. Soc. 1983, **105**, 6344.
- 205. Sengupta, S.; Snieckus, V. J. Org. Chem. 1990, 55, 5680.
- 206. Duhamel, L.; Duhamel, P.; Enders, D.; Karl, W.; Leger, F.; Poirier, J. M.; Raabe, G. Synthesis 1991, 649.

- 207. Cooke, M. P. J. Org. Chem. 1984, 49, 1144.
- 208. Cooke, M. P.; Widener, R. K. J. Org. Chem. 1987, 52, 1381.
- 209. Tucker, C. E.; Majid, T. N.; Knochel, P. J. Am. Chem. Soc. 1992, **114**, 3983.
- 210. Cahiez, G.; Venegas, P.; Tucker, C. E.; Majid, T. N.; Knochel, P. J. Chem. Soc., Chem. Commun. 1992, 1406.
- 211. Gillet, J.-P.; Sauvêtre, R.; Normant, J.-F. Tetrahedron Lett. 1985, **26**, 3999.
- 212. Tellier, F.; Sauvêtre, R.; Normant, J.-F. J. Organomet. Chem. 1986, **303**, 309.
- 213. Tellier, F.; Sauvêtre, R.; Normant, J.-F. J. Organomet. Chem. 1987, **328**, 1.
- 214. Tellier, F.; Sauvêtre, R.; Normant, J.-F.; Dromzee, Y.; Jeannin, Y. J. Organomet. Chem. 1987, **331**, 281.
- 215. Martinet, P.; Sauvêtre, R.; Normant, J. F. J. Organomet. Chem. 1989, **367**, 1.
- 216. Bailey, W. F.; Patricia, J. J. J. Organomet. Chem. 1988, 352, 1.
- 217. Bailey, W. F.; Punzalan, E. R. J. Org. Chem. 1990, 55, 5404.
- 218. Negishi, E.; Swanson, D. R.; Rousset, C. J. J. Org. Chem. 1990, **55**, 5406.
- 219. Seebach, D.; Neumann, H. Chem. Ber. 1974, 107, 847.
- 220. Cahiez, G.; Bernard, D.; Normant, J. F. Synthesis 1976, 245.
- 221. Superchi, S.; Sotomayor, N.; Miao, G.; Joseph, B.; Snieckus, V. Tetrahedron Lett. 1996, **37**, 6057.
- 222. Lorthiois, E.; Marek, I.; Normant, J. F. Tetrahedron Lett. 1997, 38, 89.
- 223. Karoyan, P.; Chassaing, G. Tetrahedron Lett. 1997, 38, 85.
- 224. Karoyan, P.; Triolo, A.; Nannicini, R.; Gianotti, D.; Altamura, M.; Chassaing, G.; Perotta, E., Tetrahedron Lett. 1999, **40**, 71.
- 225. Lorthiois, E.; Marek, I.; Normant, J. F. J. Org. Chem. 1998, 63, 566.
- 226. Lorthiois, E.; Marek, I.; Normant, J. F. J. Org. Chem. 1998, 63, 2442.
- 227. Kubota, K.; Nakamura, E. Angew. Chem. Int., Ed. Engl. 1997, 36, 2491.
- 228. Nakamura, E.; Sakata, G.; Kubota, K. Tetrahedron Lett. 1998, 39, 2157.
- 229. Boymond, L.; Rottländer, M.; Cahiez, G.; Knochel, P. Angew. Chem., Int. Ed. Engl. 1998, **37**, 1701.
- 230. Giovannini, R.; Knochel, P. J. Am. Chem. Soc. 1998, **120**, 11186.
- 230a Rottländer, M.; Boymond, L.; Bérillon, L.; Leprêtre, A.; Varchi, G.; Avolio, . S.; Laaziri, H.; Quéguiner, G.; Ricci, A.; Cahiez, G.; Knochel, P. Chem. Eur. J. 2000, 6, 767.
- 231. Bérillon, L.; Leprêtre, A.; Turck, A.; Plé, N.; Quéguiner, G.; Cahiez, G.;

Knochel, P. Synlett 1998, 1359.

- 232. Rottländer, M.; Boymond, L.; Cahiez, G.; Knochel, P. J. Org. Chem. 1999, **64**, 1080.
- 233. Thiele, K.-H.; Zdunneck, P. J. Organomet. Chem. 1965, 4, 10.
- 234. Zakharin, L. I.; Okhlobystin, O. Y., Z. Obshch. Chim. 1960, **30**, 2134; Engl. trans., p. 2109, Chem. Abstr. 1961, **55**, 9319a.
- 235. Thiele, K.-H.; Engelhardt, G.; Köhler, J.; Arnstedt, M. J. Organomet. Chem. 1967, **9**, 385.
- 236. Srebnik, M. Tetrahedron Lett. 1991, 32, 2449.
- 237. Oppolzer, W.; Radinov, R. N. Helv. Chim. Acta 1992, 75, 170.
- 238. Oppolzer, W.; Radinov, R. N. J. Am. Chem. Soc. 1993, 115, 1593.
- 239. Langer, F.; Waas, J.; Knochel, P. Tetrahedron Lett. 1993, 34, 5261.
- 240. Langer, F.; Devasagayaraj, A.; Chavant, P.-Y.; Knochel, P. Synlett 1994, 410.
- 241. Köster, R.; Griasnow, G.; Larbig, W.; Binger, P. Liebigs Ann. Chem. 1964, 672, 1.
- 242. Langer, F.; Schwink, L.; Devasagayaraj, A.; Chavant, P.-Y.; Knochel, P. J. Org. Chem. 1996, **61**, 8229.
- 243. Frankland, E.; Duppa, D. F. Liebigs Ann. Chem. 1864, 130, 117.
- 244. Tucker, C. E.; Davidson, J.; Knochel, P. J. Org. Chem. 1992, 57, 3482
- 245. Liu, E. K. S. Inorg. Chem. 1980, 19, 266.
- 246. Liu, E. K. S.; Asprey, L. B. J. Organomet. Chem. 1979, 169, 249.
- 247. Wipf, P.; Xu, W. Tetrahedron Lett. 1994, 35, 5197.
- 248. Seyferth, D.; Dertouzos, H.; Todd, L. J. J. Organomet. Chem. 1965, **4**, 18.
- 249. Seyferth, D.; Andrews, S. B. J. Organomet. Chem. 1971, 30, 151.
- 250. Staroscik, J. A.; Rickborn, B. J. Org. Chem. 1972, 37, 738.
- 251. Kawabata, N.; Nakagawa, T.; Nakao, T.; Yamashita, S. J. Org. Chem. 1977, **42**, 3031.
- 252. Johnson, C. R.; Barbachyn, M. R. J. Am. Chem. Soc. 1982, **104**, 4290.
- 253. Fabisch, B.; Mitchell, T. N. J. Organomet. Chem. 1984, 269, 219.
- 254. Bartnik, R.; Mloston, G. Synthesis 1983, 924.
- 255. Arai, I.; Mori, A.; Yamamoto, H. J. Am. Chem. Soc. 1985, **107**, 8254.
- 256. Mash, E.; Nelson, K. A. J. Am. Chem. Soc. 1985, 107, 8256.
- 257. Mori, A.; Arai, I.; Yamamoto, H. Tetrahedron 1986, 42, 6447.
- 258. Sugimura, T.; Futagawa, T.; Tai, A. Tetrahedron Lett. 1988, 29, 5775.
- 259. Sugimura, T.; Futagawa, T.; Yoshikawa, M.; Tai, A. Tetrahedron Lett. 1989, **30**, 3807.

- 260. Mash, E. A.; Nelson, K. A.; Van Deusen, S.; Hemperly, S. B. Org. Synth. 1989, **68**, 92.
- 261. Mash, E. A.; Torok, D. S. J. Org. Chem. 1989, 54, 250.
- Mash, E. A.; Hemperly, S. B.; Nelson, K. A.; Heidt, P. C.; Van Deusen, S. J. Org. Chem. 1990, 55, 2045.
- 263. Newman-Evans, R. H.; Simon, R. J.; Carpenter, B. K. J. Org. Chem. 1990, **55**, 695.
- 264. Friedrich, E. C.; Lewis, E. J. J. Org. Chem. 1990, 55, 2491.
- 265. Imai, T.; Mineta, H.; Nishida, S. J. Org. Chem. 1990, 55, 4986.
- 266. Knochel, P.; Jeong, N.; Rozema, M. J.; Yeh, M. C. P. J. Am. Chem. Soc. 1989, **111**, 6474.
- 267. Knochel, P.; AchyuthaRao, S. J. Am. Chem. Soc. 1990, **112**, 6146.
- 268. Rozema, M. J.; Knochel, P. Tetrahedron Lett. 1991, 32, 1855.
- 269. Burns, M. R.; Coward, J. K. J. Org. Chem. 1993, 58, 528.
- 270. Sidduri, A.; Rozema, M. J.; Knochel, P. J. Org. Chem. 1993, 58, 2694.
- 271. AchyuthaRao, S.; Knochel, P. J. Am. Chem. Soc. 1992, **114**, 7579.
- 272. Negishi, E.; Akiyoshi, K. J. Am. Chem. Soc. 1988, 110, 646.
- 273. Negishi, E.; Akiyoshi, K.; O'Connor, B.; Takagi, K.; Wu, G. J. Am. Chem. Soc. 1989, **111**, 3089.
- 274. Miller, J. A. J. Org. Chem. 1989, 54, 998.
- 275. Kocienski, P.; Wadmann, S.; Cooper, K., J. Am. Chem. Soc. 1989, **111**, 2363.
- 276. Mortimore, M.; Kocienski, P. Tetrahedron Lett. 1988, 27, 3357.
- 277. Ramig, K.; Bhupathy, M.; Cohen, T. J. Org. Chem. 1989, 54, 4404.
- 278. Charreau, P.; Julia, M.; Verpeaux, J.-N. J. Organomet. Chem. 1989, **379**, 201.
- 279. Michnick, T. J.; Matteson, D. S. Synlett 1991, 631.
- 280. Nguyen, T.; Negishi, E. Tetrahedron Lett. 1991, **32**, 5903.
- 281. Villiéras, J.; Reliquet, A.; Normant, J. F. J. Organomet. Chem. 1978, 144, 1, 263.
- 282. Villiéras, J.; Reliquet, A.; Normant, J. F. Synthesis 1978, 27.
- 283. Harada, T.; Hattori, K.; Katsuhira, T.; Oku, A. Tetrahedron Lett. 1989, **30**, 6035, 6039.
- 284. Harada, T.; Katsuhira, T.; Hattori, K.; Oku, A. J. Org. Chem. 1993, **58**, 2958.
- 285. Harada, T.; Hara, D.; Hattori, K.; Oku, A. Tetrahedron Lett. 1988, **29**, 3821.
- 286. Harada, T.; Kotani, Y.; Katsuhira, T.; Oku, A. Tetrahedron Lett. 1991, **32**, 1573.

- 287. Harada, T.; Katsuhira, T.; Oku, A. J. Org. Chem. 1992, 57, 5805.
- 288. Katsuhira, T.; Harada, T.; Maejima, K.; Osada, A.; Oku, A. J. Org. Chem. 1993, **58**, 6166.
- 289. Yang, Z.-Y.; Wiemers, D. M.; Burton, D. J. J. Am. Chem. Soc. 1992, **114**, 4402.
- 290. Brogan, J. B.; Zercher, C. K. J. Org. Chem. 1997, 62, 6444.
- 291. Charette, A. B.; Juteau, H. J. Am. Chem. Soc. 1994, 116, 2651.
- 291a Charette, A. B.; Lebel, H. J. Org. Chem. 1995, 60, 2966.
- 292. Charette, A. B.; Lebel, H. J. Am. Chem. Soc. 1996, 118, 10327.
- 293. Barrett, A. G. M.; Kasdorf, K. J. Am. Chem. Soc. 1996, **118**, 11030.
- 294. Charette, A. B.; Lemay, J. Angew. Chem., Int. Ed. Engl. 1997, 36, 1090.
- 295. Aggarwal, V. K.; Amjad, A.; Coogan, M. P. J. Org. Chem. 1997, **62**, 8628.
- 296. Jones, P.; Millot, N.; Knochel, P. Chem. Commun. 1998, 2405.
- 297. Jones, P.; Knochel, P. J. Org. Chem. 1999, 64, 186.
- 298. Jones, P.; Knochel, P. Chem. Commun. 1998, 2407.
- 299. Millot, N.; Knochel, P. Tetrahedron Lett. 1999, 40, 7779.
- 300. Sosnovsky, G.; Brown, J.H. Chem. Rev. 1966, 66, 529.
- 301. Walling, C.; Buckler, S.A. J. Am. Chem. Soc. 1955, 77, 6032.
- 302. Riess, J.G.; Le Blanc, M. Angew. Chem. 1978, 90, 654.
- 303. Klement, I.; Knochel, P. Synlett 1995, 1113.
- 303a Klement, I.; Lütjens, H.; Knochel, P. Tetrahedron 1997, 53, 9135.
- 304. Klement, I.; Lennick, K.; Tucker, C.E.; Knochel, P. Tetrahedron Lett. 1993, **34**, 4623.
- 305. Casey, C.P.; Polichnowski, S.W. J. Am. Chem. Soc. 1978, 100, 7565.
- 306. Maher, J.M.; Beatty, R.P.; Cooper, N.J. Organometallics 1985, 4, 1354.
- 307. Lee, I.; Cooper, N.J. J. Am. Chem. Soc. 1993, 115, 4389.
- 308. Stadtmüller, H.; Knochel, P. Organometallics 1995, 14, 3163.
- 309. Millot, N.; Piazza, C.; Avolio, S.; Knochel, P. Synthesis 2000, 941.
- 310. Langer, F.; Knochel, P. Tetrahedron Lett. 1995, 36, 4591.
- 311. Langer, F.; Püntener, K.; Stürmer, R.; Knochel, P. Tetrahedron : Asymmetry 1997, **8**, 715.
- 312. Longeau, A.; Langer, F.; Knochel, P. Tetrahedron Lett. 1996, 37, 2209.
- 313. Lamaty, F.; Lazaro, R.; Martinez, J. Tetrahedron Lett. 1997, 38, 1447.
- 314. Reddy, C.K.; Devasagayaraj, A.; Knochel, P. Tetrahedron Lett. 1996, **37**, 4495.

- 314a Kitamura, M.; Miki, T.; Nakano, K.; Noyori, R. Tetrahedron Lett. 1996, . **37**, 5141.
- 315. Posner, G. Org. React. 1972, 19, 1.
- 316. Lipshutz, B.H. Synthesis 1987, 325.
- 317. Lipshutz, B.H.; Sengupta, S. Org. React. 1992, 41, 135.
- 318. Posner, G. Org. React. 1975, 22, 253.
- 319. Stemmler, T. L.; Penner-Hahn, J.E.; Knochel, P. J. Am. Chem. Soc. 1993, **115**, 348.
- 320. Janakiram Rao, C.; Knochel, P. unpublished results, Ann Arbor 1991.
- 321. Teunissen, H.T.; Bickelhaupt, F. Tetrahedron Lett. 1992, 33, 3537.
- 322. Nakamura, E.; Sekiya, K.; Arai, M. Aoki, S. J. Am. Chem. Soc. 1989, **111**, 3091.
- 323. Arai, M.; Kawasuji, T.; Nakamura, E. J. Org. Chem. 1993, 58, 5121.
- 324. Sekiya, K.; Nakamura, E. Tetrahedron Lett. 1988, 29, 5155.
- 325. Dübner, F.; Knochel, P. Angew. Chem., Int. Ed. Engl. 1999, 38, 379.
- 325a Dübner, F.; Knochel, P. Tetrahedron Lett. 2000, 41, 9233.
- 326. Rigby, J.H.; Kirova-Snover, M. Tetrahedron Lett. 1997, 38, 8153.
- 327. Sörensen, H.; Greene, A.E. Tetrahedron Lett. 1990, 31, 7597.
- 328. Tucker, C.E.; Knochel, P. Synthesis 1993, 530.
- 329. Sidduri, A.; Budries, N.; Laine, R.M.; Knochel, P. Tetrahedron Lett. 1992, **33**, 7515.
- 330. Marquais, S.; Cahiez, G.; Knochel, P. Synlett 1994, 849.
- 331. Tucker, C.E.; Knochel, P. J. Org. Chem. 1993, 58, 4781.
- 332. Giovannini, R.; Stüdemann, T.; Dussin, G.; Knochel, P. Angew. Chem., Int. Ed. Engl. 1998, 78, 2387.
- 333. Devasagayaraj, A.; Stüdemann, T.; Knochel, P. Angew. Chem., Int. Ed. Engl. 1995, 34, 2723.
- 334. Almena, P.J.J.; Ireland, T.; Knochel, P. Tetrahedron Lett. 1997, **38**, 5961.
- 335. Almena, P.J.J.; Börner, A.; Knochel, P. Tetrahedron Lett. 1998, **39**, 8073.
- 336. Lotz, M.; Ireland, T.; Almena, P.J.J.; Knochel, P. Tetrahedron : Asymmetry 1999, **10**, 1839.
- 337. Eick, H.; Knochel, P. Angew. Chem., Int. Ed. Engl. 1996, 35, 218.
- 338. Prasad, A. S. B.; Eick, H.; Knochel, P. J. Organomet. Chem. 1998, **562**, 133.
- 339. Soai, K.; Suzuki, T.; Shono, T. J. Chem. Soc., Chem. Commun. 1994, 317.

- 340. El Alami, N.; Belaud, C.; Villiéras, J. J. Organomet. Chem. 1987, **319**, 303.
- 341. Knochel, P.; Normant, J.-F. Tetrahedron Lett. 1984, 25, 4383.
- 342. Rousseau, G.; Conia, J.M. Tetrahedron Lett. 1981, 22, 649.
- 343. Rousseau, G.; Drouin, J. Tetrahedron 1983, 39, 2307.
- 344. Miginiac, L. In *The Chemistry. of the Metal-Carbon Bond*, Hartley, F.R.; Patai, S.; Eds., Wiley, New. York, 1985, Vol. **3**, p. 99.
- 345. Knochel, P. In *Comprehensive Organic Synthesis*, Trost, B.M.; Fleming, I.; Schreiber, S.L.; Eds., Pergamon, Oxford 1991, vol. **1**, p. 211.
- 346. Alami, N.E.; Belaud, C.; Villiéras, J. Tetrahedron Lett. 1987, 28, 59.
- 347. El Alami, N.; Belaud, C.; Villiéras, J. J. Organomet. Chem. 1988, 348, 1.
- 348. Villiéras, J.; Rambaud, M. Synthesis 1982, 924.
- 349. Villiéras, J.; Villiéras, M. Janssen Chimica Acta 1993, 11 (3), 3.
- 350. Dembélé, Y.A.; Belaud, C.; Hitchcock, P.; Villiéras, J. Tetrahedron: Asymmetry 1992, **3**, 351.
- 351. Dembélé, Y.A.; Belaud, C.; Villieras, J. Tetrahedron : Asymmetry 1992, 3, 511.
- 352. Knochel, P.; Normant, J.-F. J. Organomet. Chem. 1986, 309, 1.
- 353. van der Louw, J.; van der Baan, J.L.; Bickelhaupt, F.; Klumpp, G.W. Tetrahedron Lett. 1987, **28**, 2889.
- 354. van der Louw, J.; van der Baan, J.L.; Stieltjes, H.; Bickelhaupt, F.; Klumpp, G.W. Tetrahedron Lett. 1987, **28**, 5929.
- 355. van der Louw., J.; van der Baan, J.L.; Stichter, H.; Out, G.J.J.; Bickelhaupt, F.; Klumpp, G.W. Tetrahedron Lett. 1988, **29**, 3579.
- 356. van der Louw, J.; van der Baan, J.L.; Stichter, H.; Out, G.J.J.; de Kanter, F.J.J.; Bickelhaupt, F.; Klumpp, G.W. Tetrahedron 1992, **48**, 9877.
- 357. van der Louw, J.; van der Baan, J.L.; Out, G.J.J.; de Kanter, F.J.J.; Bickelhaupt, F.; Klumpp, G.W. Tetrahedron 1992, **48**, 9901.
- 358. van der Heide, T.A.; van der Baan, J.L.; Bickelhaupt, F.; Klumpp, G.W. Tetrahedron Lett. 1992, **33**, 475.
- 359. Molander, G.A.; Shubert, D.C. J. Am. Chem. Soc. 1986, 108, 4683.
- 360. Moreau, J.L. In *The Chemistry of Ketenes, Allenes and Related Compounds* Patai, S.; Ed.; Wiley, New York, 1980, p. 363.
- 361. Moreau, J.L.; Gaudemar, M. Bull. Soc. Chim. Fr. 1970, 2171, 2175.
- 362. Moreau, J.L. Bull. Soc. Chim. Fr. 1975, 1248.
- 363. Suzuki, M.; Morita, Y.; Noyori, R. J. Org. Chem. 1990, 55, 441.
- 364. Yamamoto, H. In Comprehensive Organic Synthesis, Trost, B.M.; Fleming, I.; Schreiber, S.L.; Eds., Pergamon, Oxford 1991, vol. 2, p. 81.
- 365. Zweifel, G.; Hahn, G. J. Org. Chem. 1984, 49, 4565.

- 366. Thompson, W.J.; Tucker, T.J.; Schwering, J.E.; Barnes, J.L. Tetrahedron Lett. 1990, **31**, 6819.
- 367. DeCamp, A.E.; Kawaguchi, A.T.; Volante, R.P.; Shinkai, I. Tetrahedron Lett. 1991, **32**, 1867.
- 368. Tamaru, Y.; Nakamura, T.; Sakaguchi, M.; Ochiai, H.; Yoshida, Z. J. Chem. Soc., Chem. Commun. 1988, 610.
- 369. Berninger, J.; Koert, U.; Eisenberg-Höhl, C.; Knochel, P. Chem. Ber. 1995, **128**, 1021.
- 370. Reetz, M.T. In *Organotitanium Reagents in Organic Synthesis*, Springer, Berlin 1986.
- 371. Quinton, P.; Le Gall, T. Tetrahedron Lett. 1991, 32, 4909.
- 372. Gangloff, A.R.; Akermark, B.; Helquist, P. J. Org. Chem. 1992, 57, 4797.
- 373. Powell, N.A.; Rychnovsky, S.D. J. Org. Chem. 1999, 64, 2026.
- 374. Rychnovsky, S.D.; Powell, N.A. J. Org. Chem. 1997, 62, 6460.
- 374a Solladié-Cavallo, A.; Farkhani, D.; Fritz, S.; Lazrak, T.; Suffert, J. . Tetrahedron Lett. 1984, **25**, 4117.
- 375. Evans, D. A. Science 1988, 240, 420.
- 376. Noyori, R.; Kitamura, M. Angew. Chem., Int. Ed. Engl. 1991, 30, 49.
- 377. Wissing, E.; Havenith, R. W. A.; Boersma, J.; van Koten, G. Tetrahedron Lett. 1992, **33**, 7933.
- 378. van der Steen, F.H.; Kleijn, H.; Jastrebski, J.T.B.H.; van Koten, G. J. Org. Chem. 1991, **56**, 5147.
- 379. van Maanen, H.L.; Jastrebski, J. T. B. H.; Verweij, J.; Kieboom, A. P. G.; Spek, A. L.; van Koten, G. Tetrahedron: Asymmetry 1993, **4**, 1441.
- 380. Soai, K.; Hatanaka, T.; Miyazawa, T. J. Chem. Soc., Chem. Commun. 1992, 1097.
- 381. Katritzky, A.R.; Harris, P.A. Tetrahedron: Asymmetry 1992, **3**, 437.
- 382. Comins, D.L.; O'Connor, S. Tetrahedron Lett. 1987, 28, 1843.
- 383. Shiao, M.-J.; Liu, K.-H.; Lin, L.-G. Synlett 1992, 655.
- 384. Chia, W.-L.; Shiao, M.-J. Tetrahedron Lett. 1991, 32, 2033.
- 385. Shing, T.-L.; Chia, W.-L.; Shiao, M.-J.; Chau, T.-Y. Synthesis 1991, 849.
- 386. Shiao, M.-J.; Chia, W.-L.; Shing, T.-L.; Chow, T. J. J. Chem. Research (S) 1992, 247.
- 387. Agami, C.; Couty, F.; Daran, J.-C.; Prince, B.; Puchot, C. Tetrahedron Lett. 1990, **31**, 2889.
- 388. Agami, C.; Couty, F.; Poursoulis, M.; Vaissermann, J. Tetrahedron 1992, **48**, 431.
- 389. Andrés, C.; Gonzales, A.; Pedrosa, R.; Perez-Encabo, A.; Garcia-Granda, S.; Salvado, M.A.; Gomez-Beltran, F. Tetrahedron Lett.

1992, **33**, 4743.

- 390. Eguchi, M.; Zeng, Q.; Korda, A.; Ojima, I. Tetrahedron Lett. 1993, **34**, 915.
- 391. Comins, D.L.; Foley, M.A. Tetrahedron Lett. 1988, 29, 6711.
- 392. Bettiol, J.-L.; Sundberg, R.J. J. Org. Chem. 1993, 58, 814.
- 393. Yamada, J.; Sato, H.; Yamamoto, Y: Tetrahedron Lett. 1989, 30, 5611.
- 394. Stemmler, T. L.: Barnhart, T. M.; Penner-Hahn, J.E.; Tucker, C. E.; Knochel, P.; Böhme, M.; Frenking, G. J. Am. Chem. Soc. 1995, **117**, 12489.
- 395. Cahiez, G.; Marquais, S.; Alami, M. Org. Synth. 1993, 72, 135.
- 396. Chuit, C.; Foulon, J.P.; Normant, J.-F. Tetrahedron 1981, 37, 1385.
- 397. Bourgain-Commerçon, M.; Foulon, J.P.; Normant, J.-F. J. Organomet. Chem. 1982, **228**, 321.
- 398. Corey, E.J.; Boaz, N.W. Tetrahedron Lett. 1985, 26, 6015, 6019.
- 399. Alexakis, A.; Berlan, J.; Besace, Y. Tetrahedron Lett. 1986, 27, 1047.
- 400. Horiguchi, Y.; Matsuzawa, S.; Nakamura, E.; Kuwajima, I. Tetrahedron Lett. 1986, **27**, 4025.
- 401. Nakamura, E.; Matsuzawa, S.; Horiguchi, Y.; Kuwajima, I. Tetrahedron Lett. 1986, **27**, 4029.
- 402. Bergdahl, M.; Lindstedt, E.-L.; Nilsson, M.; Olsson, T. Tetrahedron 1988, 44, 2055.
- 403. Bergdahl, M.; Lindstedt, E.-L.; Nilsson, M.; Olsson, T. Tetrahedron 1989, 45, 535.
- 404. Bergdahl, M.; Lindstedt, E.-L.; Olsson, T. J. Organomet. Chem. 1989, **365**, C11.
- 405. Bergdahl, M.; Nilsson, M.; Olsson, T. J. Organomet. Chem. 1990, **391**, C19.
- 406. Bergdahl, M.; Eriksson, M.; Nilsson, M.; Olsson, T. J. Org. Chem. 1993, **58**, 7238.
- 407. Chuit, C.; Foulon, J.P.; Normant, J.-F. Tetrahedron 1980, **36**, 2305.
- 408. Kiwe, S.; Lee, J.M. Tetrahedron Lett. 1990, 31, 7627.
- 409. Lipshutz, B.H.; Wood, M.R. J. Am. Chem. Soc. 1993, **115**, 12625.
- 410. Tsujiyama, H.; Ono, N.; Yoshino, T.; Okamoto, S.; Sato, F. Tetrahedron Lett. 1990, **31**, 4481.
- 411. Yoshino, T.; Okamoto, S.; Sato, F. J. Org. Chem. 1991, 56, 3205.
- 412. Miyaji, K.; Ohara, Y.; Miyauchi, Y.; Tsuruda, T.; Arai, K. Tetrahedron Lett. 1993, **34**, 5597.
- 413. Feringa, B.L.; Pineschi, M.; Arnold, L.A.; Imbos, R.; de Vries, A.H.M. Angew. Chem., 1997, **109**, 2733.

- 414. Naasz, R.; Arnold, L.A.; Pineschi, M.; Keller, E.; Feringa, B.L. J. Am. Chem. Soc., 1999, **121**, 1104.
- 415. Greene, A.E.; Lansard, J.P.; Luche, J.-L.; Petrier, C. J. Org. Chem. 1984, **49**, 931.
- 416. Soai, K.; Hayasaka, T.; Ugajin, S.; Yokoyama, S. Chem. Lett. 1988, 1571.
- 417. Jansen, J.F.G.A.; Feringa, B.L. Tetrahedron: Asymmetry, 1992, 3, 581.
- 418. Jansen, J.F.G.A.; Feringa, B.L. J. Org. Chem. 1990, 55, 4168.
- 419. Bolm, C.; Ewald, M. Tetrahedron Lett. 1990, 31, 5011.
- 420. Bolm, C. Tetrahedron: Asymmetry 1991, 2, 701.
- 421. Uemura, M.; Miyake, R.; Nakayama, K.; Hayashi, Y. Tetrahedron: Asymmetry, 1992, **3**, 713.
- 422. Soai, K.; Yokoyama, S.; Hayasaka, T.; Ebihara, K. J. Org. Chem. 1988, **53**, 4149.
- 423. Soai, K.; Okudo, M.; Okamoto, M. Tetrahedron Lett. 1991, 32, 95.
- 424. Jansen, J.F.G.A.; Feringa, B.L. J. Chem. Soc., Chem. Commun. 1989, 741.
- 425. Bolm, C.; Felder, M.; Müller, J. Synlett. 1992, 439.
- 426. de Vries, A.H.M.; Jansen, J.F.G.A.; Feringa, B.L. Tetrahedron 1994, **50**, 4479.
- 427. Asami, M.; Usui, K.; Higuchi, S.; Inoue, S. Chem. Lett. 1994, 297.
- 428. Villacorta, G.M.; Rao, C.P.; Lippard, S.J. J. Am. Chem. Soc. 1988, **110**, 3175.
- 429. Ahn, K.-H.; Klassen, R.B.; Lippard, S.J. Organometallics 1990, 9, 3178.
- 430. Seebach, D.; Colvin, E.W.; Lehr, F.; Weller, T. Chimia 1979, 33, 1.
- 431. Yoshikoshi, A.; Miyashita, M. Acc. Chem. Res. 1985, 18, 284.
- 432. Barrett, A.G.M.; Graboski, G.G. Chem. Rev. 1986, 86, 751.
- 433. Rosini, G.; Ballini, R. Synthesis 1988, 833.
- 434. Tamura, R.; Kamimura, A.; Ono, N. Synthesis 1991, 423.
- 435. Knochel, P.; Seebach, D. Tetrahedron Lett. 1981, 2, 3223.
- 436. Knochel, P.; Seebach, D. Tetrahedron Lett. 1982, 23, 3897.
- 437. Seebach, D.; Knochel, P. Helv. Chim. Acta 1984, 67, 261.
- 438. Bowlus, S.B. Tetrahedron Lett. 1975, 3591.
- 439. Hansson, A.-T.; Nilsson, M. Tetrahedron 1982, 38, 389.
- 440. Stiver, S.; Yates, P. J. Chem. Soc., Chem. Commun. 1983, 50.
- 441. Denmark, S.E.; Marcin, L.R. J. Org. Chem. 1993, 58, 3850.
- 442. Crimmins, M.T.; Nantermet, P.G. J. Org. Chem. 1990, 55, 4235.
- 443. Crimmins, M.T.; Nantermet, P.G.; Trotter, B.W.; Vallin, I.M.; Watson,

P.S.; McKerlie, L.A.; Reinhold, T.L.; Cheung, A.W.-H.; Steton, K.A.; Dedopoulou, D.; Gray, J.L. J. Org. Chem. 1993, **58**, 1038.

- 444. Crimmins, M.T.; Jung, D.K.; Gray, J.L. J. Am. Chem. Soc. 1993, **115**, 3146.
- 445. Knochel, P. "Carbometallation of Alkenes and Alkynes", in Comprehensive Organic Chemistry, Vol. 4, Trost, B.M., Ed., Pergamon Press 1991, p. 865.
- 446. Normant, J.-F.; Alexakis, A. Synthesis 1981, 841.
- 447. van der Louw, J.; Komen, C.M.D.; Knol, A.; de Kanter, F.J.J.; van der Baan, J.L.; Bickelhaupt, F.; Klumpp, G.W. Tetrahedron Lett. 1989, **30**, 4453.
- 448. Negishi, E.; Miller, J.A. J. Am. Chem. Soc. 1983, 105, 6761.
- 449. Molander, G.A. J. Org. Chem. 1983, 48, 5409.
- 450. Yanagisawa, A.; Habaue, S.; Yamamoto, H. J. Am. Chem. Soc. 1989, **111**, 366.
- 451. Kubota, K.; Nakamura, M.; Isaka, M.; Nakamura, E. J. Am. Chem. Soc. 1993, **115**, 5867.
- 452. Negishi, E.; Van Horn, D.E.; Yoshida, T.; Rand, C.L. Organometallics 1983, **2**, 563.
- 453. Lehmkuhl, H.; Olbrysch, O. Liebigs Ann. Chem. 1975, 1162.
- 454. Lehmkuhl, H.; Döring, I.; Nehl, H. J. Organomet. Chem. 1981, 221, 123.
- 455. Lehmkuhl, H.; Nehl, H. J. Org. Chem. 1981, 221, 131.
- 456. Auger, J.; Courtois, G.; Miginiac, L. J. Organomet. Chem. 1977, **133**, 285.
- 457. Gaudemar, M. C.R. Hebd. Sceances Acad. Sci., Ser. C 1971, **273**, 1669.
- 458. Frangin, Y.; Gaudemar, M. C.R. Hebd. Sceances Acad. Sci., Ser. C 1974, **278**, 885.
- 459. Bellasoued, M.; Frangin, Y.; Gaudemar, M. Synthesis 1977, 205.
- 460. Knochel, P.; Normant, J.-F. Tetrahedron Lett. 1986, 27, 1039.
- 460a Knochel, P.; Normant, J.-F. Tetrahedron Lett. 1986, 27, 1043.

460b Knochel, P.; Normant, J.-F. Tetrahedron Lett. 1986, 27, 4427.

- 460c. Knochel, P.; Normant, J.-F. Tetrahedron Lett. 1986, 27, 5727.
- 461. Beruben, D.; Marek, I.; Labaudinière, L.; Normant, J.-F. Tetrahedron Lett. 1993, **34**, 2303.
- 462. Normant, J.-F.; Quirion, J.-C. Tetrahedron Lett. 1989, **30**, 3959.
- 463. Marek, I.; Lefrançois, J.-M.; Normant, J.-F. Synlett 1992, 633.

- 464. Marek, I.; Lefrançois, J.-M.; Normant, J.-F. Tetrahedron Lett. 1992, **33**, 1747.
- 465. Marek, I.; Lefrançois, J.-M.; Normant, J.-F. Tetrahedron Lett. 1991, **32**, 5969.
- 466. Marek, I.; Normant, J.-F. Tetrahedron Lett. 1991, 32, 5973.
- 467. Knochel, P.; Xiao, C.; Yeh, M.C.P. Tetrahedron Lett. 1988, 29, 6697.
- 468. Meyer, C.; Marek, I.; Courtemanche, G.; Normant, J.-F. Synlett. 1993, 266.
- 469. Meyer, C.; Marek, I.; Courtemanche, G.; Normant, J.-F. Tetrahedron Lett. 1993, **34**, 6053.
- 470. Vaupel, A.; Knochel, P. Tetrahedron Lett. 1994, 35, 8349.
- 471. Rao, S.A.; Knochel, P. J. Am. Chem. Soc. 1991, 113, 5735.
- 472. Bertrand, M.T.; Courtois, G.; Miginiac, L. Tetrahedron Lett. 1974, 1945.
- 473. Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, **94**, 4374.
- 474. Corriu, R.J.P.; Masse, J.P. J. Chem. Soc., Chem. Commun. 1972, 144.
- 475. Negishi, E.; King, A.O.; Okukado, N. J. Org. Chem. 1977, 42, 1821.
- 476. Rossi, R.; Bellina, F.; Carpita, A.; Gori, R. Synlett 1995, 344.
- 477. Negishi, E.; Matsushita, H.; Kobayashi, M.; Rand, C.L. Tetrahedron Lett. 1983, **24**, 3823.
- 478. Millar, J.G. Tetrahedron Lett. 1989, 30, 4913.
- 479. Hyuga, S.; Yamashina, N.; Hara, S.; Suzuki, A. Chem. Lett. 1988, 809.
- 480. Löffler, A.; Himbert, G. Synthesis 1992, 495.
- 481. Mignani, G.; Leising, F.; Meyrueix, R.; Samson, H. Tetrahedron Lett. 1990, **31**, 4743.
- 482. Borner, R.C.; Jackson, R.F.W. J. Chem. Soc., Chem. Commun. 1994, 845.
- 483. Sakamoto, T.; Kondo, Y.; Takazawa, N.; Yamanaka, H. Tetrahedron Lett. 1993, **34**, 5955.
- 484. Sakamoto, T.; Kondo, Y.; Murata, N.; Yamanaka, H. Tetrahedron Lett. 1992, **33**, 5373.
- 485. Sakamoto, T.; Kondo, Y.; Takazawa, N.; Yamanaka, H. Heterocycles 1993, **36**, 941.
- 486. Trauner, D.; Schwartz, J.B.; Danishefsky, S.J. Angew. Chem., Int. Ed. Engl. 1999, **38**, 3543.
- 487. Bell, A.S.; Roberts, D.A.; Ruddock, K.S. Synthesis 1987, 843.
- 488. Minato, A.; Suzuki, K.; Tamao, K.; Kumada, M. Tetrahedron Lett. 1984, **25**, 2583.
- 489. Quesnelle, C.A.; Familoni, O.B.; Snieckus, V. Synlett 1994, 349.

- 490. Sakamoto, T.; Nishimura, S.; Kondo, Y.; Yamanaka, H. Synthesis 1988, 485.
- 491. Sato, T.; Kawase, A.; Hirose, T. Synlett 1992, 891.
- 492. Yuan, K.; Scott, W.J. Tetrahedron Lett. 1989, 30, 4779.
- 493. Yuan, K.; Scott, W.J. J. Org. Chem. 1990, 55, 6188.
- 494. Park, K.; Yuan, K.; Scott, W.J. J. Org. Chem. 1993, 58, 4866.
- 495. Tamaru, Y.; Ochiai, H.; Nakamura, T.; Yoshida, Z. Org. Synth. 1988, **67**, 98.
- 496. Tamaru, Y.; Yasui, K.; Takanabe, H.; Tanaka, S.; Fugami, K. Angew. Chem. 1992, **104**, 662.
- 497. Asaoka, M.; Tamaka, M.; Houkawa, T.; Ueda, T.; Sakami, S.; Takei, H. Tetrahedron 1998, **54**, 471.
- 498. Murata, N.; Sugihara, T.; Kondo, Y.; Sakamoto, T. Synlett 1997, 298.
- 499. Rossi, R.; Bellina, F.; Bechini, C.; Mannina, L.; Vergamini, P. Tetrahedron 1998, **54**, 135.
- 500. Gao, Y.; Harada, K.; Hata, T.; Urabe, H.; Sato, F. J. Org. Chem. 1995, **60**, 290.
- 501. Utimoto, K.; Toda, N.; Mizuno, T.; Kobata, M.; Matsubara, S. Angew. Chem., Int. Ed. Engl. 1997, **36**, 2804.
- 502. Oguni, N.; Omi, T.; Yamamoto, Y.; Nakamura, A. Chem. Lett. 1983, 841.
- 503. Oguni, N.; Omi, T. Tetrahedron Lett. 1984, 25, 2823.
- 504. Oguni, N.; Matsuda, Y.; Kaneko, T. J. Am. Chem. Soc. 1988, **110**, 7877.
- 505. Yoshioka, M.; Kawakita, T.; Ohno, M. Tetrahedron Lett. 1989, 30, 1657.
- 506. Takahashi, H.; Kawakita, T.; Yoshioka, M.; Kobayashi, S.; Ohno, M. Tetrahedron Lett. 1989, **30**, 7095.
- 507. Takahashi, H.; Kawakita, T.; Ohno, M.; Yoshioka, M.; Kobayashi, S. Tetrahedron 1992, **48**, 5691.
- 508. Beck, A.K.; Bastani, B.; Plattner, D.A.; Petter, W.; Seebach, D.; Braunschweiger, H.; Gysi, P.; LaVecchia, L. Chimia 1991, **45**, 238.
- 509. Schmidt, B.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1991, 30, 99.
- 510. Seebach, D.; Behrendt, L.; Felix, D. Angew. Chem., Int. Ed. Engl. 1991, **30**, 1008.
- 511. Schmidt, B.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1991, **30**, 1321.
- 512. von dem Bussche-Hünnefeld, J.L.; Seebach, D. Tetrahedron 1992, **48**, 5719.
- 513. Seebach, D.; Plattner, D.A.; Beck, A.K.; Wang, Y.M.; Hunziker, D.; Petter, W. Helv. Chim. Acta 1992, **75**, 2171.
- 514. Seebach, D.; Beck, A.K.; Schmidt, B.; Wang, Y.M. Tetrahedron 1994, **50**, 4364.

- 515. Schwink, L.; Knochel, P. Chem. Eur. J. 1998, 4, 950.
- 516. Nowotny, S.; Vettel, S.; Knochel, P. Tetrahedron Lett. 1994, **35**, 4539.
- 517. Brieden, W.; Ostwald, R.; Knochel, P. Angew. Chem., Int. Ed. Engl. 1993, **32**, 582.
- 518. Noyori, R.; Suzuki, M. Angew. Chem., Int. Ed. Engl. 1984, 23, 847.
- 519. Suzuki, M.; Yanagisawa, A.; Noyori, R. J. Am. Chem. Soc. 1990, **107**, 3348.
- 520. Morita, Y.; Suzuki, M.; Noyori, R. J. Org. Chem. 1989, 54, 1785.
- 521. Noyori, R.; Suga, S.; Kawai, K.; Okada, S.; Kitamura, M. Pure Appl. Chem. 1988, **60**, 1597.
- 522. Ostwald, R.; Chavant, P.-Y.; Stadtmüller, H.; Knochel, P. J. Org. Chem. 1994, **59**, 4143.
- 523. Roush, W.R.; Koyama, K. Tetrahedron Lett. 1992, **33**, 6227.
- 524. Vettel, S.; Knochel, P. Tetrahedron Lett. 1994, 35, 5849.
- 525. Lütjens, H.; Knochel, P. Tetrahedron: Asymmetry 1994, 5, 1161.
- 526. Knochel, P.; Brieden, W.; Rozema, M.J.; Eisenberg, C. Tetrahedron Lett. 1993, **34**, 5881.
- 527. Eisenberg, C. Ph. D. Thesis, Marburg, 1994.
- 528. Gopalan, A.S.; Jacobs, H.K. J. Chem. Soc., Perkin Trans 1, 1990, 1897.
- 529. Fürstner, A.; Müller, T. J. Org. Chem. 1998, 63, 424.
- 530. Bäurle, S.; Hoppen, S.; Koert, U. Angew. Chem. 1999, 111, 1341.
- 531. Zhang, W.; Loebach, J.L.; Wilson, S.R.; Jacobsen, E.N. J. Am. Chem. Soc. 1990, **112**, 2801.
- 532. Eisenberg, C.; Knochel, P. J. Org. Chem. 1994, 59, 3760.
- 533. Oppolzer, W.; Radinov, R.N.; de Bradander, J. Tetrahedron Lett. 1995, **36**, 2607.
- 534. Yamamoto, T.; Yamamoto, A.; Ikeda, S. J. Am. Chem. Soc. 1971, **93**, 3350.
- 535. Devasagayaraj, A.; Knochel, P. Tetrahedron Lett. 1995, 36, 8411.
- 536. Reddy, C.K.; Knochel, P. Angew. Chem., Int. Ed. Engl. 1996, 35, 1700.
- 537. Avedissian, H.; Berillon, L.; Cahiez, G.; Knochel, P. Tetrahedron Lett. 1998, **39**, 6163.
- 538. Cahiez, G.; Knochel, P. Tetrahedron Lett. 1996, 37, 5865.
- 539. Ouali, M.; Cahiez, G.; Knochel, P. Synlett. 1998, 143.
- 540. Blomberg, C.; Hartog, F.A. Synthesis 1977, 18.
- 541. Moyano, A.; Pericas, M.A.; Riera, A.; Luche, J.-L. Tetrahedron Lett. 1990, **31**, 7619.
- 542. Pétrier, C.; Luche, J.-L. J. Org. Chem. 1985, 50, 910.
- 543. Pétrier, C.; Einhorn, J.; Luche, J.-L. Tetrahedron Lett. 1985, 26, 1449.

- 544. Wilson, S.R.; Guazzaroni, M.E. J. Org. Chem. 1989, 54, 3087.
- 545. Chan, T.-H.; Li, C.-J. Organometallics 1990, 9, 2649.
- 546. Tokuda, M.; Mimura, N.; Yoshioka, K.; Karasawa, T.; Fujita, H.; Suginome, H. Synthesis 1993, 1086.
- 547. Shono, T.; Nishiguchi, I.; Sasaki, M. J. Am. Chem. Soc. 1978, **100**, 4314.
- 548. Shono, T.; Hamaguchi, H.; Nishiguchi, I.; Sasaki, M.; Miyamoto, T.; Miyamoto, M.; Fujita, S. Chem. Lett. 1981, 1217.
- 549. Giese, B.; Damm, W.; Roth, M.; Zehnder, M. Synlett 1992, 441.
- 550. Blanchard, P.; El Kortbi, M.S.; Fourrey, J.-L.; Robert-Gero, M. Tetrahedron Lett. 1992, **33**, 3319.
- 551. Pérez-Sestelo, J.; Mascarenas, J.L.; Castedo, L.; Mourino, A. Tetrahedron Lett. 1994, **35**, 275.
- 552. Sarandeses, L.A.; Mourino, A.; Luche, J.-L. J. Chem. Soc., Chem. Commun. 1992, 799.
- 553. Hong, F.; Tang, X.; Hu, C. J. Chem. Soc., Chem. Commun. 1994, 289.
- 554. Carofiglio, T.; Marton, D.; Tagliavini, G. Organometallics 1992, **111**, 2961.
- 555. Corey, E.J.; Pyne, S.G. Tetrahedron Lett. 1983, 24, 2821.
- 556. Reetz, M.T. Topics Curr. Chem. 1982, 106, 1.
- 556a Cahiez, G. Actual. Chim. 1984, (Sept), 24.

.

- 557. Weidmann, B.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1983, **22**, 31. 577a Cahiez, G.; Laboue, B. Tetrahedron Lett. 1989, **30**, 3545.
- 558. Cahiez, G.; Laboue, B. Tetrahedron Lett. 1989, 30, 7369.
- 559. Cahiez, G.; Alami, M. Tetrahedron 1989, 45, 4163.
- 560. Cahiez, G.; Chavant, P.-Y.; Metais, E. Tetrahedron Lett. 1992, 33, 5245.
- 561. Cahiez, G.; Figadére, B.; Clery, P. Tetrahedron Lett. 1994, 35, 3065.
- 562. Cahiez, G.; Chau, K.; Clery, P. Tetrahedron Lett. 1994, 35, 3069.
- 563. Heck, R.F. *Palladium Reagents in Organic Synthesis*. Academic Press, London, New York, 1985.
- 564. Fieser, L.F.; Fieser, M. *Reagents for Organic Synthesis*, Wiley: New York, 1967, vol. **1**, 1276.
- 565. Vettel, S.; Lutz, C.; Knochel, P. Synlett 1996, 731.
- 566. Harada, T.; Wada, H.; Oku, A. J. Org. Chem. 1995, 60, 5370.
- 567. Prasad, A. S.; Knochel, P. Tetrahedron 1997, 53, 16711.
- 568. Thorn, S. N.; Gallagher, T. Synlett 1996, 185.
- 569. Lipshutz, B.H.; Woo, K.; Buzard, D.J.; Tirado, R. Synlett 1997, 477.

- 570. Cerè, V.; De Angelis, S.; Pollicino, S.; Ricci, A.; Kishan Reddy, Ch.; Knochel, P.; Cahiez, G. Synthesis 1997, 1174.
- 571. Tanaka, T.; Bannai, K.; Hazato, A.; Koga, M.; Kurozumi, S.; Kato, Y. Tetrahedron 1991, **47**, 1861.
- 572. Billotte, S. Synlett 1998, 379.
- 573. Devasagayaraj, A.; Schwink, L.; Knochel, P. J. Org. Chem. 1995, **60**, 3311.
- 574. Dexter, C.S.; Jackson, R.F.W.; J. Org. Chem. 1999, 64, 7579.
- 575. Matsubara, S.; Otake, Y.; Hashimoto, Y.; Utimoto, K. Chem. Lett. 1999, 747.
- 576. Vettel, S.; Vaupel, A.; Knochel, P. Tetrahedron Lett. 1995, 36, 1023.
- 577. Lhermitte, F.; Knochel, P. Angew. Chem., Int. Ed. Engl. 1998, 37, 2460.
- 578. Koga, M.; Fujii, T.; Tanaka, T. Tetrahedron 1995, 51, 5529.
- 579. Stüdemann, T.; Gupta, V.; Engman, L.; Knochel, P. Tetrahedron Lett. 1997, **38**, 1005.
- 580. Jackson, R.F.W.; Fraser, J.L.; Wishart, N.; Porter, B.; Wythes, M.J. J. Chem. Soc., Perkin Trans. 1 1998, **12**, 1903.
- 581. Lai, M.-L.; Chang, S.-C.; Hwu, C.-C.; Yeh, M.-C.-P. Tetrahedron Lett. 1996, **37**, 6149.
- 582. Yun, Y.K.; McDaniel, K.F. Tetrahedron Lett. 1995, 36, 4931.
- 583. Yokomatsu, T.; Abe, H., Yamagishi, T., Suemune, K., Shibuya, S. J. Org. Chem. 1999, **64**, 8413.
- 584. Yokomatsu, T.; Murano, T.; Suemune, K.; Shibuya, S. Tetrahedron 1997, **53**, 815.
- 585. Lipshutz, B.H.; Vivian, R.W. Tetrahedron Lett. 1999, 40, 2871.
- 586. Belyk, K.; Rozema, M.J.; Knochel, P. J. Org. Chem. 1992, 57, 4070.
- 587. Hanson, M.V.; Brown, J.D.; Rieke, R.D. Tetrahedron Lett. 1994, **35**, 7205.
- 588. Harn, N.K.; Gramer, C.J.; Anderson, B.A. Tetrahedron Lett. 1995, **36**, 9453.
- 589. Bonini, B.F.; Comes-Franchini, M.; Mazzanti, G.; Passamonti, U.; Ricci, A.; Zani, P. Synthesis 1995, 92.
- 590. Mallaiah, K.; Satyanarayana, J.; Ila, H.; Junjappa, H. Tetrahedron Lett. 1993, **34**, 3145.
- 591. Chou, T.-S; Tseng, H.J. Tetrahedron Lett. 1995, **36**, 7105.
- 592. Eshelby, J.J.; Crowley, P.C.; Parsons, P.J. Synlett 1993, 277.
- 593. Semmelhack, M.F.; Fewkes, E.J. Tetrahedron Lett. 1987, 28, 1497.
- 594. Yanagisawa, A.; Habaue, S.; Yamamoto, H. Tetrahedron 1992, **48**, 1969.

- 595. Harada, T.; Osada, A.; Oku, A. Tetrahedron Lett. 1995, 36, 723.
- 596. Jehanno, E.; Vaultier, M. Tetrahedron Lett. 1995, 36, 7105.
- 597. Kondo, Y.; Takazawa, N.; Yamazaki, C.; Sakamoto, T. J. Org. Chem. 1994, **59**, 4717.
- 598. Koert, U.; Wagner, H.; Pidun, U. Chem. Ber. 1994, **127**, 1447.
- 599. Gosmini, C.; Rollin, Y.; Gébéhenne, C.; Lojou, E.; Ratovelomanana, V.; Périchon, J. Tetrahedron Lett. 1994, **35**, 5637.
- 600. Jain, S.; Jain, R.; Singh, J.; Anand, N. Tetrahedron Lett. 1994, **35**, 2951.
- 601. Harkawa, T.; Ueda, T.; Sakami, S.; Asaoka, M.; Takei, H. Tetrahedron Lett. 1996, **37**, 1045.
- 602. Jones, P.; Knochel, P. J. Chem. Soc., Perkin Trans. 1 1997, 3117.
- 603. Eshelby, J.J.; Crowley, P.C.; Parsons, P.J. Synlett 1993, 279.
- 604. Klement, I.; Rottländer, M.; Tucker, C.E.; Majid, T.N.; Knochel, P.; Venegas, P.; Cahiez, G. Tetrahedron 1996, **52**, 7201.
- 605. Lipshutz, B.H.; Wood, M.R.; Tirado, R. J. Am. Chem. Soc. 1995, **117**, 6126.
- 606. Strekowski, L.; Gulevich, Y.; Van Haken, K.; Wilson, D.W. Tetrahedron Lett. 1995, **36**, 225.
- 607. Crimmins, M.T.; Huang, S.; Guise, L.E.; Lacy, D.B. Tetrahedron Lett. 1995, **36**, 7061.
- 608. Reisser, M.; Maas, G. Synthesis 1998, 1129.
- 609. Crandall, J.K.; Ayers, T.A. Organometallics 1992, 11, 473.
- 610. Stüdemann, T.; Ibrahim-Ouali, M.; Knochel, P. Tetrahedron 1998, **54**, 1299.
- 611. Riguet, E.; Klement, I.; Reddy, C. K.; Cahiez, G.; Knochel, P. Tetrahedron Lett. 1996, **37**, 5865.
- 612. Klement, I.; Lütjens, H.; Knochel, P. Tetrahedron Lett. 1995, 36, 3161.
- 613. Oppolzer, W.; Schröder, F. Tetrahedron Lett. 1994, **35**, 7939.
- 614. Meyer, C.; Marek, I.; Courtemanche, G.; Normant, J.F. J. Org. Chem. 1995, **60**, 863.
- 615. Vaupel, A.; Knochel, P. Tetrahedron Lett. 1995, 36, 231.
- 616. Meyer, C.; Marek, I.; Normant, J.F. Tetrahedron Lett. 1996, 37, 857.
- 617. Lorthiois, E.; Marek, C.; Normant, J.F. Tetrahedron Lett. 1995, 36, 1263.
- 618. Negishi, E-I.; Kotora, M.; Xu, C. J. Org. Chem. 1997, 62, 8957.
- 619. Nguyen, B.V.; Burton, D.J. J. Org. Chem. 1998, 63, 1714.
- 620. Rottländer, M.; Knochel, P. J. Org. Chem. 1998, 63, 203.
- 621. Anderson, B.A.; Harn, N.K. Synthesis 1996, 583.
- 622. Anderson, B.A.; Becke, L.M.; Booher, R.N.; Flaugh, M.E.; Harn, N.K.; Kress, T.J.; Varie, D.L.; Wepsiec, J.P. J. Org. Chem. 1997, 62, 8634.

- 623. Lipshutz, B.H.; Blomgren, P.A. J. Am. Chem. Soc. 1999, 121, 5819.
- 624. Vicart, N.; Castet-Caillabet, D.; Ramionderc, Y.; Plé, G.; Duhamel, L. Synlett, 1998, 411.
- 625. Gosmini, C.; Lasry, S.; Nédélec, J.Y.; Périchon, J. Tetrahedron 1998, **54**, 1289.
- 626. Hocek, M.; Masojidkova, M.; Holy, A., Collect. Czech. Chem. Comm. 1997, **62**, 138.
- 627. Prasad, A.S.B.; Stevenson, T.M.; Citineni, J.R.; Nyzam, V.; Knochel, P. Tetrahedron 1997, **53**, 7237.
- 628. Mazal, C.; Vaultier, M. Tetrahedron Lett. 1994, 35, 3089.
- 629. Ababri, M.; Parrain, J.C.; Cintrat, J.C.; Duchêne, A. Synthesis 1996, 82.
- 630. Shi, G-Q.; Huang, X.H.; Hong, F. J. Org. Chem. 1996, 61, 3200.
- 631. Sakamoto, T.; Kondo, Y.; Murata, N.; Yamanaka, H. Tetrahedron 1993, 49, 9713.
- 632. Minato, A. J. Org. Chem. 1991, 56, 4052.
- 633. Röttlander, M.; Knochel, P. Tetrahedron Lett. 1997, 38, 1749.
- 634. Klement, I.; Röttlander, M.; Tucker, C.E.; Majid, T.N.; Knochel, P. Tetrahedron 1996, **52**, 7201.
- 635. Röttlander, M.; Palmer, N.; Knochel, P. Synlett, 1996, 573.
- 636. Amadji, M.; Cahard, D.; Moriggi, J-D.; Toupet, L.; Plaquevent, J.C. Tetrahedron : Asymmetry 1998, **9**, 1657.
- 637. Bellina, F.; Ciucci, D.; Rossi, R.; Vergamini, P. Tetrahedron 1999, **55**, 2103.
- 638. Palmgren, A.; Thorarensen, A.; Bäckvall, J.E. J. Org. Chem. 1998, **63**, 3764.
- 639. Rossi, R.; Bellina, F.; Ciucci, D. J. Organomet. Chem. 1997, 542, 113.
- 640. Vaillancourt, L.; Simard, M.; Wuest, J.D. J. Org. Chem. 1998, 63, 9746.
- 641. Superchi, S.; Sotomayor, N.; Miao, G.; Joseph, B.; Snieckus, V., Tetrahedron Lett. 1996, **37**, 6057.
- 642. Shioto, T.; Yamamori, T., J. Org. Chem. 1999, 64, 453.
- 643. Koch, K.; Chambers, R.J.; Biggers, M.S. Synlett 1994, 347.
- 644. Jackson, R.F.W.; Moore, R.J.; Dexter, C.S., J. Org. Chem. 1998, **62**, 7875.
- 645. Kristensen, J.; Begtrup, M.; Veds, P. Synthesis 1998, 1604.
- 646. Stüdemann, T.; Knochel, P. Angew. Chem., Int. Ed. Engl. 1997, 36, 93.
- 647. Agharahimi, M.R.; Lebel, N.A. J. Org. Chem. 1995, 60, 1856.
- 648. Amat, M.; Hadida, S.; Pshenichnyi, G.; Bosch, J. J. Org. Chem. 1997, 61, 3158.
- 649. Ye, B.; Burk, Jr., T.R. J. Org. Chem. 1995, 60, 2640.

- 650. Ye, B.; Otaka, A.; Burk, Jr., T.R. Synlett 1996, 459.
- 651. Malan, C.; Morin, C. Synlett. 1996, 167.
- 652. Pearce, A.J.; Ramaya, S.; Thorn, S.N.; Bloomberg, G.B.; Walter, D.S., Gallagher, T. J. Org. Chem. 1999, **64**, 5435.
- 653. Harada, T.; Katsuhira, T.; Hara, D.; Kotani, Y.; Maejima, K.; Kaji, R.; Oku, A. J. Org. Chem. 1993, **58**, 4897.
- 654. Bérillon, L.; Wagner, R.; Knochel, P. J. Org. Chem. 1998, 63, 9117.
- 655. Pimm, A.; Kocienski, P.; Street, S.D.A. Synlett 1992, 886.
- 656. Agnel, G.; Owezarczyk, Z.; Negishi, E.I. Tetrahedron Lett. 1992, **33**, 1543.
- 657. Evans, P.A.; Nelson, J.D.; Stanley, A.L. J. Org. Chem. 1995, 60, 2298.
- 658. Jackson, F.W.; Graham, L.J.; Rettie, A.B. Tetrahedron Lett. 1994, **35**, 4417.
- 659. Vettel, S.; Lutz, C.; Diefenbach, A.; Haderlein, G.; Hammerschmidt, S.; Kühling, K.; Mofid, M.R.; Zimmermann, T.; Knochel, P. Tetrahedron : Asymmetry 1997, 8, 779.
- 660. Lutz, C.; Knochel, P. J. Org. Chem. 1997, 62, 7895.
- 661. Lutz, C.; Graf, C.-D.; Knochel, P. Tetrahedron 1998, 54, 10317.
- 662. Lütjens, H.; Nowotny, S.; Knochel, P. Tetrahedron : Asymmetry 1995, 6, 2675.
- 663. Lutz, C.; Knochel, P. Tetrahedron 1998, 54, 6385.
- 664. Lutz, C.; Jones, P.; Knochel, P. Synthesis 1999, 2, 312.

Simmons-Smith Cyclopropanation Reaction

André B. Charette, Université de Montréal, Montréal, Québec, Canada André Beauchemin, Université de Montréal, Montréal, Québec, Canada

1. Introduction

Almost 30 years after Emschwiller prepared $IZnCH_2I$, (1) Simmons and Smith discovered that the reagent formed by mixing a zinc-copper couple with CH_2I_2 in ether (2, 3) could be used for the stereospecific conversion of alkenes to cyclopropanes (Eq. 1). Nowadays, the Simmons-Smith cyclopropanation reaction is

$$\overset{R^{1}}{\underset{R^{4}}{\longrightarrow}} \overset{R^{2}}{\underset{R^{3}}{\longrightarrow}} \overset{IZnCH_{2}I}{\underset{R^{4}}{\longrightarrow}} \overset{R^{1}}{\underset{R^{4}}{\longrightarrow}} \overset{R^{2}}{\underset{R^{3}}{\longrightarrow}}$$
(1)

one of the most widely used reactions in the organic chemist's arsenal for the conversion of olefins into cyclopropanes. (4) This popularity is mainly due to the stereospecificity of the reaction with respect to the double bond geometry and its compatibility with a wide range of functional groups. The chemoselectivity of the reaction toward some olefins is excellent and very few side reactions are observed with functionalized substrates. The metal carbenoid is electrophilic in nature and electron-rich alkenes usually react much faster than electron-poor alkenes (Eq. 2). (5, 6)

Furthermore, the ability to use proximal hydroxy or ether groups to dictate the stereochemical outcome of the C - C bond forming process was recognized early on, (7) and this unique property has been successfully exploited on numerous occasions (Eq. 3). (8) It has been recognized that halomethylmetal reagents are powerful synthetic tools for the stereoselective addition of a methylene unit to chiral

acyclic allylic alcohols and allylic ethers. (9) In addition, the use of halomethylzinc reagents in the presence of chiral additives is one of the few ways to cyclopropanate allylic alcohols efficiently and with good enantiocontrol. (10)

Carbenoids can be divided into the following two classes: (1) those of general structure MCH₂X and (2) those corresponding to $M = CH_2$. This review is focussed exclusively on the first class in which M = Zn, Sm, or Al. Although other metal carbenoids of type MCH₂X, such as those derived from Cu, (11) Cd, (12) Hg, (13) and In, (14) have been reported to be effective reagents for the cyclopropanation of some olefins, they have been used only sporadically, and this review does not highlight these reactions. This chapter covers cyclopropanation reactions involving haloalkylzinc, aluminum, and samarium reagents published since the comprehensive chapter in *Organic Reactions* by Simmons that surveyed the literature up to 1973. (15)
2. Mechanism

2.1. Solid-State and Solution Studies of Haloalkylmetal Reagents

The mechanistic features of the Simmons-Smith cyclopropanation reaction have been discussed extensively in early reviews on the topic. (4, 15) It has been clearly established that the Simmons-Smith cyclopropanation reaction involving iodomethylzinc iodide and an alkene proceeds in a concerted fashion with retention of configuration with regard to the olefinic double bond. Since then, the main advances that have been accomplished are in the structural elucidation of the simplest zinc reagents. Indeed, the solid-state structures of the halomethyl-zinc reagents have remained speculative until very recently when the first X-ray crystal structure of one of these reagents was reported. (16, 17) A complex between $Zn(CH_2I)_2$ and a chiral diether provided monomeric crystals suitable for X-ray diffraction analysis. This complex was also fully characterized in solution by ¹H and ¹³C NMR, the characteristic resonances being those for $ZnCH_2I$ at ~1.4 ppm (¹H) and -20 ppm (¹³C). The structures of the complexes between benzo-18-crown-6 as the coordinating ether and both IZnCH₂I and Zn(CH₂I)₂ are also known. (18)

The exact nature of the structural features of these reagents in solution has given rise to many postulates. Among those, the possible Schlenk equilibrium between IZnCH₂I and Zn(CH₂I)₂/ZnI₂ has been widely accepted by the scientific community to explain the stereochemical outcome of some cyclopropanation reactions but little has actually been unequivocally established. In-depth spectroscopic studies have recently shown that the equilibrium between these species lies heavily on the side of IZnCH₂I . (19, 20) This observation is in agreement with what has been reported for organozinc iodides (RZnI) (21-23) but is in sharp contrast with what has been reported for BrZnCH₂Br . (24)

Using similar spectroscopic studies, the solution structure of the Furukawa reagent ($EtZnCH_2I$) has been established. (19) This reagent is in equilibrium with Et_2Zn and $Zn(CH_2I)_2$ and it eventually rearranges to PrZnI. Since the rate of this self-destructive pathway can be competitive with the cyclopropanation reaction of some unreactive alkenes, it may be advantageous in some cases to add additional CH_2I_2 to generate $IZnCH_2I$ from PrZnI.

2.2. Theoretical Studies

It has been postulated based on experimental observations that the cyclopropanation reaction of simple alkenes occurs via the "butterfly type" transition state (1). (3) Several theoretical studies at various computational levels have been performed

and they are in agreement with this postulate. The first theoretical investigations were carried out using ab initio gradient techniques and the 3-21G basis set for the reaction between LiCH₂F and ethylene, and a butterfly type transition structure similar to (1) lies at a minimum. (25) Two additional studies (at the density functional theory level) of the Simmons-Smith cyclopropanation of ethylene with chloromethylzinc chloride (26, 27) and iodomethylzinc iodide (28) concluded that a three-centered transition state structure such as (1) is the favored reaction pathway for the production of the cyclopropane.

Recently, theoretical studies of the cyclopropanation of ethylene with chloromethylzinc chloride and of the cyclopropanation of chloromethylzinc allylic alkoxides, both in the presence of a Lewis acid (ZnCl₂), have been performed at the density functional theory level (B3LYP/631A). (29) Transition state (2), in which a five-centered complex is involved, is kinetically favored over the related four-centered complex (3) by 1.3 kcal/mol. Although this explanation appears to be consistent with the observation that added Lewis acids can produce a rate acceleration in the cyclopropanation reaction of zinc alkoxides, (30, 31) other modes of activation cannot be ruled out at this time. There is still a need for additional and more conclusive experimental evidence on the effect of added Lewis acids in the cyclopropanation of zinc alkoxides. These studies may have a significant impact on the development of new asymmetric catalytic processes.

3. Scope and Limitations

3.1. Preparation of Haloalkylmetal Reagents

3.1.1. Zinc Carbenoids

There are three classes of reactions that can generate the reactive haloalkylzinc species: (1) the oxidative addition of zinc metal into a carbon halogen bond, (2) the alkyl group exchange between an organozinc reagent and a dihaloalkane, and (3) the insertion of a diazoalkane into a zinc - iodide bond. The oxidative addition of an activated form of zinc metal into a C- Xbond is by far the most widely used method for the cyclopropanation of simple olefins. (32) Simmons and Smith recommended the use of a zinc-copper couple for this purpose. Their original procedure (33) (heating a mixture of zinc dust and cupric oxide under a hydrogen atmosphere) has been replaced by a more convenient method (treatment of zinc powder with cupric sulfate solution), which produces a reagent of comparable reactivity. (34, 35) A later modification calls for the treatment of zinc dust with a hot solution of cupric acetate in acetic acid. (36) Alternatively, zinc dust can be activated by mixing it with cuprous chloride under nitrogen. (37, 38) These procedures have been used in >90% of the cyclopropanation reactions involving a zinc-copper couples over the last 25 years. The analogous zinc-silver couple has been found to be useful, giving in some cases higher yields of cyclopropanes and/or shorter reaction times compared to those obtained with the zinc-copper couple. (39) Commercial zinc dust devoid of lead impurities is suitable for the reagent preparation. (40)

The addition of acetyl chloride to the Zn/ CuCl combination produces a reagent that can react with dibromomethane to generate bromomethylzinc bromide. (41) Commercial zinc metal of lower purity can be activated by the addition of TMSCI (40, 42) or TiCl₄, (43) by heating to 140–150° for 3 hours, (44) or by sonication. (45) Alternatively, highly reactive zinc powder suitable for reagent formation can be prepared by in situ reduction of zinc(II) salts. (46) The main advantage of these methods that involve commercial zinc metal for reagent preparation is practicality, since these reagents are more stable and easy to handle; however, none of these methods has found a wide acceptance in the literature.

Finally, one major limitation of the reactions involving the oxidative addition of an activated form of zinc metal into a C - X bond is that an ethereal solvent must necessarily be used (most commonly ether, THF or DME). Under these conditions, the electrophilic character of the reagent is lowered by the presence of a basic solvent. (9) In addition, the vast majority of stereoselective cyclopropanation reactions involving zinc reagents use other methods to generate the zinc carbenoid to avoid the presence of complexing solvents (vide infra). In conclusion, the methods outlined above for generating the active zinc reagent should be used only with very reactive alkenes and when an ethereal solvent can be used. They are not compatible with most stereoselective cyclopropanation reactions involving substrate/chiral ligand-directed reactions since an ethereal solvent generally decreases the level of stereocontrol. Although there are numerous methods for activating zinc metal, the activation procedures using CuSO₄, (34) Cu(OAc)₂, (36) or CuCl (37) are still used in >90% of all the examples.

A superb and practical method for generating iodomethylzinc species quantitatively and reproducibly was reported by Furukawa and coworkers. (47, 48) These workers found that a similar reactive species could be prepared by using Et₂Zn to form presumably EtZnCH₂I (Furukawa's reagent). This alkyl exchange reaction to generate the reagent generally proceeds smoothly in a variety of solvents, but it is thought that traces of molecular oxygen are necessary to initiate carbenoid formation. (49, 50) However, for most applications, the adventitious oxygen present as an impurity is sufficient to initiate the process. Since diethylzinc is readily available neat or as a solution in several solvents, the cyclopropanation reaction can be carried out in a wide range of noncomplexing solvents such as dichloromethane, 1,2-dichloroethane, benzene, and toluene. The reactivity profile of $Zn(CH_2X)_2$ (X = I, CI), prepared from 1 equivalent of Et₂Zn and two equivalents of XCH₂I (X = I, CI), indicates that these reagents are sometimes more effective than those derived from zinc metal, especially in stereoselective transformations. (51) Bis(chloromethyl)zinc in 1,2-dichloroethane is often the best reagent to use with less reactive alkenes. Another good and underused method for preparing IZnCH₂I involves the alkyl exchange reaction between EtZnI (prepared from Zn metal and Etl) and CH_{2l_2} , especially if the reagent has to be prepared on a large scale and if Et_2Zn is not a viable option. (52)

It has been reported that the reagent derived from a 1:1:1 mixture of trifluoroacetic acid, diethylzinc, and diiodomethane is effective for the cyclopropanation of simple alkenes (Eq. 4). (53) In some cases, such as in the cyclopropanation of (*E*)-stilbene, this reagent is far superior to that derived from the zinc-copper couple or diethylzinc and diiodomethane. (52, 54) Alternatively, this reagent can be prepared by mixing trifluoroacetic acid and bis(iodomethyl)zinc, but this procedure is not recommended on large scale because of the exothermicity of reagent formation and the relatively rapid decomposition of bis(iodomethyl)zinc into iodomethylzinc iodide at temperatures above -20° in the absence of a complexing solvent.

CF₃CO₂ZnCH₂I, CH₂Cl₂, 1 h, rt EtZnI, CH₂I₂, Et₂O, 1 h, 30-35° Ph Ph (70%; conv. >90%) (4) (13%)

Finally, shortly after the Simmons and Smith seminal publication, Wittig (55, 56) reported that treatment of zinc iodide with either one or two equivalents of diazomethane was an alternative method for preparing $IZnCH_2I$ or the analogous bis(iodomethyl)zinc reagent [$Zn(CH_2I)_2$]. However, this method for the preparation of the reagent has not been widely used in the last 30 years. A brief comparison of the various approaches to zinc carbenoids is shown in Table A.

Reactants (best solvents)	Comments
Zn/activator, CH ₂ X ₂ (Et ₂ O, THF, DME, etc)	Oldest and still most widely used. No significant advantage over other methods other than the stability and availability of precursors. Traditional method of activation used in >90% of cyclopropanations involving zinc metal. Reaction conditions lead to a much less reactive but more stable reagent.
Et ₂ Zn , CH ₂ X ₂ (CH ₂ Cl ₂ , CICH ₂ CH ₂ CI)	Best reagents for stereoselective reactions and oxygen-directed cyclopropanations. When $X = CI$, very reactive reagent that usually produces higher yields with less reactive alkenes. Stoichiometry may be an important factor in stereoselective reactions; 1:1 stoichiometry is the best combination for acid-sensitive substrates (minimizes formation of Znl ₂).
EtZnI (prepared in Et ₂ O), CH ₂ X ₂ ,	Especially good if the reaction has to be done on large scale and the use of Et_2Zn

Table A. Methods for the Preparation of Cyclopropanating Reagents "ZnCH₂X"

(CH ₂ Cl ₂ , CICH ₂ CH ₂ CI)	is to be avoided.
CF ₃ CO ₂ H / Et ₂ Zn / CH ₂ I ₂ (CH ₂ CI ₂)	Very good reagent for the cyclopropanation of less reactive alkenes (such as styrene or halosubstituted alkenes). Very high reactivity, but slightly acidic conditions may lead to some decomposition with acid-sensitive substrates.
ZnX ₂ , CH ₂ N ₂ (Et ₂ O)	Rarely used

3.1.2. Nature of the Solvent

The solvent used in zinc-mediated cyclopropanation reactions plays an important role in these reactions, owing to the electrophilic nature of the zinc carbenoid and the Lewis acidity of the reagent. Dichloromethane and 1,2-dichloroethane are the solvents of choice since they are non-basic, unreactive toward the zinc reagents, and polar enough to solubilize the substrates. When basic solvents are used, the rate of cyclopropanation usually decreases as the basicity of the solvent increases. (9)

3.1.3. Aluminum and Samarium Carbenoids

Carbenoids of aluminum and samarium that display interesting properties compared with those of the zinc reagents have been reported. lodo- or chloromethylsamarium iodide in THF (57, 58) is a superb reagent for the chemoselective cyclopropanation of allylic alcohols in the presence of other alkenes. With this reagent, the cyclopropanation of an isolated olefin is not observed. Conversely, dialkyl(iodomethyl)aluminum (59-61) displays outstanding chemoselectivity for the cyclopropanation of olefins in the presence of allylic alcohols. Each reagent is compared in the cyclopropanation of geraniol (Eq. 5).

The high chemoselectivity favoring cyclopropanation at the terminal double bond obtained with the aluminum reagent is possible only when the reaction is run in the presence of an allylic alcohol. For example, treatment of the benzyl ether of geraniol with aluminum or zinc reagents results in cyclopropanation at the allylic ether position. (62) A similar reaction with thesamarium carbenoid(X = I) requires a large excess of the reagent to produce a good yield of the desired product (Eq. 5).

Although several trialkylaluminum reagents have been used as the starting materials for the aluminum carbenoid, *i*-Bu₃Al and Et₃Al are usually used. Samarium carbenoid reactions typically require a large excess of reagent in order to achieve high conversions, and samarium metal or Sml₂ (62a) with CH₂IX have been used to form the reactive species. When samarium metal is used, HgCl₂ must be added as an activator, otherwise the reaction is sluggish and often fails to initiate. Alternatively, TMSC 1 can also activate samarium, and has shown in many examples a beneficial effect on the yields and stereoselectivity of the reactions when compared to HgCl₂. (63)

3.1.4. Substituted Carbenoids

More complex zinc carbenoids can be prepared by reacting diethylzinc or zinc metal with more substituted dihaloalkanes. The reactions are generally more effective with iodo-substituted alkanes. These more highly substituted reagents are effective at generating 1,2,3-substituted cyclopropanes. The substituted reagents that have been used to generate highly substituted cyclopropane derivatives are shown in Table B.

Table B. Preparation of Substituted Carbenoids

Substituted Dihalide	Metal Reagent	Carbene Unit	Reference
MeCHI ₂	Zn/Cu	MeCH	(64)
	EtZnl		(<mark>65</mark>)
	Zn/Ag		(<mark>66</mark>)
	Et ₂ Zn		(<mark>67</mark>)
	Sm		(<mark>57</mark>)
	Me ₃ Al		(<mark>5</mark> 9)
	<i>i</i> -Bu₃Al		(<mark>5</mark> 9)
MeCHBr ₂	Zn/Cu	MeCH	(<mark>68</mark>)
TIPSOCH ₂ CH ₂ CHI ₂	Et ₂ Zn	TIPSOCH ₂ CH ₂ CH	(<mark>69</mark>)
Me_2CBr_2	Zn	Me ₂ C	(<mark>70</mark>)
Me_2CI_2	Et ₂ Zn		(71)
PhCHCl ₂	Zn	PhCH	(<mark>70</mark>)
PhCHBr ₂	Zn		(<mark>70</mark>)
PhCHI ₂	Et ₂ Zn		(<mark>67</mark>)
CHI ₃	Et ₂ Zn	CHI	(<mark>72</mark>)
CHBr ₃	Et ₂ Zn	CHBr	(<mark>73</mark>)
CHCl ₃	Zn	CHCI	(<mark>70</mark>)
CHBrCl ₂	Zn	CHCI	(<mark>70</mark>)
CHBr ₂ Cl	Zn	CHCI	(<mark>70</mark>)
CHFI ₂	Et ₂ Zn	CHF	(<mark>72</mark>)
$CF_2 Br_2$	Zn	CF ₂	(74)

In general, the reagent formation is more effective if a diiodo precursor is used, but in some cases dibromides and activated dichlorides have also been successfully converted into suitable reagents. Functionalized zinc carbenoids have been prepared from diiodoalkanes and diethylzinc and used in stereoselective transformations, but their use is limited by the availability of the diiodoalkane. (69) Alternatively, reaction of a diazoalkane with Znl₂ (vide supra) can offer a valuable alternative to access complex zinc carbenoids (Eq. 6). (75)

3.1.5. In Situ Formation of the Carbenoid

Functionalized zinc carbenoids can be prepared from carbonyl compounds by an indirect strategy. (76) The direct deoxygenation of a carbonyl compound to an organozinc carbenoid can be induced by reaction with zinc and TMSC1 in a sequence which parallels the mechanism of the Clemmensen reduction. Therefore, the aldehyde or ketone is treated with TMSC1 or 1,2-bis(chlorodimethylsilyl)ethane, the olefin, and zinc amalgam to produce a good *endo:exo* ratio for the cyclopropanation product. For example, treatment of cyclohexene with the carbenoid derived from benzaldehyde proceeds satisfactorily (Eq. 7).

In addition, although the yields and selectivities are modest, this method is quite effective for the production of alkoxy-substituted cyclopropane derivatives. Indeed, when trimethyl orthoformate is used as the carbenoid precursor under similar reaction conditions, a 64% yield of the desired methoxycyclopropane is obtained (Eq. 8). (77)

In a similar fashion, amino-substituted cyclopropanes can be generated by the intramolecular cyclopropanation of an alkene by conversion of a benzamide to a samarium carbenoid. However, this reaction is limited to the intramolecular version, and the yields are modest (Eq. 9). (78)

The next sections highlight the synthetic scope of reactions involving these reagents with a strong focus on stereocontrol.

3.2. Achiral Alkenes

The cyclopropanation of simple alkenes has been used for a number of years to test and compare the efficiency of new reagents. For example, cyclohexene has been treated with a variety of reagents to generate bicyclo[4.1.0]heptane to compare the efficiency of the conversions (Table A). The best reagent to cyclopropanate unfunctionalized alkenes is $Zn(CH_2CI)_2$ in 1,2-dichloroethane. (51) It appears that TFA/ Et₂Zn / CH₂I₂ and R₃Al/ CH₂I₂ are also quite effective reagents, but these reactions are not well documented at this time.

The cyclopropanation of enol ethers is usually quite facile (48) (Eqs. 10–11). (79, 80) Trimethylsilyloxy-substituted olefins are by far the most widely used in this category

since the starting material is readily available by enolization of the corresponding ketone. (81-84) Problems resulting from the Lewis acid sensitivity of the products are sometimes observed, (79) but in general these electron-rich olefins react rapidly with the zinc reagents, especially those prepared from Et_2Zn in noncoordinating solvents.

On the other hand, even if enol esters have rarely been used directly under Simmons-Smith conditions, they can be valuable precursors for cyclopropanols by allowing generation, then in situ cyclopropanation of the parent metalloenolate (85) (Eq. 12). (86) Metalloenolates can also be converted to the corresponding hydroxycyclopropanes by the use of samarium reagents (Eq. 13). (87, 88)

The cyclopropanation of *N*-substituted alkenes is much more problematic since *N*-alkylation can become an important competing pathway. Conversely, introducing an electron-withdrawing protecting group on nitrogen decreases the nucleophilicity of the alkene, and lower yields are observed unless highly electrophilic reagents are used (Eqs. 14–16). (89-91)

The cyclopropanation of vinyl halides is also quite effective, and fluoro-, (92) bromo- (93) and iodo-substituted (94) cyclopropanes can be prepared using zinc carbenoids (Eqs. 17–19). For vinyl iodides and bromides, bis(chloromethyl)zinc in 1,2-dichloroethane is a superior reagent. (51)

The cyclopropanation of vinylorganometallic and heteroatom-substituted

vinylic compounds is also quite efficient with the zinc, samarium, and aluminum reagents. For example, vinylboronates, (95) -alanes, (96) -zincs, (97) -stannanes, (98) -phosphonates, (99) -germanes, (100) and silanes (101, 102) are readily converted into cyclopropane derivatives.

When halo- (103) or alkyl-substituted reagents are used, the *endo:exo* selectivity is usually poor (<2.5:1) (Eqs. 20–21). (59, 71) Sometimes, higher diastereoselectivities are observed with the aluminum reagent or with other more sterically demanding zinc reagents (Eq. 21).

3.3. Polyenes

When a polyene is treated with a haloalkylzinc reagent, very little chemoselectivity is observed when there is no basic group to direct the reaction (Eq. 22). (104) The relative rates for the cyclopropanation of various alkenes have been measured

and the influential factors have been highlighted. A combination of steric and electronic effects has been invoked to explain the chemoselectivity using iodomethylzinc iodide, but little is known regarding other reagents. (105, 106) Because of the electrophilic nature of the reagents, highly substituted double bonds generally react faster than less substituted ones. Neither of the reagents (aluminum and zinc) is superior to the other. However, a highly chemoselective cyclopropanation is observed when one double bond is significantly more nucleophilic than the others. For example, excellent chemoselectivity is observed when one of the double bonds is an enol ether (Eqs. 23–25) (107-109) or a lithium enolate (Eq. 26). (110)

Allylic alcohols or isolated olefins can be cyclopropanated with high

chemoselectivity in the presence of the other with the appropriate choice of reagents and reaction conditions (Eq. 5). This reaction has been applied to more complex systems, and the chemoselectivity is usually excellent (Eq. 27). (111) It is important to

point out that the presence of a basic group at the allylic position is mandatory to observe any reaction with the samarium reagent. More work is needed to determine the ability of the samarium and aluminum reagents to participate in directed cyclopropanation reactions.

3.4. Intramolecular Cyclopropanation

Examples of intramolecular cyclopropanation of alkenes using zinc, aluminum or samarium carbenoids are rare. The most widely found involve preparation of the carbenoid from the corresponding carbonyl derivative (Eq. 28). (112)

Alternatively, a bromoiodoalkene produces the corresponding bicyclic system upon treatment with zinc dust in benzene (Eq. 29). (113) This is one of the few known examples of an intramolecular cyclopropanation reaction involving a dihaloalkene.

3.5. Cyclic Chiral Alkenes

Cyclic alkenes that bear basic functional groups which can give rise to precoordination to the electrophilic zinc reagent are readily converted into cyclopropanes. For example, it was observed early on that proximal hydroxy groups could direct the delivery of the methylene group. (7) Subsequent, simple cycloalkenols have served as model substrates for kinetic studies. Transition state models have recently been proposed for these directed processes. (8) The cyclopropanation of five-, six-, and seven-membered ring 1-cycloalken-3-ols generally produces high *syn:anti* ratios with both zinc and samarium reagents (Eq. 30). (57, 114)

A reversal of selectivity is observed with the analogous eight- or nine-membered rings (Eq. 31). (58, 115) This can be explained by simple conformational analysis of the ground state structures. 2-Cycloocten-1-ol prefers to adopt a chair-boat

conformation in which the bulky hydroxy group has the equatorial orientation. This reversal of stereochemical outcome is also observed in the directed epoxidation of 2-cycloocten-1-ol. (116)

One example of cyclopropanation of a macrocyclic alkenol indicates that outstanding levels of diastereoselectivity can also be obtained with this class of substrates. This reaction has been used in an elegant synthesis of (R)-muscone (Eq. 32). (117) This complete diastereocontrol is best explained

by the minimization of the A (1, 3) strain and is similar to that proposed for stereoselection in similar reactions of acyclic chiral allylic alcohols (vide infra).

Additional examples of stereocontrol in the cyclopropanation of functionalized cycloalkenol derivatives are presented in Tables VII and IX. This collection highlights the compatibility of a variety of functional groups under the cyclopropanation conditions, especially when an alcohol or a basic group is present to direct the reaction. Furthermore, the reaction usually proceeds quite well even when delivery occurs on the more sterically hindered face of the double bond (Eq. 33). (118)

Strong directing effects are also observed when more highly substituted reagents are used. However, although the *exo:endo* selectivity is modest, the samarium reagent is slightly superior (Eq. 34). (57, 119, 120)

Even though the hydroxy group has been used extensively as a directing group for the cyclopropanation of alkenes, other basic groups are also

effective with zinc reagents (Table VII). Benzyl ethers, (51) methyl ethers, (114) and acetates (121) are able to direct the zinc reagent to various degrees (Eq. 35). An interesting example

involves competition between an acetamide and a hydroxy group (Eq. 36), (122) in which the acetamide is a better directing group than the zinc alkoxide, but the selectivity is reversed upon benzoylation of the amide. Similarly, trifluoroacetamides are also able to direct the cyclopropanation reaction (Eq. 37). (123)

Esters can also be good directing groups, producing modest *syn* selectivities, but the sense of induction seems to be substrate- or reagent-dependent (Eqs. 38–39). (124, 125) In some cases, TBDMS ethers appear to direct the reaction (Eq. 40), (126)

but in other cases the double bond does not react, probably because of steric hindrance by the protecting group. (127) When acetate groups are used (Eqs. 35, 41 and 42), (121, 128, 128a) reports indicate that their directing ability is highly substrate-,

solvent- and/or reagent-dependent. Allylic acetates appear to lose their directing ability when a slightly complexing solvent (diethyl ether) is used. It appears that use of the Furukawa reagent in a noncomplexing solvent ensures good *syn* selectivity. The synthesis of cyclopropanated sugars, involving a directed cyclopropanation of glucal derivatives, is a good example of a substrate for which the directing ability of various groups has been cleverly used to control the cyclopropanation reaction.

There are no systematic studies on the relative directing ability of oxygenated

groups with various reagents and reaction conditions. However, the results of cyclopropanation of monoprotected *trans*-2-cyclohexene-1,4-diol as a function of reaction conditions and reagents are quite surprising (Eq. 43). (9) The directing

ability of oxygenated groups is highly dependent upon the reaction conditions. For example, a benzyl ether is a superior directing group when the reaction is run at high concentrations with excess EtZnCH₂I in a noncoordinating solvent. Conversely, the directing ability of the zinc alkoxide takes over if only one equivalent of the reagent is used.

In the synthesis of enantiomerically pure cyclopropyl ketones, the directing effect of β -hydroxysulfoximines derived from cyclic enones leads to the cyclopropane *syn* to the hydroxy group (Eq. 44). (129) Basic cleavage of the sulfoximine generates the cyclopropyl ketone. This is one of the first examples in which two relatively basic functionalites (hydroxy and sulfoximino) compete for the group-assisted methylene delivery.

In the absence of a directing group, the cyclopropanation of cyclic olefins is generally controlled by steric effects. The level of stereochemical induction is usually high, and the sense can be predicted on the basis of the prevailing ground state conformation of the starting olefin. For example, stereoselective cyclopropanation is directed to the more accessible β face to produce a key intermediate in the synthesis of (+)-acetoxycrenulide (Eq. 45). (130)

The stereo- and regioselective cyclopropanation of a diene is a key step in introducing a hydroxymethyl group at C(17) in the total synthesis of β -amyrin. (131) The resulting vinylcyclopropyl unit was opened under free radical conditions to yield the C(17) hydroxymethyl substituent. The selective cyclopropanation of the 16,17-double bond is striking since in an analogous reaction, the dibromocarbene adds exclusively to the 12,13-double bond (Eq. 46).

Cyclopropanation of unsaturated medium ring size compounds and macrolides can be quite diastereoselective. For example, a cyclic bis(trimethylsilyl)enol ether can be efficiently cyclopropanated with excellent stereocontrol using Furukawa's reagent (Eq. 47). (130) The cyclopropanation produces the *syn*-dicyclopropane in a high diastereomeric ratio (>15:1).

Steric factors can and sometimes do override the directing effect of functional groups. For example, cyclopropanation of the cyclic enol ether leads to only one isomer in which the cyclopropanation occurs *anti* to the ester and to the ketone (Eq. 48). (133)

In the course of the enantioselective synthesis of (–)-pinidine, a highly diastereoselective cyclopropanation reaction of a silyl enol ether with the reagent derived from 1,1-diiodoethane and diethylzinc was reported (Eq. 49). (134) The level of induction in that reaction is highly dependent on the nature of the nitrogen protecting group.

3.6. Acyclic Chiral Alkenes

3.6.1. Allylic and Homoallylic Alcohols

Despite the remarkable success in controlling the relative configuration of cyclopropanation products in cyclic systems, the stereocontrol on acyclic

systems has been recognized only recently. The stereoselective cyclopropanation of a chiral acyclic allylic alcohol was first studied using the Simmons-Smith reagent (Zn/Cu, CH₂I₂). (135) High *syn*-selectivities (>200:1) are obtained with Z disubstituted double bonds (Eq. 50), but the analogous reaction on *E* disubstituted double bonds gives modest ratios (<2:1) (Eq. 51). However, the nature of the zinc carbenoid and solvent used in these reactions is extremely important for obtaining high diastereoselectivities, especially with *E* disubstituted olefins. (136, 136a) The importance of the reaction conditions and

the nature of the reagent are highlighted by the cyclopropanation of (E)-3-penten-2-ol (Eq. 51). The classical Simmons-Smith conditions (IZnCH₂I from Zn/Cu, CH₂I₂) or Zn(CH₂I)₂ generally give low diastereomeric ratios. Conversely, the use of an excess (5 equivalents) of Furukawa's reagent (EtZnCH₂I prepared from a 1:1 mixture of Et₂Zn and CH₂I₂) in CH₂CI₂ produces the highest selectivities to date with this substrate. The choice of solvent in these processes is important for optimizing the diastereoselectivities. For example, the ratio drops from 7:1 to 4.7:1 if diethyl ether is used as the solvent with Furukawa's reagent. Interestingly, the samarium-derived reagent leads to the formation of the *anti* isomer as the major product with this substrate. It is clear from the data presented in Table VIII that EtZnCH₂I is the most general reagent for access to the *syn* isomer with *E*-disubstituted olefins. Furthermore, the level of *syn* selectivity increases significantly with this reagent when the substituents are bulkier, indicating the importance of the A (1, 3) strain in these reactions (Eq. 52). (136)

The samarium reagent is also quite effective, but the selectivities are highly substrate dependent (Eq. 53). (57, 58, 137) It is clear that stereoelectronic effects play an important role since substitution of a methyl group by a trifluoromethyl group has a spectacular impact on the level of selectivity. The increase in selectivity has

been attributed to the formation of a tighter complex between the substrate and the reagent. Alternatively, this might be due to the influence of the R^2 group on A (1, 2)/A (1, 3) strain and hyperconjugative effects. (138) This reaction can been extended to silyl- and stannyl-substituted alkenes. (139, 140)

In the cyclopropanation of Z-disubstituted and trisubstituted double bonds, uniformly high *syn* selectivities are obtained with various reagents. The stereochemical outcome of these reactions can be predicted qualitatively by assuming an oxygen group-assisted delivery of the reagent from a conformation in which the minimization of A (1, 3) strain is the predominant controlling element. (141) However, it is clear that other important factors should be taken into account in order to explain the level of induction.

The cyclopropanation of α -allenic alcohols using Sm/ CH₂I₂ provides a variety of methylene- and alkylidenecyclopropane carbinols in good yield and with high regioselectivities. (142) The *syn:anti* diastereoselectivities vary from 1:2.1 to 50:1 depending upon the substituents on the carbinol side chain and on the

substitution of the allene (Eq. 54). The "Houk outside model" (143, 144) has been used to explain

the sense and level of the diastereoselection in the samarium-carbenoid reactions. Use of the samarium reagent is essential to maximize the regioselectivity of this process and to avoid the formation of spiropentane carbinols. Both aluminum and zinc carbenoids are known to form mixtures of methylenecyclopropanes and spiropentanes (see Table X).

The diastereoselective cyclopropanation of homoallylic alcohols has been used with moderate success. For example, the cyclopropanation of (Z)-5-hydroxy-2-alkenylsilanes occurs with high levels of stereochemical induction (Eq. 55). (145) This is one of the few acyclic homoallylic alcohols in which the cyclopropanation occurs with good stereocontrol.

3.6.2. Allylic Ethers

The diastereoselective cyclopropanation of allylic ethers using Furukawa's reagent has been systematically investigated (Eq. 56). (136, 145a) Both the bulk of the substituents and the nature of the protecting group are key elements for obtaining high selectivities and for determining the sense of induction. Two trends have been identified. First, the sense of induction reverses from

anti to *syn* as the steric bulk of the substituent on the carbinol side chain increases. This first trend, although not as important, is also seen with allylic alcohols. Secondly, increasing the steric bulk of the protecting group decreases the *syn* selectivity. These data clearly show that the involvement of simple A (1, 2)/ A (1, 3) strain arguments is not sufficient to explain the diastereoselection in these reactions, and that binding of the reagent to the ether oxygen must also be taken into consideration.

The diastereoselective cyclopropanation of (*E*)- and (*Z*)-allylic alcohols derived from 2,3-*O*-isopropylideneglyceraldehyde has been the subject of several investigations since the products are precursors to cyclopropyl carbocyclic nucleosides, which are potential chemotherapeutic agents (Eqs. 57–58). (146, 147) With both isomers, the use of a noncomplexing protecting group (TBDPS) is important for obtaining high yields and levels of stereocontrol.

A related transformation was used in the total synthesis of (+)-bicyclohumulenone. Cyclopropanation of the methallyl alcohol derivative proceeded with the opposite diastereofacial selectivity (Eq. 59). (148) The divergence of the stereochemical

pathways may be a consequence of the difference in solvent (ether vs CH_2CI_2), reagent ($IZnCH_2I$ vs $EtZnCH_2I$), protecting group (PMB vs TBDPS), or the influence of additional A (1, 2) strain imparted by the additional methyl group. This reaction has been used quite extensively in approaches to produce bis(cyclopropane) derivatives in which the diol obtained after deprotection can be oxidatively cleaved (Eqs. 60–61). (149, 150)

3.6.3. Allylic Amines

Cyclopropanation of a chiral protected allylic amine produces the *anti* isomer with low selectivity (Eq. 62). (151) The analogous dibromocyclopropanation of *tert*-butyl 2,2-dimethyl-4-(2¢-phenylvinyl)-3-oxazolidinecarboxylate

affords slightly better diastereomeric ratios of dibromocyclopropanes (Eq. 63). (151) In both cases, unassisted delivery of the carbenoid from the least hindered face of the olefin in its most stable ground state conformation can be invoked to predict the stereochemical outcome of the reaction.

3.6.4. Acyclic Chiral Alkenes Without a Directing Group on the Stereogenic Center

The cyclopropanation reactions of chiral acyclic alkenes without a directing group on the stereogenic center at the allylic position rarely display a reasonable level of diastereoselection. However, in successful examples one of the allylic substituents is significantly larger than the others (such as a silyl group) (Eqs. 64–66). (152-154) The stereochemical outcome of these reactions is a consequence

of cyclopropanation on the conformer that minimizes A (1, 3) strain. The cyclopropanation of an *E*-vinylcyclopropane proceeds with high induction (Eq. 67). This may be due to the fact that there is a strong conformational preference minimizing A (1, 3) strain in the ground state. (155)

3.7. Cleavable Chiral Auxiliaries

A number of auxiliary-based approaches have been developed for the cyclopropanation of olefins, and many of them offer the advantage of producing enantiomerically pure cyclopropyl derivatives after cleavage of the auxiliary. The different chiral auxiliaries that have been developed for the reaction with various halomethylmetal reagents are encompassed into various general classes: chiral allylic ethers (4), acetals (5), α , β -unsaturated acylmetals (6), enamines, enol ethers and boronates (7).

3.7.1. Chiral Allylic Alcohols and Ethers

The chiral auxiliaries in each class are shown in Tables XI and XII. As discussed earlier, the β -hydroxysulfoximine moiety derived from enones can

act as a chiral auxilliary. Cyclopropanation occurs *syn* to the hydroxy group (Eq. 44). (131) Basic cleavage of the sulfoximine

generates the enantiomerically pure cyclopropyl ketone. The drawback of this approach is that a mixture of separable diastereomers is produced by the nonstereoselective addition of enantiopure

N-methylphenylsulfonimidoylmethyllithium to the enone.

Alternatively, carbohydrate-derived chiral auxiliaries (156) have produced extremely high diastereoselectivities in the cyclopropanation of acyclic allylic double bonds (Eq. 68). It is believed that the glucosidic template acts as a bidentate

ligand to complex to the zinc reagent since the presence of a free hydroxy group (which will form the zinc alkoxide) is mandatory for high diastereoselection. (157, 158) This postulate has given rise to the more simple auxiliary derived from cyclohexanediol (Eq. 69). (159) Cleavage of the chiral auxiliary is then accomplished

by a ring contraction reaction (glucose-derived auxiliary) (159a) or by a three-step sequence involving conversion of the alcohol into an iodide and reductive elimination of the cyclopropylmethanol moiety upon treatment with BuLi. (159) The diastereoselectivities obtained with the tri-O-benzylglucopyranoside are high for most substituted allylic alcohols, but sometimes a large excess of the zinc reagent is required.

3.7.2. Chiral Acetals

A number of C₂-symmetric acetals have been developed for this reaction. The most efficient auxiliaries are based on tartaric acid or threitol derivatives. Diisopropyl tartrate is particularly effective with *E* disubstituted and trisubstituted acyclic substrates (Eq. 70). (160, 161) This auxiliary has been applied to the synthesis of bis(cyclopropane) derivatives. The diastereoselective cyclopropanation of the diene produces the desired compound with an excellent level of stereocontrol (Eq. 71). (162)

cleaved under acidic conditions to produce the corresponding cyclopropyl ketone or aldehyde. In the case of cyclic enones, studies support a mechanistic model that involves preferential coordination of the reagent to the least sterically hindered dioxolane oxygen lone pair proximal to the alkene. The auxiliary derived from dihydrobenzoin is even superior to the tartrate-derived counterpart with cyclic enones (166) but attempts to use it with acyclic systems do not produce high ratios. (167) The sense of induction is consistent with the fact that bidentate chelation by the chiral auxiliary is not favored in this case since the reaction is done in a complexing solvent (ether). Quite interestingly, the sense of induction in the dioxolane acyclic system is opposite to that found in the cyclic system. This can be accounted for by assuming that the chiral auxiliary acts as a bidentate ligand under the conditions used [Zn(CH₂I)₂, hexane]. Replacement of the benzyl ethers of the threitol auxiliary by bulkier groups that further preclude any undesirable complexation of the reagent by the ether oxygens leads to better enantioselectivities, but this method is not as practical (Eq. 73). (168)

Other chiral auxiliaries in this class include derivatives of from 1-aryl-2,2-dimethyl-1,3-propanediols (169) and D-fructose, (170) but their installation leads to

diastereomers that need to be separated, and the selectivities observed are lower than those presented above. Recently, another promising template was disclosed. Indeed, cyclopropanation of theacetalderived from phenyl 2,3-dihydroxybornane-10-sulfonate occurs with outstanding diastereocontrol (Eq. 74). (171)

3.7.3. α , β -Unsaturated Acylmetals

The use of chiral α , β -unsaturated esters, amides, or other derivatives is not very common since the electrophilic nature of these reagents often inhibits the cyclopropanation reaction. The asymmetric synthesis of *Z*, *E* disubstituted and trisubstituted cyclopropanecarboxylic acid derivatives was achieved by a stereoselective electrophilic methylene transfer to α , β -unsaturated acyl ligands bound to an iron chiral auxiliary (Eq. 75). (172) It was

proposed that the double bond adopts a conformation approximately orthogonal to the acyl group, thus increasing its nucleophilicity. The aluminum-derived reagent is superior with this auxiliary.

The *exo*- and *endo*-3-amino-2-hydroxybornane auxiliaries are also effective, but only when the hydroxy group is protected as a triisopropylsilyl ether (Eq. 76). (173) Furthermore, the addition of L-(+)-diethyl tartrate is necessary to increase the yield of the cyclopropane product. Unfortunately, only one example (cinnamic acid) is reported.

3.7.4. Chiral Enol Ethers, Vinylboronates, and Enamines

Enantiomerically enriched cyclopropyl alcohols and amines can also be prepared with the help of several chiral auxiliaries. The nucleophilic enol ethers derived from ketones react smoothly with bis(iodomethyl)zinc to produce cyclopropyl ethers with outstanding diastereoselectivities (Eq. 77). (174) The auxiliary is introduced by treating the

corresponding acetal with triisobutylaluminum. The destructive cleavage of the auxiliary produces cyclopropanol derivatives (1. PCC; 2. K_2CO_3). (175, 176) This reaction has been extended to both cyclic and acyclic ketones but is limited to symmetrical ketones or those that can be regioselectively enolized. (177)

1-Alkenylboronic esters bearing the tetramethyltartramide group undergo highly diastereoselective cyclopropanation to produce 2-substituted cyclopropanols after oxidation (H_2O_2 , KHCO₃) (Eq. 78). (178) The reaction product can also be used for in situ Suzuki coupling to produce enantiomerically enriched disubstituted cyclopropanes. (179)

Very little work has been reported on the use of more complex diiodoalkanes as precursors for more substituted haloalkylzinc reagents. In the approach shown, the chiral auxiliary is relatively effective for producing one major diastereomer in the ethylidenation reaction (Eq. 79). (180) Conversely, the diastereoselective cyclopropanation

of a chiral 3-vinyl-2-oxazolidinone with a zinc monofluorocarbenoid produces the corresponding 2-fluorocyclopropylamine with modest selectivity (Eq. 80). (181)

3.8. Stoichiometric Quantities of Chiral Additives

The first attempts to control absolute configuration in the cyclopropanation of substrates by adding external chiral ligands were reported in 1968. It was found that very low yields (£15%) and enantiomeric excesses (£3.4%) were obtained if a mixture of (–)-menthol and IZnCH₂I was added to α , β -unsaturated esters. (54, 121) Later, very low enantioselectivities were observed when L-leucine was employed as an additive in the cyclopropanation of vinyl ethers. (67) Modest enantioselectivities are observed in the enantioselective cyclopropanation of cinnamyl alcohol using a (1*R*,2*S*)-*N*-methylephedrine-modified halomethylzinc reagent. (182)

The first report on enantioselective cyclopropanation of allylic alcohols that described moderate levels of enantioselection (70-81% ee) involved the addition of a stoichiometric amount of diethyl tartrate to a mixture of the allylic alcohol, diethylzinc, and diiodomethane (Eq. 81). (183) Slightly higher selectivities were obtained in the cyclopropanation of silicon-substituted allylic alcohols (Eq. 82). (184)

One of the most effective additives currently available is a dioxaborolane (Eq. 83). This agent is readily prepared from the commercially available

 $N, N, N\phi, N\phi$ -tetramethyltartaric acid diamide and butylboronic acid and is an efficient chiral controller for the cyclopropanation reaction (Eq. 83). (185-187)

The corresponding substituted cyclopropylmethanols of a variety of allylic alcohols are produced with excellent enantioselectivities (90–93% ee) when a mixture of the alcohol and the dioxaborolane ligand is added to the preformed halomethylzinc reagent. This method has since been extended to the enantioselective cyclopropanation of 3-tributylstannyl-2-propen-1-ol, (188) 3-iodo-2-propen-1-ol and polyenes. (189)
The enantioselective cyclopropanation reaction using the dioxaborolane-derived ligand is quite general and practical. (190) Accordingly, it has been used to elaborate the chiral cyclopropane subunits of Curacin A, (191) and bidirectional strategies have been employed for the synthesis of the structurally fascinating FR-900848 (192) and U-106305 (examples found in Table XIII). (193–194)

The chiral dioxaborolane can also be used to generate functionalized 1,2,3-substituted cyclopropanes by using appropriately functionalized 1,1-diiodoalkanes as precursors (Eqs. 84-85). (69) However, this methodology is limited since there are very few methods for generating this class of dihaloalkanes. (193, 194)

Recently, the chiral dioxaborolane was applied to the cyclopropanation of chiral nonracemic (*E*)-allylic alcohols to provide a new access to *anti*-cyclopropylmethanol derivatives (Eq. 86). (197) This new approach is complementary to the directed cyclopropanation using $EtZnCH_2I$, which affords predominantly the *syn* product (for example, see Eq. 52).

Finally, N, N, N', N'-tetraethyl-1,1'-bi-2-naphthol-3,3¢-dicarboxamide, a ligand prepared in 4 steps from binaphthol, can be used for the enantioselective cyclopropanation of allylic alcohols (Eq. 87). (198, 199) The scope of the reaction seems

somewhat limited since only (E)-substituted allylic alcohols can be converted into the corresponding cyclopropanes with reasonably good yields and enantioselectivities. Furthermore, a significantly large excess of diethylzinc is also required (ee and yield drop dramatically if less than 6 equivalents of diethylzinc are used).

3.9. Chiral Catalysts

The notion that Lewis acids can accelerate the cyclopropanation of olefins using haloalkylmetal reagents has been contemplated for several decades. (56) Unfortunately, the electrophilic nature of the reagents precludes the use of highly basic chiral ligands that could coordinate to the metal center in a reversible fashion to produce significant rate accelerations to overcome the uncatalyzed, racemic pathway. Although the mechanism for rate acceleration by the addition of chiral catalysts is not well understood, two notable and quite effective substoichiometric systems are available for the cyclopropanation of allylic alcohols.

The Simmons-Smith cyclopropanation reaction is significantly accelerated by the addition of 0.1 equivalent of a C_2 -symmetric chiral disulfonamide ligand (Eq. 88). (200, 201)

Ph OH
$$H$$
 NHSO₂Me (0.1 eq)
H NHSO₂Me (0.1 eq)
1. Et₂Zn (1.1 eq), ZnI₂ (1 eq),
2. Et₂Zn (1 eq), CH₂I₂ (2 eq),
CH₂Cl₂, 0° Ph OH 89% ee (88)

Numerous disulfonamides have been tested (202) and the bis(methanesulfonamide) of *trans*-cyclohexanediamine gives consistently high enantioselectivities with *cis*- and *trans*-allylic alcohols and some trisubstituted allylic alcohols (Eq. 89, Table XIV).

The enantioselective cyclopropanation of tetrasubstituted olefins was attempted but lower ees are generally observed. In addition, reactions involving more substituted reagents need further development (Eq. 90). (202a) This method has

also been extended to the enantioselective cyclopropanation of vinylsilanes and -stannanes. (203) Slightly lower enantioselectivities are obtained if the zinc salt is replaced by an aluminum salt; (204) the titanium analog is ineffective. The rate and selectivity of the catalytic enantioselective cyclopropanation of cinnamyl alcohol utilizing bis(iodomethyl)zinc and the bis(sulfonamide) catalyst are greatly dependent on the order of addition of the reagents. (20, 205) The independent preformation of the ethylzinc alkoxide and bis(iodomethyl)zinc is crucial. The reaction displays autocatalytic behavior, which is shown to be due to the generation of zinc iodide. In addition, an in-depth solution study of a chiral zinc-sulfonamide complex relevant to the enantioselective cyclopropanation has been reported as well as an X-ray crystal structure of a catalytically active species. (206)

An alternative method for the Lewis acid-catalyzed cyclopropanation reaction of allylic alcohols, in which the uncatalyzed process is minimized, has been reported. (31) The addition of $Zn(CH_2I)_2$ (1 equivalent) to an allylic alcohol (1 equivalent) produces the iodomethylzinc alkoxide. Methylene transfer from these less reactive species is triggered by the addition of a Lewis acid in catalytic amounts. Several achiral Lewis acids are effective in inducing the cyclopropanation. Conversely, the use of a chiral Lewis acid [derived from TADDOL (207) and Ti(OPr–i)₄] produces the corresponding cyclopropane derived from aryl-substituted allylic alcohols in up to 90% ee. (31) Although this system is effective with aryl-substituted allylic alcohols, the cyclopropanation of alkyl-substituted allylic alcohols still needs to be improved. The disulfonamide system is superior with some of these allylic alcohols (Eq. 91). (31)

It is apparent that significant progress has been made toward the development of an efficient catalytic, asymmetric cyclopropanation using zinc-derived reagents, but there is still room for improvement. More specifically, the design of better catalysts to increase the scope of the reaction and to improve the enantioselectivities are among the top priorities in this area of research. Furthermore, simplification of the reaction protocol would contribute greatly to making this approach an attractive alternative for synthetic chemists seeking asymmetric catalytic cyclopropanation methods.

3.10. Functional Group Compatibility and Side Reactions

One of the principal assets of the haloalkylzinc-mediated cyclopropanation of alkenes is its compatibility with a wide range of functional groups. Tables I-XVI indicate that a large number of functional groups are compatible with these reagents (alkynes, silanes, stannanes, germanes, alcohols, ethers, sulfonate esters, aldehydes, ketones, carboxylic acids and derivatives, carbonates, carbamates, imidates, oxime ethers, boronates, phosphonates, sulfones, sulfonates, sulfonylimines, and sulfoximines). In addition, in certain cases experimental conditions can be modified to minimize byproduct formation. Among the possible side reactions of the zinc carbenoids, the reduction or protonolysis of vinylic stannane groups or C-halogen (when Zn metal is used) is most often observed. This side reaction with tin can be minimized by adding diisopropylethylamine (Eq. 92). (208)

Sometimes problems can occur with acid-sensitive substrates since ZnI_2 is formed as a byproduct. To minimize these side reactions, it is usually better to use the Et_2Zn / CH_2I_2 combination with excess Et_2Zn to scavenge ZnI_2 since these species will equilibrate to form the less acidic EtZnI. Alternatively, to avoid side reactions with acid-sensitive substrates, it is sometimes important to quench the reaction with pyridine to scavenge ZnI_2 and excess reagent. (39)

The methylation of heteroatoms and ylide formation are two of the most important side reactions of these zinc reagents, both deriving from their electrophilic nature. When a large excess of reagent is used for long reaction times, methylation of alcohols is almost always observed, (209) especially with bis(chloromethyl)zinc. In some cases, amines, thioethers and phosphines react readily with zinc reagents to generate ammonium salts, (210) and sulfonium (211) and phosphonium ylides. (212) Terminal alkynes generally lead to a large number of byproducts. (213)

The functional group compatibility of the analogous aluminum and samarium reagents is not well documented, but it is expected to be similar to that of the zinc reagents. However, it is known that samarium carbenoids can undergo 1,2-addition or dimerization (Eq. 93). (87, 110)

4. Comparison with Other Methods

The fascination of organic chemists for the smallest and highly strained cycloalkanes has resulted in the development of numerous methodologies for their synthesis. (214) Most of the early efforts provided access to cyclopropane derivatives in racemic forms, whereas recent synthetic strategies have focused on their enantioselective synthesis. (215-221) The most important enantioselective cyclopropanation methods are briefly described below and their scope is compared with that of the Simmons-Smith cyclopropanation.

4.1. Dihalocarbenes

Dihalocarbenes are the electrophilic reagents of choice for reaction with electron-rich alkenes to generate dihalocyclopropanes (Eq. 94). (222) These reagents are most conveniently prepared by basic treatment of a trihalomethane, by BuLi

treatment of a tetrahalomethane, or by thermal decomposition of trihaloacetate derivatives. (223) In contrast, the analogous trihalomethylzinc reagents are much more difficult to prepare since the insertion of zinc into a tetrahalomethane (or the alkyl group exchange with Et_2Zn) is not a facile process. Furthermore, the trihalomethylzinc reagents usually produce very low yields of the corresponding cyclopropanes (see Table XV for specific examples). The dihalocarbenes have been used in some diastereoselective processes, and they have supplanted the related trihalomethylzinc reagents. In some examples, the diastereoselectivities observed with these reagents have been comparable to those observed with the zinc reagents (see for example Eq. 63), but they have not been widely used to generate enantiomerically enriched derivatives.

4.2. Transition-Metal-Catalyzed Diazoalkane Decomposition

The cyclopropanation of alkenes using the transition metal-catalyzed decomposition of α -diazocarbonyl compounds, vinyl or aryldiazoesters is one of the best methods available for accessing specific classes of enantiomerically enriched cyclopropane derivatives (Figure 1, R¹ = H, PhCH = CH, Ar). (224–225a) Conceptually, the stereoselective carbon-carbon bond construction involved in these reactions is quite different and complementary

to that involving the Simmons-Smith reagents (Figure 1, path A vs B, vide infra).

Fig. 1.

Copper catalysts are among the most effective for the intermolecular cyclopropanation reactions involving unsubstituted diazoester derivatives (Fig. 1, $R^1 = H$) (Eqs. 95–96). (226-228) Conversely, chiral rhodium complexes are superior

catalysts with substituted diazoesters (Fig. 1, $R^1 = PhCH = CH$ or Ar), but these carbenoids react only with mono- or 1,1-disubstituted olefins. (229) The intermolecular version of the reaction is quite practical with a certain number of terminal, monosubstituted alkenes and with other simple and readily available alkenes. The chemoselective cyclopropanation of dienes is usually more effective using the copper-catalyzed process since monosubstituted alkenes react much faster than more substituted ones. (230)

The main advantage of this reaction when compared to the Simmons-Smith reaction is that it involves a truly catalytic process (1 mol%). The main drawback of the intermolecular transition metal-catalyzed diazoester decomposition reaction is that it is usually limited to simple alkenes, since an excess (5–10 equivalents) of the olefin is often mandatory to obtain high yields. For this reason, the yields are usually reported relative to the starting diazoester reagent. Moreover, its scope is limited by the possibility of generating diastereomers in addition to enantiomers with substituted alkenes. Efficient access to simple *cis*-disubstituted cyclopropanes is not possible in the intermolecular version of this reaction, and the Simmons-Smith reaction is much superior for generating the *cis*-disubstituted cyclopropanes. For example, chiral rhodium complexes give at best ~2:1 *cis-trans* ratio, and the enantioselection is generally low (<80%), except for some examples also using a chiral diazoester. (231-233)

In addition, little success has been achieved with diazomethane as the carbenoid precursor (Figure 1, path C, vide supra). (234) The racemic process proceeds well with palladium acetate as the catalyst as long as an electron-deficient olefin is used. However, enantiocontrol is possible only in one system (235, 236) so far involving a copper catalyst (Eq. 97). (237) The Simmons-Smith processes are by far superior for generating stereodefined 1,2-disubstituted cyclopropanes.

(97)

On the other hand, the intramolecular version of the reaction between diazocarbonyl derivatives and alkenes using chiral dirhodium(II) carboxylate catalysts provides a powerful access to functionalized *cis*-substituted cyclopropanes in good yields, with excellent enantio- and diastereoselectivities (Eq. 98). (238, 239) However, the need for a tethered reagent puts an inherent limitation on the structural features of the compounds that can be prepared with this reaction. The parent asymmetric intramolecular Simmons-Smith process has not been reported to

date and therefore this approach is one of the best available for generating enantioenriched 1,2,3-trisubstituted cyclopropanes.

4.3. Michael-Initiated Ring Closure

Cyclopropanations that involve conjugate addition to an electrophilic alkene to produce an enolate that subsequently undergoes an intramolecular ring closure are defined as Michael-Initiated Ring Closure (MIRC) reactions. Although there are exceptions, cyclopropanations via the MIRC reaction of acyclic olefins are usually nonstereospecific, and both (*E*)- and (*Z*)-olefins give the *trans*-cyclopropanes (Eqs. 99–100). (240, 241) For the synthesis of 1,2-disubstituted cyclopropanes, the MIRC process is not as powerful as the Simmons-Smith

reaction. However, this reaction does provide access to stereodefined 1,2,3-trisubstituted cyclopropanes, which are otherwise difficult or impossible to synthesize using either the Simmons-Smith reaction or the transition metal-catalyzed decomposition of diazoesters. Cyclopropanations using the MIRC reaction on cyclic systems can be stereospecific, and one notable example is shown in Eq. 101. (242) Enantioselective versions involving catalytic amounts of sulfur ylides

are available but the reaction is limited to aryl-substituted cyclopropanes (Eq. 102). (243, 244)

Rh₂(OAc)₄ (1 mol%), PhMe, rt Ph Ph

0.2 equiv. **8** = 38% (4:1 isomeric ratio), 97% ee 1.0 equiv. **8** = 60% (4:1 isomeric ratio), 97% ee

Another powerful, auxiliary-based approach to 1,2,3-trisubstituted cyclopropanes involves the highly stereocontrolled conjugate 1,4-addition of the anion derived from a *trans*-chloroallylphosphonamide to conjugated compounds (Eq. 103). (245, 246) Subsequent intramolecular attack of the enolate upon the intermediate

allylic chloride provides the corresponding *endo*,*endo*-cyclopropanes with both excellent yield and diastereoselectivity. Alternatively, *cis*-chloroallyl-phosphonamide reagents under the same conditions give the *exo*,*endo*-product.

In conclusion, one the most appealing aspects of the MIRC reactions compared to those of the Simmons-Smith reaction and of diazocarbonyl cyclopropanations is that it provides access to 1,2,3-trisubstituted cyclopropanes bearing substituents with an unique configuration, and is often complementary to the other cyclopropanation methods. For the synthesis of 1,2-disubstituted cyclopropanes, the Simmons-Smith reaction is in most cases a more effective method.

4.4. Intramolecular Cyclization

The enantioselective synthesis of cyclopropane rings by intramolecular cyclization has gained much popularity since methods for the preparation of

the enantioenriched precursors have become available. Two notable examples are the generation of cyclopropanes from epoxy alcohols prepared by asymmetric epoxidation (247) (Eq. 104) (248) and their formation from diols obtained by asymmetric dihydroxylation (249) (Eq. 105). (250) These methods are appealing since they use two

efficient catalytic asymmetric processes. However, the cyclopropane product is necessarily substituted with two geminal electron-withdrawing substituents. This class of compounds cannot be directly synthesized by the Simmons-Smith reaction, and a multistep sequence is necessary to elaborate them. Since the bond construction in these two processes is quite different from that involving the Simmons-Smith reaction, both methods may be complementary depending upon the availability of the precursors.

5. Experimental Conditions

Commercial zinc dust devoid of lead impurities is suitable for reagent preparation in trials involving the Zn/Cu couple. Generally more active, it is preferred over zinc powder.

Extreme care should be taken in reactions involving the pyrophoric (neat) diethylzinc and trialkylaluminums. These organometallic reagents should be transferred with dry gas-tight syringes using standard procedures for handling air-sensitive reagents. (251-253) Immediately after use and to avoid clogging, these syringes should be rinsed by purging them several times in an Erlenmeyer flask containing an anhydrous solvent such as acetone, dichloromethane or hexane. Moreover, use of a cannula instead of a syringe is recommended for reactions involving a large amount of the pyrophoric precursor. In addition, the dihaloalkane should be added to a solution of diethylzinc/trialkylaluminum. Explosions have been reported to occur when the order of addition of the reagents is inverted (48) (addition of diethylzinc to CH_2l_2), presumably owing to peroxide formation. (254, 255) In addition, catalytic amounts of oxygen might be involved in the carbenoid formation reaction (vide supra). (49, 50) Nitrogen is recommended as the inert gas, and opening the system after addition of the dihaloalkane will ensure carbenoid formation when the amount of adventitious oxygen is not sufficient. Experimentally, removing the nitrogen line and placing a small needle through the septum for 10 seconds is usually sufficient on large scale or when rigorously anhydrous reaction vessels and deoxygenated conditions are used.

For cyclopropanation reactions with zinc carbenoids, dichloromethane and 1,2-dichloroethane are the solvents of choice since they are nonbasic, unreactive toward the zinc reagents, and polar enough to solubilize the substrates. When basic solvents are used, the rate of cyclopropanation usually decreases as the basicity of the solvent increases. However, reactions involving the Zn/Cu couple must be carried out in ethereal solvents to ensure that the oxidative addition proceeds well. In the trialkylaluminum/diiodoalkane system, ethereal solvents must be avoided since reactions carried out in these solvents lead to complete recovery of the starting olefins. Cyclopropanations with samarium carbenoids have been reported only using THF as solvent.

Typical reaction temperatures are below or at room temperature (zinc and aluminum carbenoids). Aside from reactions involving the Zn/Cu couple (which require heating in an ethereal solvent), there are numerous examples of carbenoids possessing a strong reactivity profile at 0° . Heating is not necessary and most other cyclopropanation reactions are carried out in the -10 to 20° temperature range. Samarium reagents are usually formed at -78°

and warmed to room temperature.

Since the byproduct formed under various reaction conditions is a Lewis acid, acid-sensitive substrates may require optimization of the reaction conditions. Carrying out the reaction in an ethereal solvent or addition of a Lewis base like disopropylethylamine (vide supra) can allow reactions to proceed satisfactorily.

6. Experimental Procedures

6.1.1. Bicyclo[4.1.0]heptan-2-one [Cyclopropanation of a Cyclic Alkene Using the Zinc/Copper Couple prepared from Cu(OAc)₂] (256) 6.1.1.1. Preparation of the Zn/Cu couple

In a 250-mL Erlenmeyer flask equipped with a stirbar, cupric acetate monohydrate (0.16 g, 0.8 mmol) was dissolved upon heating in 5 mL of glacial acetic acid. Zinc powder (2.8 g, 42.8 mmol) was added to this stirred solution, and after 30 to 60 seconds, the green coloration disappeared and metallic red copper deposited on the zinc. The stirring was stopped and the supernatant liquid was decanted and replaced with 5 mL of glacial acetic acid. The suspension was stirred once again and the supernatant liquid was once again decanted and then replaced with 10 mL of ether. The couple was washed in the same fashion 3 times with 10-mL ether portions. Finally, the couple was covered with 20 mL of ether.

6.1.1.2. Cyclopropanation Reaction

The Erlenmeyer flask was fitted with a condenser, an addition funnel and a CaCl₂ trap. A few drops of CH₂I₂ were added and a slightly exothermic reaction occurred. Then, the mixture of cyclohexen-2-one (0.96 g, 0.01 mol) and CH₂I₂ (7.5 g, 28 mmol) was added dropwise, inducing a gentle reflux for 30 minutes to 1 hour. The mixture was stirred and heated to reflux over 36 hours. A white solid deposited after a few hours, and larger amounts formed with time. After cooling the flask to room temperature, distilled water (2 mL) was added dropwise and the mixture was stirred one hour. After centrifugation, the ether phase was decanted and this solution was washed with 10% aqueous HCl, then 3 times with distilled water. The solution was dried over Na₂SO₄, filtered and concentrated to afford 1.0 g (90%) of bicyclo[4.1.0]heptan-2-one as a colorless liquid: bp₁₅ 91°; ¹H NMR δ 1.80 (m, 7 H), 1.14 (s, 1 H), 1.01 (m, 2 H).

6.1.2. 1-Trimethylsilyloxybicyclo[4.1.0]hept-2-ene (Cyclopropanation of a Cyclic Silyl Enol Ether Using the Zinc/Silver Couple) (107)

In a 250-mL, two-necked flask equipped with a condenser and magnetic stirring bar containing boiling glacial acetic acid (100 mL) was added silver acetate (100 mg). Upon dissolution of the silver acetate, zinc powder (20 g) was added all at once to the stirring hot solution. After 30 seconds the liquid was carefully decanted and the zinc-silver couple was washed with five 100-mL portions of anhydrous ether. Ether (100 mL) was added, followed by 2-trimethylsilyloxycyclohexa-1,3-diene (16.8 g, 0.10 mol) and the flask was fitted with an addition funnel containing CH_2I_2 (40.2 g, 0.15 mol) and a $CaCI_2$ trap. The suspension was stirred moderately and CH₂I₂ was added dropwise. The reaction induced a gentle reflux that increased upon CH₂I₂ addition. After complete addition, the mixture was heated to reflux for 15-16 hours. The flask was then cooled to 0° and a solution of dry pyridine (23.8 g, 0.3 mol) in ether (50 mL) was added dropwise via the addition funnel. Upon addition of pyridine, a precipitate was formed. After complete addition, the precipitate was filtered off and was washed with ether. The combined filtrate and washes were concentrated in vacuo. The crude product was dissolved in pentane and filtered. Upon solvent concentration, the residue was purified by distillation to afford 15.5 g, 85% of 1-trimethylsilyloxybicyclo[4.1.0]hept-2-ene: $bp_{0.03}$ 40–43°; IR (film) 3080, 3040, 2960, 1640, 1450, 1255, 1220, 1010, 845, 760 cm⁻¹; ¹H NMR (CCl₄) δ 6.14–6.00 (br s, 1 H), 5.45-5.10 (m, 1 H), 2.00-1.10 (m, 4 H), 1.00-0.55 (m, 3 H), 0.12 (s, 9 H); LRMS calcd: M 183, found: M⁺ 182 (75%) and m/z (%): 167 (100), 154 (50), 151 (52), 93 (97), 75 (95).

6.1.3. (3S,4R)-(–)-3-Methyl-4-(1-methylcyclopropyl)cyclohexanone (Cyclopropanation of an Acyclic Alkene Using the Zinc/Copper Couple Prepared from CuCl) (257)

A mixture of zinc dust (2.57 mmol, 0.167 g) and cuprous chloride (2.57 mmol, 0.254 g) in anhydrous ether (1 mL) was heated at reflux for 30 minutes with stirring under nitrogen. CH₂I₂ (1.28 mmol, 0.103 μ L) was added, and the mixture was heated at 40° until bubbles appeared and the solution turned dark. (3*S*,4*R*)-(–)-3-Methyl-4-isopropenylcyclohexanone (0.99 mmol, 0.150 g) and

 CH_2I_2 (0.500 mL) were added and the mixture was kept at 40° with stirring for 20 hours. The solution was diluted with ether and filtered through Celite, washed with 5% aqueous HCI, water, and brine, dried over anhydrous Na_2SO_4 silver-nitrate-impregnated silica gel (eluting with 5% ethyl acetate-hexane) to give

(3S,4R)-(–)-3-methyl-4-(1-methylcyclopropyl)cyclohexanone (0.130 g, 79%): [α]²⁰_D –19.3° (*c* 0.71); IR (neat) 3100, 1720, 1180 cm⁻¹; ¹H NMR δ 1.05 (s, 3 H), 1.00 (d, *J* = 8 Hz, 3 H), 0.45 (m, 2 H), 0.28 (m, 2 H); LRMS *m*/*z* 166 (1, M⁺), 138 (45), 111 (75), 96 (56), 82 (53), 67 (47), 55 (100); HRMS calcd for C₁₁H₁₈O : 166.13576, found: 166.13543.

6.1.4. (1R,2R)-2-Phenylcyclopropanemethanol [Cyclopropanation of an Acyclic Alkene Using bis(Chloromethylzinc)] (51)

In a 25-mL, two-neck flask, a solution of Et_2Zn (410 µL, 4.00 mmol, 2.00 equiv.) in 1,2-dichloroethane (7 mL) was cooled to 0°, and CH₂ICI (585 µL, 8.03 mmol, 4.0 equiv.) was added via syringe. The solution was stirred for 5 minutes at 0°, and a solution of cinnamyl alcohol (268 mg, 2.00 mmol) in 1,2-dichloroethane (3 mL) was added slowly via syringe. The reaction mixture was stirred for 20 minutes at 0° and then was guenched carefully with saturated agueous NH₄Cl solution (20 mL). The mixture was allowed to warm to room temperature, stirred vigorously for 10 minutes, and extracted with *tert*-butyl methyl ether (3 × 20 mL). The extracts were washed with water (1 × 20 mL) and brine $(1 \times 20 \text{ mL})$, combined, dried (K₂CO₃), filtered through a pad of silica gel, and concentrated at aspirator pressure. The crude product was purified by silica gel chromatography (hexane/EtOAc, 6/1) and bulb-to-bulb distillation to afford 275 mg (93%) of the title cyclopropane as a clear, colorless oil: bp 145–150° (2 Torr); ¹H NMR (300 MHz) δ 7.15 (m, 5 H), 3.60 (dd, J = 2.33 and 6.71 Hz, 2 H), 1.81 (m, 1 H), 1.78 (br s, 1 H), 1.43 (m, 1 H), 0.94 (m, 2 H); ¹³C NMR (75.5 MHz) 142.37, 128.30, 125.74, 125.58, 66.48, 25.25, 21.24, 13.83; TLC R_f 0.10 (hexane/EtOAc, 4/1); GC T_r 8.60 min (170 °C isothermal, HP 50-m HP-5 capillary column). Anal. Calcd for $C_{10}H_{12}O$: 81,04; H, 8.16. Found: C, 80.99; H, 8.18.

$$Ph \longrightarrow OTBS \qquad \frac{CF_3CO_2ZnCH_2I (2 eq),}{CH_2Cl_2, 0^{\circ} \text{ to rt, 30 min}} Ph \longrightarrow OTBS \quad (95\%)$$

6.1.5. (1,1-Dimethylethyl)dimethyl([(1R,2R)-2-phenylcyclopropyl]methoxy) silane (Cyclopropanation of an Acyclic Alkene Using the TFA-Accelerated Reaction Protocol) (53)

To freshly distilled CH₂Cl₂ (20 mL) was added Et₂Zn (1.0 M in hexanes) (20 mL, 20 mmol) under N₂ (it is best to use an inlet adapter for the nitrogen line since needles often become clogged). The solution was cooled in an ice bath and a solution of trifluoroacetic acid (1.54 mL, 20 mmol) in CH₂Cl₂ (10 mL) was then dripped very slowly into the reaction mixture via syringe. Upon stirring for 20 minutes, a solution of CH_2I_2 (1.61 mL, 20 mmol) in CH_2CI_2 (10 mL) was added. After an additional 20 minutes stirring, a solution of (E)-cinnamyl alcohol TBS ether (2.60 g, 10 mmol) in CH₂Cl₂ (10 mL) was added and the ice bath was removed. After an additional 30 minutes stirring, the reaction mixture was quenched with 0.1 N HCI (50 mL) (or saturated aqueous NH_4CI) and hexanes (25 mL) and the layers were separated. The aqueous layer was extracted with hexanes. The combined organic layers were washed with saturated aqueous NaHCO₃, water, and brine, then dried over Na₂SO₄, filtered, concentrated, and purified by column chromatography (hexanes/ether, 50/1) to yield the cyclopropane product (2.61 g, 95%): IR (film) 2955, 2933, 2892, 2857, 1605 cm⁻¹; ¹H NMR δ 7.26 (m, 2 H), 7.15 (m, 1 H), 7.08 (m, 2 H), 3.72 (dd, J = 10.8, 5.7 Hz, 1 H), 3.61 (dd, J = 10.8, 6.0 Hz, 1 H), 1.83 (dt, J = 8.5, 4.8 Hz, 1 H), 1.37 (m, 1 H), 0.94 (m, 2 H), 0.93 (s, 9H), 0.09 (s, 6 H); ¹³C NMR δ 143.3, 128.4, 126.1, 125.5, 66.0, 26.2, 25.4, 20.9, 18.6, 13.7, -5.0. Anal. Calcd for C₁₂H₂₆OSi : C, 73.22; H, 9.98. Found: C, 73.19; H, 9.71.

6.1.6. 1-Trimethylsilyloxy-2,2-dimethylcyclopropane (Cyclopropanation of an Acyclic Silyl Enol Ether Using the Zinc/Silver Couple) (107)

In a 250-mL, two-necked flask equipped with a condenser and magnetic stirring bar containing boiling glacial acetic acid (100 mL) was added silver acetate (100 mg). Upon dissolution of silver acetate, zinc powder (20 g) was added all at once to the stirring hot solution. After 30 seconds the liquid was carefully decanted and the zinc-silver couple was washed with five 100-mL portions of anhydrous ether. Then, ether (100 mL) was added, followed by 1-trimethylsilyloxy-2-methylpropene (0.10 mol) and the flask was fitted with an addition funnel containing CH_2I_2 (40.2 g, 0.15 mol) and a $CaCI_2$ trap. The

suspension was moderately stirred and CH_2I_2 was added dropwise. The reaction induced a gentle reflux that increased upon CH_2I_2 addition. After complete addition, the mixture was heated to reflux for 15–16 hours. The flask was then cooled to 0° and a solution of dry pyridine (23.8 g, 0.3 mol) in diethyl ether (50 mL) was added dropwise via the addition funnel. Upon addition of pyridine, a precipitate was formed. After complete addition, the precipitate was filtered off and was washed with ether. The combined filtrate and washes were concentrated in vacuo. The crude product was dissolved in pentane and filtered. Upon solvent concentration, the residue was purified by distillation to afford 63% of 1-trimethylsiloxy-2,2-dimethylcyclopropane: bp_{12} 25–27°; IR (film) 3080, 2960, 1450, 1255, 1180, 1030, 850, 755 cm⁻¹; ¹H NMR (CCl₄) δ 2.95 (dd, 1 H), 1.05 (s, 3 H), 0.95 (s, 3 H), 0.49-0.10 (m, 3 H), 0.12 (s, 9 H); LRMS calcd: M 158, found: M⁺ 158 (5%) and *m/z* (%): 143 (82), 75 (65), 73 (100).

6.1.7. 6,6-Dimethylspiro(bicyclo[3.1.1]heptane-2,1'-cyclopropane) (Cyclopropanation of a Cyclic Alkene Under TiCl₄-Promoted Conditions) (43)

A 500-mL, three-necked, round-bottom flask was fitted with a double condenser system (Allihn on bottom, Friedrich on top), a mechanical stirrer, and a pressure-equalizing dropping funnel containing ether for use in maintaining solvent volume during the course of the reaction. A gas collection apparatus or gas bubbler was attached to the Friedrich condenser to measure the amount of ethylene evolved and/or to monitor the course of the reaction. Zinc dust (52.3 g, 0.80 mol), copper(I) chloride (7.92 g, 0.80 mol), ether (125 mL), dibromomethane (104 g, 0.60 mol), and β -pinene (27.2 g, 0.20 mol) were added in the order listed. After stirring was commenced, titanium(IV) chloride (2.28 g, 0.012 mol) was added by syringe (Caution! Use of more than 2 mol % of titanium(IV) chloride based on starting dihaloalkane has resulted in unmanageable reactions), and the reaction mixture was heated at 45–50° with an oil bath. The oil bath was lowered if the reaction became too vigorous, and the ether volume was replenished through the addition funnel when necessary. Upon completion of the reaction, as indicated by a slowing or stopping of gas evolution, the contents of the reaction flask were transferred to another vessel, cooled in ice, and treated while stirring with saturated aqueous NH₄CI (ca. 25 mL per 0.1 mol of starting zinc dust). Initial addition must be done carefully to avoid foaming the contents out of the vessel. The solids were removed by

vacuum filtration (*Caution!* Potential fire hazard if air is drawn through the zinc residue. The residue should be thoroughly wet with water before disposal) and washed twice with *n*-pentane. The aqueous layer of the filtrate was separated and washed twice with *n*-pentane, and the combined organic layers were washed three times with 10% NaOH and once with saturated aqueous NaCl solution and dried over anhydrous Na₂SO₄. The solvents were removed on a steam bath through a Vigreux column or a rotary vacuum evaporator, and the remaining oil was distilled, giving 23.0 g (77%) of 97% pure 6,6-dimethylspiro[bicyclo[3.1.1]heptane-2,1'-cyclopropane], bp 78–92° (25 Torr), $n^{23}_{D} = 1.4765$ [lit. (257a) bp 71–73° (18 Torr), $n^{25}_{D} = 1.4765$]. The distillation pot residue weighed 7.2 g. For pure 6,6-dimethylspiro[bicyclo[3.1.1]heptane-2,1¢-cyclopropane]: ¹H NMR (CDCl₃) δ 2.2 (m, 1 H), 2.1-1.7 (m, 4 H), 1.6 (d, J = 9.7 Hz, 1 H), 1.25 (m, 1 H), 1.2 (s, 3)

δ 2.2 (m, 1 H), 2.1-1.7 (m, 4 H), 1.6 (d, J = 9.7 Hz, 1 H), 1.25 (m, 1 H), 1.2 (s, 3 H), 1.1 (m, 1 H), 1.0 (s, 3 H), 0.45 (m, 1 H), 0.35 (m, 1 H), 0.15 (m, 2 H); ¹³C NMR (CDCl₃) δ 51.2, 40.9, 40.7, 27.2, 26.7, 26.6, 24.2, 21.8, 19.6, 16.3, 11.8.

6.1.8. (S)-4-(1-Methylcyclopropyl)-1-cyclohexene-1-methanol (Chemoselective Cyclopropanation of a Polyene Using an Aluminum Carbenoid) (258)

A dry, 1-L, three-necked, round-bottomed flask was equipped with a gas inlet, a 50-mL pressure-equalizing dropping funnel, rubber septum, and a Teflon-coated magnetic stirring bar. The flask was flushed with argon, after which (*S*)-(–)-perillyl alcohol (10.65 g, 0.07 mol) followed by CH₂Cl₂ (350 mL) were injected through the septum into the flask. The solution was stirred and *i*–Bu₃Al (37.3 mL, 0.147 mol) was added from the dropping funnel over a period of 20 minutes at room temperature. The mixture was stirred at room temperature for 20 minutes and then CH₂I₂ (7.3 mL, 0.091 mol) was added dropwise with a syringe over a 10-minute period. The mixture was stirred at room temperature for 4 hours and poured into 400 mL of ice-cold 8% aqueous NaOH. The organic layer was separated, and the aqueous layer was extracted twice with 100-mL portions of CH₂Cl₂. The combined extracts were dried over anhydrous Na₂SO₄ and concentrated with a rotary evaporator at ca. 20 mm. The residual oil was distilled under reduced pressure to give 10.64–11.13 g (92–96%) of (*S*)-4-(1-methylcyclopropyl)-1-cyclohexene-1-methanol as a colorless liquid: bp 132–134° (24 mm Hg); IR (film): 3330, 2960–2830, 1460–1423, 1390, 1010, 1000 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 5.69 (br s, 1 H), 3.99 (br t, 2 H), 2.16-1.91 (m, 4 H), 1.83-1.77 (m, 1 H), 1.47-1.36 (m, 1 H), 1.30-1.24 (m, 1 H), 0.93 (s, 3 H), 0.92-0.80 (m, 1 H), 0.26-0.22 (m, 4 H).

Sm/Hg, CH2ICl, THF, -78° to rt

OH

6.1.9. (1S*,2S*)-2-Methyl-2-(4-methyl-3-pentenyl)cyclopropanemethanol (Chemoselective Cyclopropanation of a Polyene Using a Samarium Carbenoid) (58)

To a dry 25-mL round-bottom flask equipped with a stirbar was added samarium metal (2.1 mmol, 0.316 g). The flask was simultaneously flushed with argon and flamed dry. To the cooled flask was added 5 mL of THF, followed by a solution of mercury(II) chloride (0.2 mmol, 0.054 g) in 5 mL of THF. This was allowed to stir for 10 minutes followed by addition of geraniol (0.5 mmol). The flask was cooled to -78°, and CH₂ICI (2.0 mmol) was added dropwise. The mixture was allowed to warm to room temperature and stirred for an additional 1–2 hours. The reaction was followed by TLC and GC. The reaction was quenched with saturated K_2CO_3 and extracted with ethyl ether. The ether layer was washed with brine three times, dried over K₂CO₃, filtered and concentrated in vacuo to yield the crude material. Flash chromatography or Kugelrohr distillation yielded the pure cyclopropyl carbinol. This general procedure was followed to yield 97% (0.082 g, 0.487 mmol) of $(1S^*, 2S^*)$ -2-methyl-2-(4-methyl-3-pentenyl)cyclopropanemethanol as a clear colorless oil after Kugelrohr distillation (55–65° at 0.1 mm Hg). The isolated product was 94% pure as indicated by GLC analysis: IR (neat) 3415, 2930, 1450, 1385, 1034 cm⁻¹; ¹H NMR (CDCl₃) δ 5.11-5.08 (m, 1 H), 3.73-3.64 (dd, J = 11.4, 6.5 Hz, 1 H), 3.51-3.41 (dd, J = 11.4, 8.5 Hz, 1 H), 2.06-0.85 (m, 6 H), 1.64 (s, 3 H), 1.58 (s, 3 H), 1.06 (s, 3 H), 0.51-0.44 (m, 1 H), 0.12-0.07 (m, 1 H); ¹³C NMR (CDCl₃) δ 131.37, 124.68, 63.96, 41.12, 26.30, 25.74, 25.54, 19.97, 17.73, 17.68, 17.11.

6.1.10. (3 β ,4 α ,5S)-3',4-Dihydrocyclopropa[4,5]cholestan-3-ol (Directed Cyclopropanation of a Chiral Cyclic Allylic Alcohol Involving a Zinc Carbenoid) (259)

To a magnetically stirred mixture of zinc-copper couple (0.687 g, 10.5 mmol), (15) dry ether (12 mL), and a small crystal of iodine, there was added CH_2I_2 (2.34 g, 8.75 mmol). The mixture was warmed with an infrared lamp until the reaction started, and then allowed to react for 30 minutes in a water bath at 35°. A solution of 3 β -hydroxy- \triangle ⁴-cholestene (0.967 g, 2.5 mmol) in dry ether (7 mL) was added over a period of 20 minutes, and the mixture was stirred for 1 additional hour at 40°. The ice-cooled mixture was diluted with a saturated solution of NH₄Cl, the supernatant layer was decanted from the precipitate, and the precipitate was washed twice with ether. The combined ethereal extracts were washed with saturated NaCl solution and dried over anhydrous Na₂SO₄, and the solvent was removed under reduced pressure. The residue was purified immediately on 50 g of alumina (activity III). Hexane was used as first solvent to remove CH_2I_2 and a dimer. Benzene eluted 0.622 g (62 %) of crystalline (3 β , 4 α , 5S)-3', 4-dihydrocyclopropa[4,5] cholestan-3-ol, which was recrystallized from acetone to give fine white needles: mp 94-95° (a second crop of crystalline material formed as a white powder, mp 81.0–81.5°); $[\alpha]_{D} - 10^{\circ} (c \ 0.92);$ IR 3600, 3400 cm⁻¹; ¹H NMR δ 0.02 (q, J = 4.5 and 4.0 Hz). Anal. Calcd for C₂₈H₄₈O : C, 83.93; H, 12.08. Found: C, 84.03; H, 12.02.

6.1.11. cis-Bicyclo[4.1.0]heptan-2-ol (Directed Cyclopropanation of a Cyclic Allylic Alcohol Involving a Samarium Carbenoid) (58)

To a dry 25-mL round-bottom flask equipped with a stirbar was added samarium metal (4.2 mmol, 0.632 g). The flask was simultaneously flushed with argon and flamed dry. To the cooled flask was added THF (5 mL), followed by a solution of mercuric chloride (0.4 mmol, 0.108 g) in THF (5 mL). This was allowed to stir for 10 minutes followed by addition of cyclohex-2-en-1-ol (1 mmol). The flask was cooled to -78° , and CH₂ICI (4.0 mmol) was added dropwise. The mixture was allowed to warm to room temperature and stirred for an additional 1–2 hours. The reaction was followed by TLC and GC. The reaction was quenched with saturated K₂CO₃ and extracted with ethyl ether. The ether layer was washed with brine three times, dried over K_2CO_3 , filtered and concentrated in vacuo to yield the crude material. Flash chromatography or Kugelrohr distillation yielded the pure cyclopropyl carbinol. This general procedure was followed to yield 96% (0.107 g, 0.955 mmol) of *cis*-bicyclo[4.1.0]heptan-2-ol as a clear, colorless oil, isolated by silica gel chromatography eluting with 2:1 hexanes-EtOAc. The isolated product was 99 % pure as indicated by GLC analysis: IR (neat) 3400, 3050, 2950, 2850, 1050, 1000 cm⁻¹; ¹H NMR (CDCl₃) δ 4.26-4.04 (m, 1 H), 1.87-1.74 (m, 1 H), 1.65-1.53 (m, 2 H), 1.40-0.84 (m, 6 H), 0.59-0.48 (m, 1 H), 0.30-0.22 (m, 1 H); ¹³C NMR (CDCl₃) δ 67.26, 29.83, 22.86, 20.78, 17.69, 12.76, 7.28; HRMS calcd for C₇H₁₂O 112.0888, found 112.0874.

6.1.12. [1 α (R*),2 α]-2-Ethyl- α -methylcyclopropanemethanol (Directed Cyclopropanation of a Z-Disubstituted Acyclic Allylic Alcohol) (135)

The Zn/Cu couple was prepared according to Shank and Schechter (34) and the yields of the desired cyclopropyl carbinols were around 80%. In a three-necked flask were introduced anhydrous ether (150 mL), the Zn/Cu couple (0.5 mol) and the allylic alcohol (0.2 mol). A few milliliters of CH₂I₂ was added and the flask was gently heated until the reaction started. The remaining amount of CH₂I₂ (0.5 mol) was then added dropwise. After a few hours at reflux, the reaction was quenched with a saturated aqueous NH₄Cl solution and the solid portion was filtered. The ether layer was separated and the aqueous layer was extracted with diethyl ether. The combined organic extracts were washed with a saturated aqueous K₂CO₃ solution, dried and the desired product was isolated after distillation. [1 α (*R**),2 α]-2-Ethyl- α -methyl-cyclopropanemethanol: bp 72°; ¹H NMR (CCl₄) δ 3,28 (m, 1 H), 1.22 (d, 3 H), 1.2-0.2 (m, 9 H). Anal. Calcd for C₇H₁₄O : C, 73.68, H, 12.28. Found: C, 73.50, H, 12.14.

6.1.13. (α R,1R,2R)- α -Methyl-2-phenylcyclopropanemethanol (Directed Cyclopropanation of an E Disubstituted Acyclic Allylic Alcohol) (136)

To a solution of (*E*)-4-phenyl-3-buten-2-ol (296 mg, 2.0 mmol) in anhydrous CH₂Cl₂ (20 mL) at –10° was added dropwise diethylzinc (1.0 mL, 10 mmol) followed by CH_2I_2 (810 μ L, 10 mmol). The bath was allowed to warm to room temperature over 3 hours and the mixture was stirred for an additional hour, after which time TLC analysis showed complete consumption of the starting material. A saturated aqueous NH₄Cl solution (10 mL) was added and the mixture was diluted with ether (80 mL) and 10% aqueous HCI (10 mL). The layers were separated and the organic layer was then successively washed with saturated aqueous Na₂SO₃ (20 mL), saturated aqueous NaHCO₃ (20 mL), and saturated aqueous NaCl (20 mL). The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The diastereomeric excess was determined by GC analysis of the acetate-derived from trans-1-(1-hydroxyethyl)-2-phenylcyclopropane as follows: A solution of 10 mg of crude alcohol in 2 mL of pyridine and 1 mL of acetic anhydride was stirred for 30 minutes. This solution was injected directly into the GC (0.5 µL). Conditions: Column: DB-1701, 0.25 mm × 30 m. Pressure: 25 psi. Isotherm: 140°. $t_{\rm R}$ (minor) 10.2 min, $t_{\rm R}$ (major) 11.3 min. Diastereomeric ratio (syn:anti): 7:1 (75% de). Alternatively, silica gel chromatography of the crude alcohol using 15% ethyl acetate/hexane as the eluent produced 40 mg (12%) of the anti isomer followed by 280 mg (86%) of the more polar syn isomer.

(α *R*,1*R*,2*R*)- α -Methyl-2-phenylcyclopropanemethanol: ¹H NMR (300 MHz, CDCl₃) δ 7.30-7.06 (m, 5 H), 3.39 (dq, *J* = 8 and 6 Hz, 1 H), 1.85-1.79 (m, 1 H), 1.67 (br s, 1 H), 1.36 (d, *J* = 6 Hz, 3 H), 1.33-1.24 (m, 1 H), 1.05-0.93 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 128.4, 126.0, 125.6, 71.3, 30.7, 22.8, 20.7, 13.9.

(α *R*,1*S*,2*S*)- α -Methyl-2-phenylcyclopropanemethanol: ¹H NMR (300 MHz, CDCl₃) δ 7.30-7.08 (m, 5 H), 3.40 (dq, *J* = 8 and 6 Hz, 1 H), 1.95-1.89 (m, 1 H), 1.68 (s, 1 H), 1.34 (d, *J* = 6 Hz, 3 H), 1.34-1.25 (m, 1 H), 0.98-0.90 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 128.2, 125.7, 125.5, 71.7, 30.7, 22.3, 21.2, 13.2.

6.1.14. (1R,2R)-2-[(1'S)-1-Dimethyl(phenyl)silyl-2-methylpropyl]-1-methyl cyclopropane (Diastereoselective Cyclopropanation of an Acyclic Chiral Alkene) (259a)

Trimethylaluminum (2 M in hexane, 0.37 mL) was added to (1-isopropylbut-2-enyl) dimethylphenylsilane (0.37 mmol) and CH₂I₂ (200 mg, 0.74 mmol) in dry CH₂Cl₂ (1 mL) under nitrogen at room temperature and the mixture was stirred for 3 hours. CH₂Cl₂ (10 mL) and water (0.5 mL) were added to the mixture, after which the organic layer was separated, washed with brine (5 mL), dried (MgSO₄) and evaporated under reduced pressure. The residue was chromatographed (SiO₂, hexane) to give a 79% yield of (1*R*,2*R*)-2-[(1'S)-1-dimethyl(phenyl)silyl-2-methylpropyl]-1-methylcyclopropane. *R*_f (hexane) 0.45; IR (film) 1261, 1123 cm⁻¹; ¹H NMR (CDCl₃) δ 7.6-7.3 (m, 5 H), 1.92 (dseptet, *J* = 3.2 and 6.9 Hz, 1 H), 1.1-0.0 (m, 5 H); 0.96 (d, *J* = 6.7 Hz, 6 H), 0.89 (d, *J* = 6.9 Hz, 3 H), 0.36 (s, 3H), 0.35 (s, 3 H); LRMS calcd: (M – Pr) 203, found 203 (6%) and *m/z* (%): 135 (100), 110 (23); HRMS calcd for C₁₆H₂₆Si 203.1260, found 203.1256.

6.1.15. 3,4,6-Tri-O-acetyl-1,2-dideoxy-1,2-C-methyleneα-D-glucopyranoside (Diastereoselective Cyclopropanation of a Cyclic Chiral Enol Ether) (128)

Zn-Cu couple prepared from 2.6 g Zn by the method of Le Goff (36) was placed in dry ether (50 mL) in a three-necked flask. CH₂I₂ (3.2 mL) was added and the mixture was gently heated until small bubbles were generated from the couple. The mixture was refluxed for 30 minutes. A solution of the glucal (1.0 g) in dry ether (50 mL) was added dropwise over a 30-minute period. Heating was continued and the reaction was monitored by TLC. After 8.5 hours, TLC showed absence of the starting material. The solution was then cooled, and saturated NH₄CI (30 mL) was added to precipitate inorganic salts. The mixture was filtered and the 2-layer filtrate was separated. The aqueous layer was extracted twice with ether (50 mL). The combined ether solutions were washed with saturated K₂CO₃ (50 mL) and saturated NaCl (50 mL), dried and evaporated to a syrup. Column chromatography of the syrup on silica gel using 1:3 chloroform-ether gave a fraction which yielded needle-like crystals; yield 38%, m.p. 65–70°; $[\alpha]_{D}^{25}$ + 66.6° (c 1.1, CHCl₃); IR (KBr) 3012, 1724, 1429, 1362, 1227, 1106, 1042, 1015 cm⁻¹; ¹H NMR (CDCl₃) δ 2.1 (acetyl), 1.28 (cyclopropane).

6.1.16. (R*,S*)- α-(1,1-Dimethylethyl)-2-methylenecyclopropanemethanol (Diastereoselective Cyclopropanation of an Allenic Alcohol) (142) To a dry, round-bottomed flask equipped with a stirbar and capped with a rubber septum was added samarium metal (0.601 g, 4.0 mmol). The flask was flame dried while flushing with nitrogen. After the flask was allowed to cool to room temperature, mercuric chloride (10 mol% based on samarium) was added quickly, followed by THF (2 mL). The gray suspension was stirred for 10 minutes. The α -allenic alcohol (50 mg, 0.40 mmol) was dissolved in THF (2 mL) and transferred via cannula to the flask. The flask was cooled to -78° , and CH₂I₂ was added dropwise. The mixture was allowed to warm to room temperature over 2 hours and stirred for an additional 2-4 hours. The viscous dark blue reaction mixture was quenched with saturated aqueous K₂CO₃ solution and extracted three times with Et₂O. The organic layers were washed three times with brine, dried over anhydrous Na₂SO₄, and filtered. After concentration of the crude product [31.8 mg (57%) of a colorless oil, a 50:1 mixture of two diastereomers as determined by GC analysis] purification was effected by flash chromatography on silica gel (elution with 20:1 pentane: ether). The solvent was carefully removed by distillation and Kugelrohr distillation to yield the pure major diastereomer. (R^*, S^*)- α -(1,1-Dimethylethyl)-2-methylenecyclopropanemethanol: $R_f = 0.55$ on silica gel (hexanes:diethyl ether, 1:1); IR (neat) 3416 (br, m), 3072 (w), 3051 (w), 2959 (s), 2910 (m), 2868 (m), 1483 (m), 1363 (m), 1124 (m), 1047 (m), 1005 (s), 885 (s) cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.40 (m, 1 H), 5.35 (m, 1 H), 2.72 (dd, J = 8.9, 3.6 Hz, 1 H), 1.65 (m, 1H), 1.49 (d, J = 3.6 Hz, 1 H), 1.25 (m, 2 H), 0.97 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 133.95, 104.32, 82.04, 35.28, 26.04, 19.27, 6.96; HRMS calcd for C₉H₁₅O (M–H)⁺ 139.1123, found 139.1124.

6.1.17. [4'S-[2' α (1R*,6S*),4'

α ,5'β]-4',5'-Diphenylspiro[bicyclo[4.1.0]heptane-2,2¢-[1,3]dioxolane] (Diastereoselective Cyclopropanation of a Cyclic Chiral Allylic Acetal as Chiral Auxiliary) (260)

A well-stirred suspension of freshly prepared Zn/Cu couple (~2.5 g) in ether (~5 mL) under argon was brought to reflux, and a small crystal of iodine and CH₂I₂ (1.51 mL, 18.8 mmol) were added. After 30 minutes at reflux the ene ketal (1.10 g, 3.77 mmol) was added as a solution in diethyl ether. Progress of the reaction was monitored by TLC and ¹H NMR spectroscopy. When the reaction was complete, the mixture was cooled to 0° and quenched with saturated aqueous Na₂CO₃ solution (12 equiv). After the mixture was stirred at room temperature for 30 minutes, the gray-black Zn/Cu couple was removed by filtration and washed well with diethyl ether. The combined organic extracts were washed with saturated aqueous NH₄CI, saturated aqueous NaHCO₃, and saturated aqueous NaCl, dried over MqSO₄, filtered and concentrated in vacuo to afford the crude product. Column chromatography on silica gel 60 afforded a white solid as a diastereomerically pure product. Yield: 0.936 g, 3.05 mmol, 90%. Recrystallization from a minimal amount of anhydrous diethyl ether afforded colorless crystals: mp 141–142°; [α]²⁵_D – 75.0° (*c* 0.42, CHCl₃); IR (CDCl₃) 3663, 3066, 3032, 3011, 3009, 2942, 2863, 2355, 1948, 1877, 1807, 1602, 1495, 1454, 1389, 1363, 1186, 1137, 1109, 1095, 1077, 1055, 1041, 1026, 1002, 978, 959, 922, 896, 869, 827, 700, 666, 649, 622 cm⁻¹; ¹H NMR (CDCl₃) δ 7.35-7.14 (m, 10 H), 4.86 (dd, 2 H), 1.98-1.71 (m, 2 H), 1.71-1.55 (m, 2 H), 1.55-1.34 (m, 3 H), 1.34-1.18 (m, 1 H), 0.87-0.72 (m, 1 H), 0.35 (q, 1 H); ¹³C NMR (CDCl₃) δ 137.0, 136.8, 128.3, 128.2, 128.1, 128.0, 126.8, 126.7, 110.3, 85.3, 85.2, 32.7, 22.3, 20.1, 20.0, 12.5, 9.8. Anal. Calcd for C₂₁H₂₂O₂: C, 82.33; H, 7.23. Found: C, 82.17; H, 7.35.

6.1.18. [1 α (3R*,5R*),6

α]-5-(Bicyclo[4.1.0]hept-1-yloxy)-2,6-dimethyl-3-heptanol (Diastereoselective Cyclopropanation of a Cyclic Chiral Enol Ether as Chiral Auxiliary) (176)

To a solution of the chiral enol ether (333 mg, 1.39 mmol) in dry Et_2O (10.3 mL) was added diethylzinc (10.3 mL, 1 M in hexane) at 24° and stirred for a minute.

To this mixture CH₂I₂ (1.2 mL, 14.9 mmol) was added dropwise for 10 minutes, and then allowed to stand for 2 hours at the same temperature. The reaction mixture was poured into aqueous NH₄Cl , extracted twice with ether, dried over MgSO₄, and purified by MPLC on silica gel (elution with 6% ethyl acetate in hexane) to give 304.4 mg of a colorless oil (86%, >99.5% de): IR (neat) 3500 cm⁻¹; ¹H NMR (CDCl₃) δ 3.61-3.55 (m, 2 H), 3.10 (br s, 1 H), 2.12 (dt, J = 13.2 and 5.4 Hz, 1 H), 2.07-1.95 (m, 3 H), 1.67-1.36 (m, 5 H), 1.31-1.15 (m, 4 H), 1.05 (m, 1H), 0.93 (d, J = 6.8 Hz, 3 H), 0.89 (d, J = 6.8 Hz, 3 H), 0.87 (d, J = 6.8 Hz, 3 H), 0.82 (d, J = 6.8 Hz, 3 H), 0.26 (dd, J = 6.4 and 5.4 Hz, 1 H); ¹³C NMR (CDCl₃) δ 80.29, 73.43, 60.46, 34.06, 33.05, 30.22, 30.10, 24.46, 21.88, 21.51, 19.78, 18.55, 17.87, 17.78, 17.56. Anal. Calcd for C₁₆H₃₀O₂: C, 75.54; H, 11.89. Found: C, 75.26; H, 11.92.

6.1.19. [1S-(1 α [S*(R*)],2 β)]- α -Methylα-[(N-Methyl-S-phenylsulfonimidoyl) Methyl]-2-(2-Methyl-1-propenyl)cyclopropanemethanol (Diastereoselective Cyclopropanation of an Acyclic Chiral Allylic Alcohol as Chiral Auxiliary) (261)

A 100-mL three-necked flask equipped with a heating mantle and magnetic stirring bar was charged with glacial acetic acid (50 mL) and silver acetate (50 mg); the suspension was brought to boiling. The heating mantle was turned off and 10-mesh granular zinc (5.583 g, 85.4 mmol) was added all at once to the stirred hot solution. After 30 seconds the liquid was carefully decanted and the zinc-silver couple was washed with five 50-mL portions of anhydrous diethyl ether. Et₂O (40 mL) was then poured onto the couple, a condenser and addition funnel were fitted to the flask, and the atmosphere was replaced with argon. A small crystal of iodine was added to the stirred ethereal suspension and the mixture was brought to reflux. CH₂I₂ (3.4 mL, 42.7 mmol) was then added dropwise via the addition funnel. After the addition was complete the suspension was refluxed a further 15 minutes and then stirred at room temperature for 1 hour. The diene (1.253 g, 4.3 mmol) in diethyl ether (10 mL) was then added and the mixture was gently refluxed. The reaction progress was monitored by TLC (2/1, hexane/ethyl acetate). After 5 minutes the starting material was consumed and the reaction mixture was filtered through glass wool into ice-cold saturated ammonium chloride (100 mL). After vigorous shaking the layers were separated and the aqueous layer was

extracted twice with 50-mL portions of ether. The combined organic extracts were washed successively with saturated aqueous NH₄Cl and saturated NaHCO₃, then dried over MgSO₄, filtered, and concentrated. The crude yellow gum (15:1 ratio of desired product to three minor products) was purified by medium-pressure liquid chromatography over silica gel (15/1, hexane/ethyl acetate as eluent) to provide the desired monocyclopropane as a white, crystalline solid (76%): mp 62–63°; [α]²⁵_D – 67.7° (*c* 1.27, CHCl₃); IR (CHCl₃) 3240 (br), 3080 (w), 3040 (w), 3010 (s), 2935 (s), 1607 (w), 1590 (w), 1452 (s), 1380 (m), 1250 (s), 1156 (s) cm⁻¹; ¹H NMR (CDCl₃) δ 8.1-7.8 (m, 2 H), 7.8-7.5 (m, 3 H), 6.63 (br s, 1 H), 4.58 (d, *J* = 8.5 Hz, 1 H), 3.25 (q, *J* = 14 Hz, 2 H), 2.65 (s, 3 H), 1.75 (s, 3 H), 1.70 (s, 6 H), 1.17-1.10 (m, 4 H); ¹³C NMR (CDCl₃) δ 138.92, 133.14, 130.60, 129.63, 128.91, 127.35, 70.04, 64.78, 31.84, 28.72, 27.03, 25.47, 18.13, 13.06, 9.82. Anal. Calcd for C₁₇H₂₅NO₂S : C, 66.41; H, 8.20. Found: C, 66.26; H, 7.99.

6.1.20. [4R-[2 α (1R*,2R*),4 α ,5 β]]-Bis(1-methylethyl)ester, 2-[2-(4-Methoxy-4-oxobutyl)cyclopropyl]-1,3-dioxolane-4,5-dicarboxylic Acid (Diastereoselective Cyclopropanation of an Acyclic Chiral Allylic Acetal as Chiral Auxiliary) (161)

To a solution of theacetal(0.744 g, 2 mmol) in 20 mL of dry hexane was added diethylzinc (10 mmol, 5 mL of 2.0 M hexane solution) at -20° . CH₂I₂ (1.62 mL, 20 mmol) was added dropwise to the resulting stirred solution and the mixture was vigorously stirred at -20° for 4 hours and at 0° for 4 hours. The reaction mixture was poured into cold aqueous NH₄Cl and the product was extracted with ether repeatedly. The ether layers were washed with NaS₂O₃ and water. The combined ether layers were dried over Na₂SO₄ and concentrated in vacuo. Purification by chromatography on silica gel (hexane/ethyl acetate, 3/1) afforded the pure cyclopropane as a colorless oil (0.726 g, 94% yield): IR (neat) 3000, 2950, 1750, 1735, 1375, 1220, 1105, 905 cm⁻¹; ¹H NMR (CCl₄) 4.75 (d, J = 5.8 Hz, 1 H), 3.57 (s, 3 H), 1.28 (d, J = 6.2 Hz, 12 H), 0.17–1.17 (m, 4 H). Anal. Calcd for C₁₉H₃₀O₈: C, 59.05; H, 7.83. Found: C, 59.07; H, 7.81.

6.1.21. (1R,2R)-(–)-2-n-Butyl-1-cyclopropanol (Diastereoselective Cyclopropanation of an Acyclic Chiral Vinyl Boronate as Chiral Auxiliary) (178)

In a 100-mL flask under an argon atmosphere, Zn/Cu couple (12 g, from Zn and CuSO₄), (34) a small amount of I_2 , CH₂ I_2 (4.9 mL, 60.8 mmol), and ether (40 mL) were charged, and the mixture was refluxed for 30 minutes with magnetic stirring. To it was added at room temperature a solution of the boronate ester [20 mmol, freshly prepared from the boronic acid and (+)-N,N,N¢,N¢-tetramethyltartramide] in ether (12 mL), and a slightly exothermic reaction took place. An additional 8 mL of ether was used to wash the container. Stirring was continued for 5 hours at room temperature, then water (20 mL) was added with ice cooling, and the mixture was stirred at room temperature overnight. The excess metal was filtered off and washed with THF, and the filtrate washed with saturated aqueous NH₄Cl (3 × 20 mL). The aqueous phase was extracted with ether (3 × 20 mL), the extract combined with the organic phase, and the mixture was washed with saturated aqueous NaCl (3×20 mL) and dried over a small amount of MgSO₄ for a short time. Filtration of the desiccant and evaporation of the solvent gave ca. 3.4 g of slightly wet white solid that contained no olefinic protons by ¹H NMR. The crude boronic acid was dissolved in THF (70 mL) and oxidized by successive addition of 2 M KHCO₃ (20 mL) and 30% H₂O₂ (6.0 mL) with ice cooling followed by 2 hours of stirring at room temperature. Ether (70 mL) was added, and the mixture was washed with saturated aqueous NaCI (3 × 20 mL). The aqueous phase was extracted with ether (3 × 20 mL), and the extract combined with the organic phase and dried over Na₂SO₄. After filtration of the solid and evaporation of the solvent, 2.73 g of a colorless oil, from which the cyclopropanol was isolated by chromatography on silica gel (Merck Kieselgel 60 of 230–400 mesh, 130 g), 10–20% EtOAc/hexane and purified by distillation: bp (bath temperature) 80-85° (4 Torr); 1.53 g (67%); $[\alpha]_{D}^{23}$ – 56.3° (c 0.678, EtOH); 94% ee (by capillary GC analysis for its MTPA ester); IR (neat) 3300, 3075, 2955, 2925, 2855, 1460, 1380, 1200, 1150 cm⁻¹; ¹H NMR (100 MHz, CDCl₃) δ 3.18 (ddd, *J* = 6.2, 2.6 and 2.4 Hz, 1 H), 2.0 (s, 1 H), 1.6-0.4 (m, 11 H), 0.4-0.1 (m, 1 H). Anal. Calcd for C₇H₁₄O : C, 73.63; H, 12.36. Found: C, 73.30; H, 12.39.

6.1.22. (2'R,3'R)-2'-[(Triisopropylsilyl)oxy]-2',3'-methanopentyl-3,4,6-tri-Obenzyl- β -D-glucopyranose (Diastereoselective Cyclopropanation of an Acyclic Chiral Ether as Chiral Auxiliary) (261a)

To a solution of the glucopyranoside (8.25 g, 11.7 mmol) in CH₂Cl₂ (120 mL) cooled to -30° was added in one portion diethylzinc (8.4 mL, 81.9 mmol). After 10 minutes of stirring, CH₂I₂ (4.7 mL, 58.5 mmol) was added to the solution over a period of one minute. When TLC analysis (15% EtOAc/hexane) no longer showed any starting material (10 hours), the cloudy solution was slowly poured in a stirred mixture of ether (200 mL) and saturated aqueous NH₄CI (50 mL) at 0°. To this solution was added a minimum amount of 10% aqueous HCl to dissolve the white precipitate. The layers were separated, and the aqueous layer was extracted with ether (2 × 50 mL). The combined organic layers were washed with 0.05 M aqueous Na₂SO₃ (50 mL), saturated aqueous NaHCO₃ (50 mL), and saturated aqueous NaCl (50 mL). The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The crude product of the reaction was analyzed by HPLC to obtain a diastereomeric ratio of >100:1 [4 µm silica gel NOVA-PAK, 8 mm × 20 cm; 8% EtOAc/hexane; flow rate 1 mL/minute, T_r (major) 15.7 minutes, T_r (minor) 20.4 minutes]. The residue was purified by chromatography on silica gel (6% EtOAc/hexane) to produce

(2'*R*,3'*R*)-2'-[(triisopropylsilyl)oxy]-2',3'-methanopentyl-3,4,6-tri-*O*-benzyl- β -D-glucopyranose (7.8 g, 93%) as a viscous colorless oil. After chromatography, the HPLC and ¹H NMR analyses indicated the presence of only one diastereomer: R_f 0.3 (10% EtOAc/hexane); [α]_D – 11.7° (*c* 2.0, CHCl₃); IR (neat) 3460 (br), 3020, 2940, 2860, 1490, 1450, 1360, 1100 (v. br), 875, 780, 740, 690 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.21 (m, 15 H), 5.02 (d, *J* = 11 Hz, 1 H), 4.89 (d, *J* = 11 Hz, 1 H), 4.86 (d, *J* = 11 Hz, 1 H), 4.65 (d, *J* = 12 Hz, 1 H), 4.60 (d, *J* = 11 Hz, 1 H), 4.58 (d, *J* = 12 Hz, 1 H), 4.36 (d, *J* = 7 Hz, 1 H), 3.95 (d, *J* = 11 Hz, 1 H), 3.82-3.72 (m, 4 H), 3.66-3.59 (m, 3 H), 3.50 (d, *J* = 10 Hz, 1 H), 3.52-3.49 (m, 1 H), 2.53 (s, 1 H), 1.53-1.36 (m, 2 H), 1.17-1.05 (m, 21 H), 1.02 (t, *J* = 7 Hz, 3 H), 0.81-0.76 (m, 1 H), 0.71 (dd, *J* = 9 and 5 Hz, 1 H), 0.23 (t, *J* = 5 Hz, 1 H); ¹³C NMR (75 MHz, CDCl₃) 138.7, 138.2, 138.1, 128.2, 128.2, 128.2, 127.8, 127.8, 127.6, 127.5, 127.4, 127.4, 102.5, 84.4, 77.5, 75.2, 74.9, 74.9, 74.8, 73.4, 69.6, 68.9, 67.4, 26.4, 22.8, 22.0, 17.9, 14.7, 14.2, 11.9.

6.1.23. (1R,3S,4S,6R)-1-Hydroxymethyl-6-phenyldicyclopropane (Enantioselective Cyclopropanation of an Acyclic Alkene Using a Chiral Tartrate as a Stoichiometric Additive) (261b)

Et₂Zn in hexanes (1.0 M; 0.48 mL, 0.48 mmol) was added dropwise with stirring to the allylic alcohol (75 mg, 0.43 mmol) in 1,2-dichloroethane

(3 mL) at 0°. After 0.5 hour, L-(+)-diethyl tartrate (99 mg, 0.48 mmol) in 1,2-dichloroethane (1 mL) was added and the reaction mixture was stirred for 1 hour, cooled to -12° and Et₂Zn (0.89 mL, 0.89 mmol) was added. After 1 hour, CH₂I₂ (0.46 g, 0.15 mL, 1.75 mmol) was added and the resulting solution was stirred at −12° for 12 hours, quenched with with saturated aqueous NH₄Cl (5 mL), and extracted with Et_2O (2 × 15 mL). The organic phase was washed with 10% NH₄Cl (15 mL), H₂O (2 × 15 mL), and brine (2 × 15 mL), dried and filtered. Rotary evaporation and chromatography (hexanes: EtOAc 4:1) gave (1R,3S,4S,6R)-1-hydroxymethyl-6-phenylbicyclopropane admixed with (1S,3R,4S,6R)-1-hydroxymethyl-6-phenylbicyclopropane (6:1, 58 mg, 72%) as a colorless oil: R_f 0.20 (hexanes:EtOAc 4:1); IR (film) 3360, 2871, 1605, 1499, 1021, 745, 697 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 7.27-7.00 (m, 5 H), 3.49-3.42 (m, 2 H), 1.74 (br s, 1 H), 1.68-1.62 (m, 1 H), 1.16-1.08 (m, 1 H), 0.98-0.73 (m, 4 H), 0.47-0.36 (m, 2 H); ¹³C NMR (75.1 MHz, CDCl₃) 143.8, 128.3, 125.6, 125.4, 66.8, 24.4, 22.2, 20.0, 18.6, 14.0, 8.0; LRMS (CI, NH₃) m/z 206 (M + NH₄)⁺, 188 (M⁺), 171, 77. Anal. Calcd for C₁₃H₁₆O : C, 82.94; H, 8.57. Found: C, 83.13; H, 8.74.

6.1.24. (+)-(1S,2S)-2-Phenylcyclopropanemethanol (Enantioselective Cyclopropanation of an Acyclic Alkene Using a Chiral Dioxaborolane as a Stoichiometric Additive) (187)

To a solution of dry DME (1.60 mL, 14.0 mmol) in anhydrous CH₂Cl₂ (45 mL) cooled at -10° (internal temperature) was added diethylzinc (1.50 mL, 14.9 mmol). Then, to this stirred solution was added CH₂I₂ (2.40 mL, 29.8 mmol) over 15–20 minutes while maintaining the internal temperature between -8 and -12° . After completion of the addition, the resulting clear solution was stirred for an additional 10 minutes at -10° . A solution of the dioxaborolane ligand (2.41 g, 8.94 mmol) in anhydrous CH₂Cl₂ (10 mL) was then added via cannula under argon over 5-6 minutes, followed immediately by a solution of cinnamyl alcohol (1.00 g, 7.45 mmol) in anhydrous CH_2CI_2 (10 mL) added via cannula under argon over 5-6 minutes while maintaining the internal temperature under -5° at all times. The cooling bath was removed, and the reaction mixture was allowed to warm to room temperature and was stirred for 8 hours at that temperature. Then, the reaction was quenched with saturated aqueous NH₄Cl solution (10 mL) and 10% aqueous HCl solution (10 mL). The mixture was then diluted with ether (60 mL) and transferred into a separatory funnel. The reaction flask was rinsed with ether (15 mL) and 10% aqueous HCl solution, and both solutions were transferred into the separatory funnel. The two layers were separated, and the aqueous layer was extracted with ether (20 mL). The combined organic layers were transferred into an Erlenmeyer flask, and a solution containing 60 mL of 2 N aqueous NaOH and 10 mL of 30% aqueous H_2O_2 was added in one portion. The resulting biphasic solution was stirred vigorously for 5 minutes. The two layers were then separated, and the organic layer was successively washed with 10% aqueous HCI (50 mL), saturated aqueous Na₂SO₃ solution (50 mL), saturated aqueous NaHCO₃ solution (50 mL), and brine (50 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was left under vacuum (0.2 mm Hg) overnight (12–16 hours) to remove the n-butanol produced in this oxidative workup (this last step is not necessary if the product is purified by flash chromatography). The product was purified by Kugelrohr distillation (90°, 0.8 mm Hg) to afford

(+)-(1 S,2S)-2-phenylcyclopropanemethanol (1.05 g, 95%) as a colorless oil: bp 90° (0.8 mm Hg); R_f 0.31 (30% EtOAc/hexanes); [α]_D + 82° (*c* 1.74 EtOH) [lit. (227) [α]_D – 92° (*c* 1.23, EtOH) for the enantiomer]; ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.25 (m, 2 H), 7.20-7.15 (m, 1 H), 7.10-7.07 (m, 2 H), 3.67-3.59 (m, 2 H), 1.86-1.82 (m, 1 H), 1.75 (br s, 1 H), 1.51-1.43 (m, 1 H), 1.01-0.92 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) 142.5, 128.3, 125.8, 125.6, 66.3, 25.2, 21.2, 13.8. Anal. Calcd for C₁₀H₁₂O : C, 81.04; H, 8.16. Found: C, 81.15; H, 8.30. The enantiomeric excess (94% ee) was determined by GC analysis of the trifluoroacetate ester derived from (1*S*,2*S*)-2-phenyl-1-cyclopropanemethanol: Column: Cyclodex G-TA, 0.32 mm × 30 m. Pressure 25 psi. Isotherm: 110°. *t*_R (minor) 11.5 minutes, *t*_R (major) 12.0 minutes.

6.1.25. (–)-(1R,2R)-2-(4-Methoxyphenyl)cyclopropanemethanol (Enantioselective Cyclopropanation of an Acyclic Alkene Using a Chiral Binol as a Stoichiometric Additive) (199)

To a solution of (R)- $N,N,N\phi,N\phi$ -tetraethyl-BINOL-3,3 ϕ -dicarboxamide (48 mg, 0.1 mmol) and (E)-3-(4-methoxyphenyl)-2-propen-1-ol (16 mg, 0.1 mmol) in anhydrous CH₂Cl₂ (1 mL) were added diethylzinc (1.0 M solution in hexane, 0.6 mL) and CH₂I₂ (0.024 mL, 0.3 mmol) at 0° under a nitrogen atmosphere and the mixture was stirred for 15 hours at the same temperature. The mixture was allowed to warm to room temperature and the reaction was guenched with 2 M NaOH solution. After extraction three times with ether, the combined organic layers were successively washed with 2 M agueous NaOH and brine, dried over anhydrous MgSO₄, and concentrated under reduced pressure. The residue was purified by TLC on silica gel (developed with diisopropyl ether) to give (-)-(1R,2R)-2-(4-methoxyphenyl)cyclopropanemethanol (13.9 mg, 78%) as a colorless oil. The enantiomeric excess was determined to be 94% ee by HPLC analysis using a Daicel Chiralcel OD column (hexane: *i*-PrOH=15:1). [α]_{D²³ – 63.5° (*c* 1.05 EtOH); IR (KBr) 3318, 1518, 1461, 1255, 1178, 1032,} 818 cm⁻¹; ¹H NMR (CDCl₃) δ 7.01 (d, J = 8.9 Hz, 2 H), 6.81 (d, J = 8.9 Hz, 2 H), 3.78 (s, 3 H), 3.61 (m, 2 H), 1.79 (m, 1H), 1.58 (br s, 1 H), 1.40 (m, 1 H), 0.89 (m, 2 H). Anal. Calcd for C₁₁H₁₄O₂: C, 74.13; H, 7.92. Found: C, 74.17; H, 7.78. The chiral additive was recovered in 87% yield without loss of optical purity by acidification of the aqueous layer and extraction with chloroform.

6.1.26. (–)-(1R,2R)-2-Phenylcyclopropanemethanol (Enantioselective Cyclopropanation of an Acyclic Alkene Using a Chiral Disulfonamide as Catalyst) (201)

To a flame-dried, 15-mL, two-necked, round-bottom flask (flask A) equipped with a stir bar, septum, and argon inlet were added cinnamyl alcohol (134 mg, 1.00 mmol) and the promoter (27 mg, 0.1 mmol, 0.1 equiv.). The flask was evacuated and filled with argon (3x), and then CH_2CI_2 (3 mL) was added. The solution was cooled under argon to 0° , and diethylzinc (113 μ L, 1.10 mmol, 1.10 equiv.) was added. The solution was stirred at 0° for 10 minutes. To a flame-dried, 25-mL, two-necked, round-bottom flask (flask B) equipped with a stir bar, septum, and argon inlet were added iodine (508 mg, 2.00 mmol, 2.00 equiv) and CH_2Cl_2 (10 mL). The suspension was cooled under argon to 0° , and diethylzinc (103 µL, 1.00 mmol, 1.00 equiv.) was added. A thick white precipitate immediately formed. The slurry was stirred at 0° for 10 minutes. To a flame-dried, 100 mL, two-necked, round-bottom flask (flask C) equipped with a stir bar, septum, and argon inlet were added diiodomethane (161 µL, 2.00 mmol, 2.00 equiv.) and CH₂Cl₂ (24 mL). The solution was cooled to 0°, and diethylzinc (103 µL, 1.00 mmol, 1.00 equiv.) was added with subsequent stirring for 5 minutes (white precipitate formed after ~2 minutes). The contents of flask A were added via cannula over ~30 seconds to flask B. The resulting thick white slurry was stirred at 0° for 2 minutes and was transferred in like manner to flask C. The mixture was again a thick white slurry and was maintained at 0°, and the reaction progress was monitored periodically as follows. An aliquot (5–10 drops) was removed via cannula into a precooled (0°) solution of CH₂Cl₂ (0.5 mL) containing TMEDA (5 drops) After washing with 2 N HCl (0.5 mL), this solution was passed through a small plug of Florisil (~0.125 in.), followed by EtOAc (0.5 mL). This solution was then assayed by GC (HP-U2, isothermal 180°, t_R 5.9 min). The reaction was quenched after 45 minutes with 2 N NaOH (13 mL). The organic layer was removed, the aqueous layer was extracted with CH_2Cl_2 (2 × 20 mL), and the combined organic layers were dried ($MgSO_4$) and concentrated in vacuo. The product was then purified by silica gel column chromatography (hexane/EtOAc, 3/1) followed by bulb-to-bulb distillation to yield 136 mg (92%) of the desired product as a clear, colorless oil: bp 60° (0.01 Torr); IR 3336 (s); ¹H NMR (400 MHz) δ 7.30-7.24 (m, 2 H), 7.20-7.14 (m, 1 H), 7.10-7.06 (m, 2 H), 3.61 (ddd, *J* = 6.8, 11.2, 18.1 Hz, 2 H), 1.83 (td, J_t = 4.6 Hz, J_d = 9.3 Hz, 1 H), 1.82 (t, J = 4.5 Hz, 1 H), 1.46 (m, 1 H), 0.96 (m, 2H); ¹³C NMR (100 MHz) 142.38, 128.30, 125.74, 125.60, 66.52, 25.26, 21.24, 13.84; MS (EI) 148 (M⁺, 18); GC t_R 8.4 min (U2, isothermal 180 °C); HPLC t_R (1*R*,2*R*) 22.7 min (94.9%); t_R (1*S*,2*S*) 29.3 min (5.1%) (89% ee) (Daicel OJ, hexane/*i*-PrOH, 98/2, 1.0 mL/min); R_f 0.20 (hexane/EtOAc, 3/1). Anal. Calcd. for C₁₀H₁₂O (148.21): C, 81.04; H, 8.16. Found: C, 80.74; H, 8.26.

6.1.27. (+)-(1S,2S)-2-Phenylcyclopropanemethanol (Enantioselective Cyclopropanation of an Acyclic Alkene Using a Chiral Lewis Acid as Catalyst) (31)

6.1.27.1. Preparation of the catalyst

To a mixture of (4R,5R)-2,2-dimethyl- α , α , α' ,

 α' -tetraphenyl-1,3-dioxolane-4,5-dimethanol (207) (TADDOL) (140 mg, 0.29 mmol) and 4 Å molecular sieves (1 g) in CH₂Cl₂ (5 mL) was added Ti(OPr-*i*)₄ (74 µL, 0.25 mmol). After 1.5 hours of stirring at room temperature, the solvent was removed under reduced pressure and the residue was left under high vacuum for 2 hours.

6.1.27.2. Cyclopropanation reaction

To a solution of CH₂I₂ (160 µL, 2 mmol) in CH₂CI₂ (5 mL) at 0° was added dropwise Et₂Zn (100 µL, 1 mmol). The resulting solution was stirred at 0° for 15 minutes and a white precipitate was formed. The mixture was cooled to -40° and a solution of the catalyst in CH₂Cl₂ (5 mL) was added immediately followed by a solution of cinnamyl alcohol (140 mg, 1.04 mmol) in CH₂Cl₂ (5 mL). After 90 minutes of stirring at 0°, the resulting solution was cooled to -40° and poured into 30 mL of saturated aqueous NH₄Cl . The layers were separated and the aqueous layer was extracted three times with EtOAc. The combined organic layers were washed with saturated aqueous NH₄Cl, saturated aqueous NaCl, dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography (20% EtOAc/hexanes) to afford the desired product (120 mg, 80%). The enantiomeric ratio was determined to be 90% ee by GC analysis of the trifluoroacetate derivative on a chiral stationary phase: Cyclodex GT-A column, 0.32 mm × 30 m [25 psi, 110°, t_R 11.5 min (minor), 12.0 min (major)]. $[\alpha]_{D} + 84^{\circ}$ (c 1.3, EtOH); lit. $[\alpha]_{D} + 86^{\circ}$ (c 1.9, EtOH). (227)

6.1.28. 6-Methyl-endo-bicyclo[3.1.0]hexan-3-ol (Directed Cyclopropanation of a Cyclic Allylic Alcohol Using an Alkyl-Substituted Zinc Carbenoid) (66)

3-Cyclopenten-1-ol (0.03 mol) was added to ethylzinc iodide (0.2 mol) in ether (50 mL). The mixture was heated to reflux, ethylidene iodide (0.06 mol) was added and the reaction was continued for 12 hours. The reaction mixture was then worked up by dilution with ether followed by dropwise addition of saturated aqueous NH₄Cl (about 100 mL). The resulting aqueous layer was separated and washed with three 50-mL portions of ether. The combined ethereal layers were washed with four 50-mL portions of saturated aqueous Na₂CO₃ and four 25-mL portions of saturated aqueous NaCl, dried over a K₂CO₃- MgSO₄ mixture, and distilled. The

anti/syn-6-Methyl-endo-bicyclo[3.1.0]hexan-3-ol product mixture boiled at 80–83° (15 mm) and yielded 67% (anti:syn = 73:27) of the desired products. Anal. Calcd for C₇H₁₂O : C, 74.95; H, 10.80. Found: C, 74.81; H, 10.77. Individual samples of the pure anti-endo and syn-endo isomers were separated by GLC on a 2-m 20% Carbowax 20M on 60/80-mesh nonacid-washed Chromosorb W column. For anti-6-Methyl-endo-bicyclo[3.1.0]hexan-3-ol: ¹H NMR (CCl₄) δ 4.5 (m, 1 H), 3.2 (s, 1 H), 1.0 (br s, 3 H), 2.0-0.8 (m, 7 H). For

syn-6-Methyl-*endo*-bicyclo[3.1.0]hexan-3-ol: ¹H NMR (CCl_4) δ 4.8 (m, 1 H), 3.3 (s, 1 H), 1.2 (d, *J* = 7 Hz, 3 H), 2.4-0.7 (m, 7 H).

6.1.29. syn-(2S,3R)-1-Bromo-2,3-dimethylcyclopropane (Directed Cyclopropanation of an Acyclic Alkene Using a Bromine-Substituted Zinc Carbenoid) (103)

The reaction was carried out in a pressure bottle of 100 mL inner volume equipped with a pressure-equilibrating dropping funnel of 50 mL volume. Into

the bottle, 15 g of *cis*-but-2-ene was distilled, into which diethylzinc (2 mL, 20 mmol) was dissolved. The bottle was cooled in an ice-water bath, and bromoform (2.6 mL, 30 mmol) was added from the dropping funnel to the solution. Another pressure bottle of 140 mL volume containing oxygen at ca. 1.5 kg/cm² was connected to the reaction bottle through a needle valve and the reaction mixture was stirred for 2 hours. After the usual workup, distillation gave a 2.7-g portion boiling at 124–125° which was composed of (2*S*,3*R*)-1-bromo-2,3-dimethylcyclopropane at a purity of ca. 90% contaminated with several unidentified impurities. Some decomposition was observed during distillation. Pure (2*S*,3*R*)-1-bromo-2,3-dimethylcyclopropane was obtained by preparative GLC: ¹H NMR δ 3.25-3.05 (m, 1 H), 1.10-0.95 (m, 8 H). Anal. calcd for C₅H₉Br : C, 40.29; H, 6.09. Found: C, 40.38; H, 6.22. Detailed GLC analysis showed the presence of only trace amounts of *anti*-(2*S*,3*S*)-1-bromo-2,3-dimethylcyclopropane (~1.5%) in the reaction mixture.

6.1.30. 1-Phenyl-2-Methyl-6-endo-ethyl-2-azabicyclo[3.1.0]hexane (Intramolecular Cyclopropanation via an in situ Generated Samarium Carbenoid) (78)

Samarium powder (1.2–1.25 mmol), freshly distilled THF (5.5 mL), and 1,2-diiodoethane (0.55 mmol) in a 10-mL two-necked flask equipped with a condenser were placed under argon atmosphere. Heating the mixture at 67° for 1 hour with magnetic stirring provided a samarium metal/samarium iodide mixed reagent (Sm/Sml₂). To the mixture was added the alkene (1 mmol), and the resulting solution was stirred at 67° for 20 hours. After the reaction was complete, saturated NaHCO₃ (40 mL) was added to the reaction mixture and the products were extracted with Et₂O (3 × 20 mL). The combined extracts were dried (MgSO₄) and the solvent was evaporated. Purification by column chromatography on silica gel using hexane/ether (4/1) as an eluent ($R_f = 0.6$) provided 62 mg (0.31 mmol, 31%) of

1-phenyl-2-Methyl-6-*endo*-ethyl-2-azabicyclo[3.1.0]hexane as a pale yellow oil: IR (NaCl) 3023, 2960, 2870, 2842, 2788, 1601, 1579, 1493, 1446, 1303, 1279, 1208, 1134, 1065, 890, 756, 698 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 7.51-7.16 (m, 5 H), 3.48 (ddd, *J* = 9.27, 9.27, 2.44 Hz, 1 H), 1.84-1.61 (m, 2 H), 2.65 (q-like, 1 H), 2.42 (s, 3 H), 2.42-2.30 (m, 1 H), 2.02 (ddd, *J* = 7.32, 3.41, 2.44 Hz, 1 H), 1.51 (dd, J = 8.78, 8.79 Hz, 1 H), 1.41 (m, 1 H), 1.14 (t, J = 7.33 Hz, 3 H); ¹³C NMR (68 MHz, CDCl₃) δ 143.53, 128.22, 128.04, 126.06, 57.41, 56.59, 37.33, 32.72, 30.49, 24.94, 18.98, 15.36; LRMS (EI), *m/z* 201 (M⁺, 13); HRMS calcd for C₁₄H₁₉N 201.1518, found 201.1530.

6.1.31. 7-(4-Methoxyphenyl)bicyclo[4.1.0]heptane (Intermolecular Cyclopropanation via an in situ-Generated Zinc Carbenoid) (260) 6.1.31.1. Preparation of the zinc amalgam

Zinc powder (10 g, 0.153 mol) was added to a vigorously stirred solution of mercury(II) chloride (2.0 g, 7.2 mmol) and hydrochloric acid (0.5 mL, 10 M) in water (30 mL). The mixture was stirred for 10 minutes, the zinc filtered off then washed with water (75 mL), acetone (75 mL), ethanol (75 mL) and ether (75 mL). The amalgam was sieved, vacuum dried overnight and stored under argon atmosphere.

6.1.31.2. Cyclopropanation reaction

A solution of distilled p-methoxybenzaldehyde (0.229 mL, 1.88 mmol) in dry ether (1.8 mL) was added slowly via a motorized syringe pump over 36 hours to a vigorously stirred mixture of flame dried zinc amalgam (1.26 g, 18.8 mmol), dry ether (2 mL), cyclohexene (0.406 mL, 3.76 mmol), and 1,2-bis(chlorodimethylsilyl)ethane (2.20 mL of a 1.28 M solution in ether, 2.82 mmol) under argon at reflux. The cooled mixture was filtered through Celite and the separated zinc washed with ether (50 mL). The ethereal solution was washed with saturated aqueous sodium bicarbonate solution $(2 \times 40 \text{ mL})$, dried over MgSO₄ and concentrated in vacuo. The crude residue was chromatographed [silica, light petroleum (b.p 30-40°)] twice to give the cyclopropane (0.364 g, 96%) (inseparable mixture of diastereoisomers. 15:1 endo:exo by NMR and GC) as a colorless oil. IR (NaCl, neat) 2999, 2930, 2860, 1608, 1573, 1507, 1242, 1033 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ (endo) 7.20 (2 H, dd, J = 8.8 and 2.9 Hz), 6.87 (2 H, dd, J = 8.8 and 2.9 Hz), 3.78 (3 H, s), 1.92-0.63 (11 H, m); *m/z* 202 (100%, M⁺).

7. Tabular Survey

An effort has been made to tabulate all reported examples of Simmons-Smith cyclopropanation reactions (and variants) from 1973 until September 1999. Papers based on lectures given at a symposium or unpublished examples used in review articles are not included in this review; nor are articles written in languages other than French, German or English. No attempts were made to cover the patent literature.

All tables are based on the carbon count of the alkene. Protecting groups and chiral auxiliaries are not included in the carbon count. A ketal is counted as the corresponding precursor (ketone or aldehyde) and if an allylic alcohol is linked to an auxiliary, only the ether side containing the double bond is included in the count. When two compounds have the same carbon count, the compounds are ordered by increasing hydrogen number. For a given substrate, entries are ordered following increasing substitution on the carbonoid used.

Isolated yields of the combined cyclopropanes are included in parentheses and a dash indicates that no yield was reported. Where an enantiomeric (diastereomeric) excess or ratio is reported, it relates to the major product of a reaction. When polyenes are cyclopropanated, the ratio *mono:bis* refers to the selectivity toward formation of the monocyclopropanated adduct. The *syn:anti* ratio is put in brackets when the assignment of the asymmetric ratio was not made. Also, optimization trials for a given reaction protocol are not included. When a significant improvement in a specific reaction was developed, these results are tabulated as separate entries. Some examples are included in more than one table in order to facilitate the research of some substrates. Failure to cyclopropanate given substrates or miscellaneous reactions involving carbenoids are not included in the tabular survey.

The following abbreviations have been used in the tables:

5S-MEPY	Methyl 2-pyrrolidine-5S-carboxylate
15-C-5	15-crown-5
Ac	acetyl
AIBN	azobis(isobutyronitrile)
BHT	2,6-di- <i>tert</i> -butyl-4-methylphenol
Bn	benzyl
Boc	tert-butyloxycarbonyl
Bz	benzoyl
cat	catalytic

conc	concentration
Сх	cyclohexyl
Dec	decomposition
DEE	1,2-diethoxyethane
DET	diethyl tartrate
DMCx	1,2-dimethoxycyclohexane
DME	1,2-dimethoxyethane
EE	1-ethoxyethyl
hex	hexane
MEM	2-methoxyethoxymethyl
MOM	methoxymethyl
Ms	methanesulfonyl
MS	molecular sieves
na	not appropriate
nd	not determined
Np	neopentyl
PMB	<i>p</i> -methoxybenzyl
PMP	<i>p</i> -methoxyphenyl
PS	polymer support
Red-Al	sodium bis(2-methoxyethoxy)aluminum hydride
TBDMS	tert-butyldimethylsilyl
TBDPS	tert-butyldiphenylsilyl
TFA	trifluoroacetic acid
THP	tetrahydropyranyl
TIPS	triisopropylsilyl
TMS	trimethylsilyl
Tr	trityl
Ts	<i>p</i> -toluenesulfonyl
XS	excess

Table I. Cyclopropanation of Cyclic, Achiral Alkenes

View PDF

Table II. Cyclopropanation of Cyclic, Achiral O- and N-Substituted Alkenes

View PDF

Table III. Cyclopropanation of Acyclic, Achiral Alkenes

View PDF

Table IV. Cyclopropanation of Acyclic, Achiral O- and N-Substituted Alkenes

View PDF

Table V. Cyclopropanation of exo-Methylene Containing Compounds

View PDF

Table VI. Cyclopropanation of Polyenes

View PDF

Table VII. Cyclopropanation of Cyclic, Chiral Alkenes

View PDF

 Table VIII. Cyclopropanation of Acyclic, Chiral Alkenes

View PDF

Table IX. Cyclopropanation of Chiral O- and N-Substituted Alkenes

View PDF

 Table X. Cyclopropanation of Allenes

View PDF

 Table XI. Cyclopropanation of Cyclic Alkenes Containing a Cleavable

 Chiral Auxiliary

View PDF

 Table XII. Cyclopropanation of Acyclic Alkenes Containing a Cleavable

 Chiral Auxiliary

View PDF

Table XIII. Cyclopropanation with Stoichiometric Chiral Additives

View PDF

Table XIV. Cyclopropanation with Chiral Catalysts

View PDF

Table XV. Cyclopropanation of Alkenes Using a Substituted Dihalide

View PDF

 Table XVI. Cyclopropanation of Alkenes Using in situ Formation of the

 Carbenoid

View PDF

	TA	BLE I. CYCLOPROPANATION OF	CYCLIC, ACHIRAL ALKENES	Refe
	Substrate	Conditions	Product(s) and Yield(s) (%)	Keis.
		$Zn/Cu, CH_2I_2$		263
		Et ₂ Zn, CH ₂ I ₂ , pentane	I () + II ()	264
		Zn, CF ₂ Br ₂ , I ₂ (cat.), THF, rt	F (21)	74
\bigcirc		Et_2Zn , Me CHI_2	(40) syn:anti = 1.6/1	71
		Et ₂ Zn, Me ₂ Cl ₂	(45)	71
		Zn/Cu, CH ₂ I ₂	$\bigcirc \qquad \longleftrightarrow$	265
5 OMe OMe OMe OMe		Zn/Ag, CH ₂ I ₂ , Et ₂ O	OMe OMe OMe OMe OMe OMe OMe OMe OMe OMe	266
			I (20) II (2) III (70)	
OTMS		Zn/Ag, CH_2I_2 (xs), Et ₂ O, reflux	OTMS (85)	107, 267
		Zn, CF_2Br_2 , I_2 (cat.), THF, rt	F (7)	74
\bigcirc		Zn/Cu, CH ₂ I ₂	(—) (268
		Zn anode, 2e-, CH ₂ X ₂ , conditions, CH ₂ Cl ₂ /DMF (9:1)	OConditionsX(%)ZnBr2 present initiallyBr(trace)ZnBr2 absent initiallyI(20)	70
		Zn/Cu, CH ₂ I ₂	()	263
\bigcirc		Et_2Zn, CH_2I_2	(86)	71
ОН		Zn/Cu, CH ₂ I ₂	OH ()	269
\bigcirc		Zn/Cu, CH ₂ Br ₂ , Et ₂ O, 45°, sonication	(60)	270
		Zn*, CH ₂ Br ₂ , solvent, reflux	Solvent(%)diglyme(24)dioxane(18)THF(5)hexane(<1)	271

Substrate	Conditions			Produ	ct(s) and	Yield(s)	(%)		Refs.
			С	onditions		(%)			
	CH ₂ Br ₂ , conditions	•	Zn/Cu	, Eı ₂ O, ref	lux	(64)			272
			2	Zn, THF		(53)			
	7	" (61)							41
	AcCl (0.02 eq), Et ₂ O	(01)							41
	IV. 2.								
	Z_{II}^* , CH_2Br_2 ,	" (94)							46
	Et_2O , renux		Dro	motor	v	(6)	`		
	Zn/Cu, CH ₂ X ₂ ,		T		Br	(58)		43
	promoter, Et ₂ O		ultra	sound	Br	(60)		
			Ti	iCl ₄	I	(69)		
			x	у	Temp	Reacted	CH2ICI %	(%)	
	Et ₂ Zn (x cq), CH ₂ ICl (y cq),	в	0.8	1	35°		82	(62)	50
	C ₆ H ₆ , temp		1	1	35°		96	(65)	
			1.5	1	35° 40°		92 58	(60) (61)	
			1	1.5	40		50	(01)	
			Olefin			(%)	Reacted C	$H_2ICI(\%)$	-
			_			(67)	6	5	
			2-neptend			(65)	6	5 7	
			isoprene	•		(45)	5	5	
	Et ₂ Zn (1 eq), CH ₂ ICI (1.5 eq),	••	trans-stil	bene		(34)	3	9	273
	olefin (0.05 eq), 35°		1,4-diphe	nyl-1,3-bu	ıtadiene	(25)	3	1	
			styrene			(22)	3	1	
			α-methyl	styrene nulathular		(16)	2	1	
			l-phenvl-	1.3-butadi	iene	(8)	1	2	
	Et₂Zn (x eq), CH₂X₂ (y eq), dry air (10 mL/min),		x 1.3 1.2 0.6 0.8	CH ₂ X ₂ CH ₂ I ₂ CH ₂ I ₂ CH ₂ I ₂ CH ₂ I ₂	y 1.5 1.2 1.2 1.2	(% (91 (35 (93 (92))))))		50
	C ₆ H ₆		1	CH ₂ ICI	1.2	(91)		
			1	CH ₂ ICI	1.5	(99))		
			I	CH ₂ Br ₂ CH ₂ BrCl	1.0	(4) (0))		
						(-)			
			MXn	<u>X</u>	Zn:M	X _n (%)	<u>)</u>		
			CuCl	I	10:1	(75))		
			CuJO	4 I I	10:1	(67)	,)		
			Cu(OA	c) ₂ I	10:1	(49))		
	Zn, MX _n , CH ₂ X ₂ ,	н	Cu(aca	c) ₂ I	10:1	(2)			38
	Et_2O , reflux		CuCN		10:1	(0)			
				c) ₂ I	10-1	(51)	,)		
			AgOA	c I	10:1	(54)	,)		
			AgOA	c I	310:	1 (75))		
			AgCl	Br	10:1	(38))		
			ratio Zn	:CuCl 3	X (9	6)			
			10:	1 1	(7	5)			
			20:	1 1	i (8	2)			
	Zn:CuCl (ratio), CH ₂ X ₂ ,	u	50:	i I	l (9	0)			38
	Et_2O , reflux		10:	ו I י ו	Br (5 Br (2	3) 0)			
			20:	, 1 † 1	ы (2 Вт (3	<i>7)</i> {}			
			50:	, I	ы (:	,,			

Substrate	Conditions	Product(s) and Yield(s) (%)	Re
	Zn/Cu, CH ₂ X ₂ , Et ₂ O, reflux, ultrasound	$\frac{-\frac{X}{I} (\%)}{Rr} = \frac{(\%)}{(88)}$	38
	Zn*, CH2I2, DME/Et2O	" (82)	44
	Zn*, MeCHBr ₂ , Et ₂ O, reflux	(24) 1:1	46
	Zn/Cu, MeCHI ₂ , Et ₂ O	" (5) 55:45	66
	Et ₂ Zn, MeCHI ₂ , cyclohexane	" (62) <i>syn:anti</i> = 1.6:1	71
	Et ₂ Zn (0.8 eq), CHBr ₃ (1 eq), dry air (10 mL/min), olefin (xs), 0-10°	H	73, 103
	Et ₂ Zn (x eq), CHBr ₃ (i eq), dry air (y mL/min), solvent, 50°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	103
	Et ₂ Zn (x eq), CHI ₃ (y eq), olefin (xs), temp	$ \begin{array}{ c c c c c c c c c } \hline \hline x/y Temp (\%) syn:anti \\ \hline 0.33 & 50^{\circ} & (35) & 53:47 \\ \hline 1 & 50^{\circ} & (50) & 45:55 \\ \hline 1.5 & 50^{\circ} & (38) & 34:66 \\ \hline 1 & 0^{\circ} & (70) & 66:34 \\ \hline \end{array} $	274
	Zn, CF_2Br_2 , I_2 (cat.), THF, rt	F (7)	74
	Zn. CF2Br2, solvent, additive	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	27:
	Et_2Zn, Me_2CI_2	(59)	71
	Zn/Hg, TMSCI, ZnCl ₂ , Et ₂ O, reflux	(43) endo:exo = 3.5:1	276
	$R \longrightarrow CHO$ $Zn/Hg. (CIMe_2SiCH_2)_2,$ $Et_2O, reflux$	$\begin{array}{c c} H \\ H $	76
	OMe	$\frac{R}{M} = \frac{(\%)}{(24)} = \frac{endo:exo}{(24)}$	274

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		R-O O Zn/Hg, TMSCI, ZnCl ₂ ,	R (%) endo:exo " Me (38) 6.1:1 H (51) 3.3:1 C1 (30) 2.9:1	276
		Et ₂ O, reflux $R \longrightarrow O$ Zn/Hg, TMSCI, ZnCl ₂ , Et ₂ O, reflux	" " R (%) endo:exo H (20) 4:1 OMe (20) 5:1	276
	Me ₂ Si	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	Me ₂ Si ()	277
C ₆₋₇	R Si Me	Zn/Cu, CH ₂ I ₂	$R \xrightarrow{Me} H \xrightarrow{(\%)} H \xrightarrow{(-)} Me \xrightarrow{(-)}$	278
C ₇		Zn/Cu, CH ₂ I ₂ , Et ₂ O	I(42) + II(1) + III(4)	- 279
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		Zn/Cu, CH2I2, Et2O, reflux	I (12-14)	280
		Zn/Cu, CH ₂ I ₂ , Et ₂ O	+ + + + + + + + + + + + + + + + + + +	281
		Zn, CF2Br2, I2 (cat.), THF, rt	H = H = 38:58:3	74
	CI CI	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	$\begin{array}{c} & & \\ & & \\ EtO & & \\ I (2) & II (17) & III (22) \end{array}$	282
	OEt OEt	Zn/Ag , CH_2I_2 , Et_2O , reflux	OEt ()	283
	отмя	Zn/Ag, CH_2I_2 (xs), Et ₂ O, reflux	OTMS (75)	107, 267
	OTMS	Zn/Ag, CH_2I_2 (xs), Et ₂ O, reflux	OTMS (80)	107, 267

	Substrate Conditions	Product(s) and Yield(s) (%)	Refs.
À	Zn*, CH ₂ I ₂ , DME/Et ₂ O	(67)	44
\bigcirc	$Zn/Cu, CH_2I_2$		268
\bigcirc	Zn/Cu, CH ₂ l ₂		268
	Zn/Ag, CH ₂ I ₂	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	284
	Et_2Zn, CH_2I_2	(61)	71
	Zn/Cu, MeCHI ₂ , Et ₂ O	(13) 55:45	66
ОН	$Zn/Cu, CH_2I_2$	OH ()	285
\bigcirc	Et ₂ Zn, MeCHI ₂ , cyclohexane	(71) syn:anti = 1.4:1	71
Me ₂ Si	Zn/Cu , CH_2I_2 , Et_2O , reflux	Me ₂ Si (50)	277
C ₇₋₁₀	Et ₂ Zn, CH ₂ I ₂	$ \begin{array}{c} $	286
C ₇₋₁₂	Et ₂ Zn, CH ₂ I ₂	" (%) Me () Bu () Ph ()	287
	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	$\begin{array}{c c} X & (\%) \\ \hline O & (25) \\ NCO_2 Me & (37) \\ CH_2 & (70) \end{array}$	288
	EtZnl, CH ₂ I ₂ , Et ₂ O, reflux	I + (→) I II = 55:45	289
	EtZnI, CH ₂ I ₂ , Et ₂ O, reflux	(23) + (28)	289
MeO	Zn/Cu , CH_2I_2 , I_2 (cat.), Et ₂ O, reflux	(82) MeO	290
	Zn/Ag, CH_2I_2 , Et $_2O$, reflux	(45)	291

Substrate	Conditions	Product(s) and Yield(s) (%) R
+ 6:4	Et ₂ Zn, CH ₂ I ₂ , 50°	(36) + other products 2
OTMS	Zn/Ag, CH ₂ I ₂ (xs), Et ₂ O, reflux	OTMS , (78) 10 20
отмя	Zn/Ag, CH ₂ I ₂ (xs), Et ₂ O, reflux	OTMS (85)
	Z_n/C_u , CH_2I_2	() 25
	Zn anode, 2e-, CH ₂ Br ₂ , ZnBr ₂ present initially, CH ₂ Cl ₂ /DMF (9:1)	(66) 7
	Et ₂ Zn, CH ₂ I ₂ , cyclohexane	(86) 7
	Zπ/Cu. CH ₂ Br ₂ . Et ₂ O, 45°, sonication	(72) 2
	Zn/Cu, CH ₂ Br ₂ , AcCl (0.02 eq), Et ₂ O	" (88) 4
	Zn/Cu, CH ₂ X ₂ , promoter, Et ₂ O	" $-\frac{Promoter}{TiCl_4} \frac{X}{Br} (73) = 4$ ultrasound Br (72) TiCl_4 I (90)
	Zn anode, 2e-, CH_2X_2 . no ZnBr ₂ present initially. CH_2Cl_2/DMF (9:1)	X (%) Br (64) 7 I (75) 7
	$Et_2Zn (1.3 eq),$ $CH_2IX (1.5 eq),$ dry air (10 mL/min), $C_6H_6, 50^{\circ}$	$\frac{X}{1} (\%) = \frac{(\%)}{(99)} $
	R ₃ Al (1.2 eq), CH ₂ l ₂ (1.2 eq), solvent, rt	$\begin{tabular}{c c c c c c c c } \hline R & Solvent & (\%) \\ \hline Me & CH_2Cl_2 & (82) \\ \hline & Me & hexane & (75) \\ \hline & Et & CH_2Cl_2 & (75) \\ \hline \end{tabular}$
	Zn, CH ₂ I ₂ , additive, Et_2O , 40°, 8 h	Source of zinc Pb (mol % of zinc) Additive (%) 4 Aldrich Chemical 0 — (96) E. Merck 0 — (96)
		Rare Metallic 0 (89) Wako Pure Chemical 0.04 (7) Nacalai Tesque 0.06 (2) Kanto Chemical 0.07 (1)
		E. Merck 0 Pb (20) E. Merck 0 Pb, TMSCl (97) E. Merck 0 Pb, Et ₂ AlCl (2)
		wako Pure Chemical 0.04 Mc ₃ SiCl (92) Wako Pure Chemical 0.04 Et ₃ AlCl (1)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Me ₃ Al (3 еq), MeCHI ₂ (3 еq), CH ₂ CI ₂ , п	(92) syn:anti = 6.3:1	59
	Et ₂ Zn, McCHI ₂ , cyclohexane	" (72) <i>syn:anti</i> = 1.3:1	71
	Et ₂ Zn (x cq), CHBr ₃ (‡ cq), dry air (10 mL/min), olefin (xs), temp	$\frac{x \text{Temp} (\%) syn:anti}{0.65 0.10^{\circ} (75) 7.1:1}$	73, 103 103
	Et ₂ Zn (0.67 eq), CDBr ₃ (1 eq), dry air (10 mL/min), olefin (xs), 0-10°	$rac{d}{dr} Br$ (79) syn:anti = 6.9:1 D	103
	Zn anode, $2e_{-}$, $R^{1}R^{2}CX_{2}$, ZnBr ₂ present initially, CH ₂ Cl ₂ /DMF (9:1)	$R^{1} = \frac{R^{1}R^{2}CX_{2} (\%)}{Me_{2}CBr_{2} (46)}$ $R^{2} = \frac{PhCHCl_{2} (20)}{PhCHBr_{2} (27)}$	70
ОН	Et_2Zn , CH_2I_2	ОН ()	283
Me ₂ Si	Zn/Cu, CH ₂ I ₂ . Et ₂ O, reflux	Me ₂ Si (20)	277
²⁸⁻¹³	$Zn/Cu, CH_2I_2$	$ \begin{array}{c} $	286
$C_9 \qquad \bigcup_{D} D$	Zn/Cu, CH2I2. Et2O, reflux		294
	Zn/Cu , CH_2Br_2 , AcCl (0.02 eq), Et_2O	(33)	41
	Et ₂ Zn (1 eq), CH ₂ ICl (1.5 eq), dry air (10 mL/min), C ₆ H ₆ , 50°	" (77)	50
	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	" (82)	294
°	Zn/Cu, CH2I2, I2 (cat.). Et2O, reflux		295
	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	0 0 1(35) + 1(11) 1(11)	295
	$Zn/Cu, CH_2I_2$	I (35) (major product)	296

TABLE I. CYCLOPROPANATION OF CYCLIC, ACHIRAL ALKENES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
A	Et ₂ Zn, CH ₂ J ₂		297
	Zn source, CH_2I_2	$\frac{\text{In source}}{\text{Zn/Ag}} = \frac{I(\%)}{(22)} + \frac{II(\%)}{(35)} + \frac{III(\%)}{(35)} + I$	298
	Zn/Cu, CH_2I_2 , I_2 (cat.), Et ₂ O, reflux	(68)	299
	Zn/Cu, CH2I2, I2 (cat.), Et2O, reflux		299
	Zn/Cu, CH ₂ I ₂ , 45°	(-50)	300
	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	" (70)	300
CO2Et	Zn/Ag, CH ₂ I ₂	(54-62) CO ₂ Et	301, 302
	EtZnI, CH2I2, Et2O, reflux	(47)	303
OTMS	Zn/Ag, CH ₂ I ₂ (xs), Et ₂ O, reflux	OTMS (68)	107, 267
CO ₂ Et	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	CO₂Et ()	304
	Zn/Cu, CH ₂ I ₂	()	293
Еt I + П I:П = 3:2	Zn/Cu, CH ₂ I ₂	Et III + (30) III:IV = 2:3	305
	Et ₂ Zn, CH ₂ I ₂ , cyclohexane	(85)	71
C ₁₀	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	Fe(CO) ₃ (23)	306, 307
	Zn/Cu, CD ₂ I ₂ , I ₂ (cat.), Et_2O , reflux	D ()	306, 307

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	$Zn/Cu, CH_2I_2,$ I_2 (cat.), Et_2O	(74)	308
	Zn/Cu, CH_2I_2 , Et ₂ O, reflux	(47)	294
	$Zn/Cu, CH_2I_2, I_2$ (cat.), Et ₂ O, reflux	(47)	309
A	Zn source, CH ₂ I ₂		298
	Zn/Ag, CH2I2, Et2O	$\frac{1}{2n \text{ source } I(\%)} \frac{I(\%)}{I(\%)} \frac{II(\%)}{II(\%)} \frac{II(\%)}{IV(\%)} \frac{IV(\%)}{I(1)}$ $\frac{1}{2n/Ag} \frac{I(4)}{(7)} \frac{(7)}{(11)} \frac{(11)}{(21)} \frac{(21)}{(18)}$ $\frac{1}{1(19)} + \frac{1}{11(5)}$ $\frac{1}{11(5)} + \frac{1}{11(5)}$	310
0		$ \begin{array}{c} \mathbf{III}(41) \\ \mathbf{V}(22) \\ \mathbf{V}(22) \\ \mathbf{V}(5) \\ V$	
	Zn/Cu, CH ₂ I ₂	(small amount)	295
J.	Et_2Zn, CH_2I_2	(69)	297
	Zn/Ag, CH ₂ I ₂ , Et ₂ O	" (67)	298
	$Et_2Zn (3.2 eq),$ $CH_2I_2 (5.2 eq),$ Et_2O	" (69)	298
MeO ₂ C MeO ₂ C	Zn/Cu, CH ₂ I ₂	MeO ₂ C ()	311
MeO ₂ C MeO ₂ C	Zn/Cu, CH ₂ I ₂	MeO ₂ C ()	311
CO2Et	Zn/Cu, CH2I2, Et2O, reflux	CO ₂ Et ()	304
	EtZnl, CH2I2, Et2O, reflux		312

Cubatata	Conditions	Product(s) and Yield(s) (%)	Refs
Substrate	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	Si (55)	313
	Et ₂ Zn (2 eq), CH ₂ ICl (4 eq), solvent, 0°, 15 min	$\overbrace{\begin{tabular}{ c c c c c c }\hline & Solvent & (\%) \\\hline & (CH_2Cl)_2 & (94) \\\hline & E(_2O & (<1) \\\hline & PhMe & (75) \\\hline & C_6H_6 & (83) \\\hline & C_6H_{14} & (7) \\\hline \end{tabular}$	51
	$\label{eq:charged} \begin{array}{l} Et_2Zn~(2~eq),~CH_2IX~(4~eq),\\ (CH_2Cl)_2,~0^\circ,~15~min \end{array}$	" (%) Cl (85) I ()	51
ОН	Zn/Cu, CH_2I_2 , I_2 (cat.), Et ₂ O, reflux	OH (>99)	314
C ₁₁ Fe(CO) ₃	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	Fc(CO) ₃ (42)	306 307
SA	$Z_{ft}/Cu, CH_2I_2$	(-)	315
C ₁₁ Fe(CO) ₃	Zn/Cu , CD_2I_2 , I_2 (cat.), Et_2O , reflux	$D \xrightarrow{D} D \xrightarrow{D} D \xrightarrow{D} D \xrightarrow{D} D \xrightarrow{D} Fe(CO)_3 $ ()	30 0 307
Ph	Zn, CF ₂ Br ₂ , I ₂ (cat.), THF, π	Ph F (84)	74
	Zn/Ag, CH ₂ I ₂	(32) + (15) +	310
		(13)	
CO ₂ Et	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	CO ₂ Et ()	30
ТМЯ	Zn/Cu, CH ₂ I ₂		31
c ₁₂	Zn/Cu, CH ₂ I ₂		31

TAB	LE I. CYCLOPROPANATION OF CYCLIC	C, ACHIRAL ALKENES (Continued)	n
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	$Et_2Zn, CH_2I_2,$ Et_2O/C_6H_6 , reflux	I (7) + II (30) + II (30) + III (6) + IV (3)	319
А	Zn/Cu, CH ₂ I ₂	$\mathbf{I}(<1) + \mathbf{II}(23) + \mathbf{IV}(5) + \mathbf{V}(5)$	320
	Zn/Cu, CH ₂ I ₂	$\widehat{\mathbf{I}}^{(<1)} + \underbrace{\mathbf{II}}^{(41)}$	320
Ph	Zn/Cu , CH_2I_2 , I_2 (cat.), Et ₂ O, reflux	(68) (68)	321
	Zn/Cu, CH ₂ l ₂ , Et ₂ O, reflux; repeated once	" (76)	322
	1. Et ₂ Zn (2 eq), CH ₂ Cl ₂ 2. TFA 3. CH ₂ I ₂ , add olefin	" (78)	53
CO ₂ R	Zn/Cu, CH ₂ J ₂ , Et ₂ O, reflux	$CO_2 R \qquad \frac{R \qquad (\%)}{H \qquad (53)}$ $Me \qquad (21)$	323
	Et_2Zn (1 eq), CH_2I_2 (2.3 eq), C_6H_6	(81)	324
ОН	Zn/Cu , CH_2I_2 , Et_2O , reflux	OH (30)	323
CO2Et	Zn/Cu, CH2I2, Et ₂ O, reflux	CO ₂ Et ()	304
	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	$Ar = (\%) = \frac{Ar}{4-MeC_6H_4} = (30)$ $Ar = 3-ClC_6H_4 = (48)$	325
	Zn/Cu, CH ₂ I ₂		326
$Co(\eta^5 \cdot C_3 H_3)$	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	(19) Co(η ⁵ -C ₅ H ₅) φTMS	306, 307
Ph	Et ₂ Zn, CH ₂ ICł	(>46)	327

TABLE I. CYCLOPROPANATION OF CYCLIC, ACHIRAL ALKENES (Continued)				
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.	
Ph	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	Ph (37)	328	
Ph	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	(28)	328	
Me	Zn/Cu, CH ₂ IX, dioxanc, reflux	$\begin{array}{c c} X & (\%) \\ \hline \\ N \\ Me \\ \end{array} \\ \begin{array}{c} X \\ Cl \\ (39) \\ l \\ (55) \end{array}$	329	
	Zn/Cu, CH ₂ I ₂ , Et ₂ O		= 7:3	
	Zn/Cu, CH ₂ I ₂	(~70)	331	
MeO MeO HO HO	Zn/Cu, CH2I2, Et2O	MeO MeO HO (74)	331a	
	Zn/Cu, CH2t2	(40-50)	333	
	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux		334	
leo UMe OMe	Et ₂ Zn, CH ₂ I ₂ , dioxane, 80°	MeO MeO OMe (19)	335	
	${ m Et_2Zn}~(38~{ m eq}),$ ${ m CH_2I_2}~(30~{ m eq}),$ ${ m C_6H_6},~60^\circ$	(91)	336	
Х	Et ₂ Zn, CH ₂ ICl, (CH ₂ Cl) ₂ , 0°	OH (64)	337	
	Et ₂ Zn, CH ₂ ICl, (CH ₂ Cl) ₂ , rt		338	
	Et ₂ Zn, CH ₂ ICl, (CH ₂ Cl) ₂ , rt	I(51) H(21)		

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₄		Zn/Ag, CH ₂ I ₂	() ()	341
C.		Et ₂ Zn, CH ₂ I ₂ , Et ₂ O	(59)	342
-,		Zn/Cu, CH_2I_2 , Et_2O	0 (55)	343
	$Ac \sim N \xrightarrow{O} N \sim Ac$	Zn/Cu, CH ₂ I ₂ , AcCl, AcOEt, reflux	$Ac_{N} \xrightarrow{N} Ac $ (21)	90
	OTMS	Zn source, CH ₂ I ₂ , Et ₂ O	OTMS <u>Zn source</u> (%) OTMS Zn/Ag (60) Zn/Cu ()	344, 345
	OR	Zu/Cu, CH ₂ I ₂	$ \begin{array}{c} \text{OR} \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	346
	OAc	MeO-CHO Zn, (CIMe2SiCH2)2, Et2O, reflux	$OMe \qquad (53) endo:exo = 1:1$	76

TABLE II. CYCLOPROPANATION OF CYCLIC, ACHIRAL O- AND N-SUBSTITUTED ALKENES

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
OTMS		OTMS	
\bigcirc	Zn/Cu , CH_2I_2 , Et_2O , reflux	(76)	83
	Et ₂ Zn (1.5 eq), CH ₂ I ₂ (1.5 eq), Et ₂ O	" (—)	347
	 Zn/Cu, CH₂I₂, Et₂O, reflux; MeCOCl, reflux 	OAc (70)	348
OD.	Zn/Cu, MeCHI ₂ , Et ₂ O, reflux	TMSO TMSO $-H$ I + (70) I:II = 2.9:1	332
	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	$ \begin{array}{c} $	79
		R Conc (M) (%) F-II Me 0.45 (73) 99:1 Me 1.25 (60) 87:13	
		Mc 2.0 (62) 29:71 Et 0.45 (69) 86:14	
		Et 1.25 (87) 46:54 Et 2.0 (63) 4:96	
		TMS 0.45 (76) 97:3 TMS 1.25 (71) 0:100	
	Zn/Cu, CH ₂ Br ₂ ,	(41)	270
0	Et ₂ O, 45°, sonication Zn/Cu. CH ₂ Br ₂ . AcCl (0.02 eq). Et ₂ O	" (45)	41
	Zn anode, 2e-, CH2Br2, ZnBr2 present initially. CH2Cl2/DMF (9:1)	" (54)	70
	Zn/Cu, CH ₂ X ₂ . promoter, Et ₂ O	$\begin{array}{c cccc} & \underline{Promoter} & X & (\%) \\ \hline & & \\ \hline & \\ \hline & \\ TiCl_4 & Br & (17) \\ ultrasound & Br & (41) \\ \hline & \\ \hline \\ \hline$	43
С ₅₋₇ ОТМS	$\mathrm{Et}_{2}\mathrm{Zn}$ (1.2 eq),	OTMS <u>n Solvent (%)</u>	
i_n	CH_2I_2 (0.8 eq), solvent, 20°	$(1)_{n}$ $(1)_$	349
		2 n -pentane (82) 2 Et_2O (78) 3 n -pentane (75) 3 Et_2O (79)	
C ₅₋₈		<u>n (%)</u>	
	Zn/Ag, CH ₂ I ₂	1 (65) " 2 (67) 3 (76)	81, 107
C ₆ OTMS		4 (84) OTMS	

TABLE II. CYCLOPROPANATION OF CYCLIC, ACHIRAL O- AND N-SUBSTITUTED ALKENES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		OTMS	
	Zn/Ag CHala (ve)		107
	E_{t-O} reflux		107,
	Elizo, Itilda	\checkmark	207
OTMS		OTMS	
l l	$Zn/Ag, CH_2I_2,$	(70)	344
OTMS	Et ₂ O, reflux	OTMS	
	$Et_2Zn (1.5 eq),$	" ()	347,
	CH ₂ I ₂ (1.5 eq), Et ₂ O		351
		OTMS Zn source Solvent (%)	
	Zn source, MeCHI ₂ ,	$\sum Ln/Cu = Et_2O (76)$	352
	solvent, reliux	• OTMS Et_2Zn C_6H_6 (79)	
\int		$ \begin{tabular}{c} \end{tabular} \end{tabular} \end{tabular}$	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Zn/Cu, CH ₂ Br ₂ ,	N (22)	41
	AcCl (0.02 eq), $Et_2O$		
OR		OP	
Ĺ	<b>-</b>		
	Zn/Cu, CH ₂ I ₂	$\frac{\mathbf{R}}{\mathbf{M}_{0}} = \frac{(\%)}{(64)}$	346
		TMSO(CH ₂ ) ₂ (81)	
OFt		OP-	
Ĺ.	1. $Zn/Cu$ , $CH_2I_2$ ,		
	$Et_2O$ , reflux;	(56)	348
	2. MeCOCI, reflux	$\smile$	
OTMS		OTMS	
	Zr/Cu CH_Br-	(60)	41
	AcCl (0.02 eq), Et ₂ O		
$\checkmark$	· · · · · · · · ·	$\checkmark$	
	Zn/Cu, CH ₂ I ₂ ,	" (>99)	82
	$Et_2O$ , reflux		
	$Zn/Ag, CH_2I_2$	" (—)	353
	$Et_2Zn (1.25 eq),$		
	CH ₂ I ₂ (1.25 eq),	" (57)	354
	dry air, cyclohexane		
	$Et_2Zn (1.5 eq),$	" (77-83)	347
	$CH_2I_2$ (1.5 eq), $Et_2O$		
		OTMS OH	
	Zn/Cu, CH ₂ I ₂ ,	I(18) + I(37)	355
	$Et_2O$ , reflux		
	-		
	1. $Zn/Cu$ , $CH_2I_2$ ,		
	Et ₂ O, reflux;	(65)	348
	2. MeCOCI, reflux	$\checkmark$	
		TMSO / TMSO /	
	$Et_2Zn$ (2 eq),	H I H II (42)	190
	hevene	$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = 20.71$	100
	nexan		
	Zn/Cu, MeCHI ₂ ,	" (65) <b>I:II</b> = 24:76	332
	- 		

TABLE II. CYCLOPROPANATION OF CYCLIC	ACHIRAL O	- AND N-SUBS'	TITUTED .	ALKENES (	Continue

$ \begin{array}{c} \bigcup_{i=1}^{N} & Zac_{i,i} C(H_{2}), \\ E_{i,i} C(cont), efflax \\ i \\ E_{i,j} C(cont), efflax \\ i \\ E_{i,j} C(cont), efflax \\ i \\ $	Substrate	Conditions		Produ	ct(s) and	Yield(s) (%)			Refs.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<b>O</b> R		OR	OR	_				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$\square$	$\downarrow$	R	Conc (M)	(%)	<u>I:II</u>	70
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$Zn/Cu$ , $CH_2I_2$ ,		+	Me	0.45	(72)	98:2	79, 0 <i>4</i> 7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\checkmark$	$Et_2O$ (conc), reflux	$\checkmark$	$\sim$				~~ ~ ~	356
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			I	п	Me	1.25	(59)	83:17	79.
$ \begin{array}{c} & Me & 20 & (60) & 86:1 & 76, \\ & & & & & & & & & & & & & & & & & & $									356
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Me	2.0	(66)	2:98	79
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Et	0.45	(66)	86:14	79,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									356
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					Et	1.25	(87)	44:56	79,
$ \begin{array}{c} \label{eq:second} & \mbox{E} & \mbox{L} & \mbox{C} & \mbox$									356
$\int_{R_{1}}^{TMS} \frac{0.45}{1.25}  (71)  92.8  79$ $\int_{TMS}^{TMS} \frac{1.25}{1.25}  (68)  0.100  79$ $\int_{C}^{SMX_{n}} \frac{1}{100}  (81)  87$ $\int_{C}^{M_{1}} \frac{M_{2}}{100} \frac{M_{2}}{100}$					Ει	2.0	(79)	2:98	79
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					TMS	0.45	(71)	92:8	79
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					TMS	1.25	(68)	0:100	79
$ \begin{array}{c c c c c c} & Sm_{1}CH_{1}l_{2}, THF, 0^{2} & (81) & 87 \\ \hline \\ & Sm_{1}^{2}, CH_{2}l_{2}, THF & (55) & 88 \\ & 110 \\ \hline \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	OSmX _n		OH						
$ \begin{array}{c} \bigcup_{i=1}^{n} & \sum_{i=1}^{n} \sum_{\substack{i \in I_{2} \\ i \in$		Sm, CH ₂ I ₂ , THF, 0°	$\mathcal{A}$	(81)					87
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$									
$ \begin{array}{c} \bigcup_{i=1}^{n} & \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^$	$\checkmark$		$\sim$						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OLi								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\checkmark$	Sml, CHAL, THE	" (56)						88
$ \begin{array}{c c} & & & & & & & & & & & & & & & & & & &$		5m12, C12r2, 1111	(50)						110
$ \begin{array}{c} \underset{l \in \mathcal{M}_{l}}{\overset{Me}{\leftarrow}} \overset{Me}{\leftarrow} & \underset{l \in \mathcal{O}, l}{\overset{Me}{\leftarrow}} \overset{Me}{\leftarrow} \overset{Me}$	$\checkmark$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Me Me		Me	Me					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$Et_2Zn$ (2 eq), $CH_2I_2$ (3 eq),		(63)					357
$ \begin{array}{c} -6 \\ e & OTMS \\ \hline \\ + \\ \hline \\ + \\ - \\ n \end{array} \end{array} \qquad \begin{array}{c} \frac{n}{p_{1}} & \frac{R}{n \cdot Bu} & OTMS \\ \hline \\ + \\ + \\ - \\ n \end{array} \end{array} \\ \begin{array}{c} \frac{n}{p_{1}} & \frac{R}{n \cdot Bu} & \frac{(9)}{(75)} & 80 \\ 1 & CH_{2}CH(CH_{3})_{2} & (75) & 80 \\ 1 & CH_{2}CH_{13} & (90) & 80 \\ 1 & Br0(CH_{3})_{4} & (77) & 80 \\ 1 & Br0(CH_{3})_{4} & (77) & 80 \\ 1 & Br0(CH_{3})_{5} & (73) & 80 \\ 2 & H & (-) & 358 \\ 2 & H & (-) & 358 \\ 2 & n \cdot C_{4}H_{13} & (-) & 358 \\ 2 & n \cdot C_{4}H_{13} & (-) & 358 \\ 2 & n \cdot C_{4}H_{13} & (-) & 360 \\ 2 & Br0(CH_{3})_{4} & (80) & 80 \\ 3 & n \cdot C_{4}H_{13} & (90) & 80 \\ \end{array} \\ \begin{array}{c} OTMS \\ \hline \\ $	OH	Et ₂ O, rt	$\langle \gamma \rangle$	ОН					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	∖ó	2 /	\ó						
$ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & $	OTMS		OTMS						
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} & \\ & \\ & \\ \end{array} \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \end{array} \\ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $			L1	_					
$\begin{array}{c} \begin{array}{c} & & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & &$	R	$Et_2Zn, CH_2I_2$	$\langle \gamma \rangle$	R					
$\int_{1}^{n} \frac{R}{n \cdot Bu} \frac{(9)}{(75)} = 80$ $1  CH(2H_2)_4  (65) = 80$ $1  CH(2H_2)_4  (65) = 80$ $1  BnO(CH_2)_4  (65) = 80$ $1  BnO(CH_2)_4  (77) = 80$ $1  BnO(CH_2)_4  (77) = 80$ $1  BnO(CH_2)_4  (83) = 80$ $2  H  () = 358$ $2  Me  () = 358$ $2  n \cdot Bu  () = 358$ $2  n \cdot G_4H_1  () = 358$ $3  n \cdot G_4H_1  () = 358$ $()  ()  () = 358$ $()  ()  () = 358$ $()  ()  () = 358$ $()  ()  () = 358$ $()  ()  () = 358$ $()  ()  () = 358$ $()  ()  () = 358$ $()  ()  () = 358$ $()  ($	\(/) _n		\(/)n						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1 1 1 1 1 2 2 2 2 2	CH ₂ =CH(CH ₂ ) ₂ Cl(CH ₂ ) ₄ <i>n</i> -C ₆ H ₁₃ BnO(CH ₂ ) ₃ BnO(CH ₂ ) ₄ BnO(CH ₂ ) ₅ H Me Et <i>n</i> -Bu	(75) (65) (90) (79) (77) (83) () () ()				80 80 80 80 358 358 358 358 358 80, 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2 2 2 2	$n-C_6H_{13}$ $n-C_{10}H_{21}$ BnO(CH ₂ ) ₃ BnO(CH ₂ ) ₄	(—) (87) (90) (80)				80 80 80
$\begin{array}{c c} & & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \hline$	otms		2 2 2 3 OTMS	$n-C_{6}H_{13}$ $n-C_{10}H_{21}$ BnO(CH ₂ ) ₃ BnO(CH ₂ ) ₄ $n-C_{6}H_{13}$	(—) (87) (90) (80) (90)				80 80 80 80
$\begin{array}{c} \begin{array}{c} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	OTMS	Zn/A <i>v.</i> CH-I-	2 2 2 3 OTMS	$n-C_{6}H_{13}$ $n-C_{10}H_{21}$ BnO(CH ₂ ) ₃ BnO(CH ₂ ) ₄ $n-C_{6}H_{13}$	(—) (87) (90) (80) (90)				80 80 80 80
$\begin{array}{c c} Z_{n/Ag, CH_{2}I_{2}(xs),} & \overbrace{}^{OTMS} (90) & 107, \\ Et_{2}O, reflux & OMe & \\ & & OMe & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	OTMS	Zn/Ag, CH ₂ I ₂ , Ft-O, refluy	2 2 2 3 OTMS	$n-C_6H_{13}$ $n-C_{10}H_{21}$ BnO(CH ₂ ) ₃ BnO(CH ₂ ) ₄ $n-C_6H_{13}$	() (87) (90) (80) (90)				80 80 80 80 107, 350
$\begin{array}{c c} Zn/Ag, CH_2I_2 (xs), \\ Et_2O, reflux \end{array} \xrightarrow{(90)} 107, \\ 267 \\ 0Me \\ & \\ Cm/Ag, CH_2I_2, \\ Et_2O, reflux \end{array} \xrightarrow{(64)} 359 \\ \end{array}$	OTMS	Zn/Ag, CH2I2, Et2O, reflux	2 2 2 3 OTMS	n-C ₆ H ₁₃ n-C ₁₀ H ₂₁ BnO(CH ₂ ) ₃ BnO(CH ₂ ) ₄ n-C ₆ H ₁₃	(—) (87) (90) (80) (90)				80 80 80 80 107, 350
$\begin{array}{c c} Zn/Ag, CH_{2}I_{2}(xs), \\ Et_{2}O, reflux \end{array} \xrightarrow{(90)} 107, \\ 267 \\ \hline \\ OMe \\ \hline \\ Cn/Ag, CH_{2}I_{2}, \\ Et_{2}O, reflux \end{array} \xrightarrow{(64)} 359 \\ \end{array}$	OTMS	Zn/Ag, CH2I2, Et2O, reflux	2 2 2 3 OTMS	n-C ₆ H ₁₃ n-C ₁₀ H ₂₁ BnO(CH ₂ ) ₃ BnO(CH ₂ ) ₄ n-C ₆ H ₁₃ (—)	() (87) (90) (80) (90)				80 80 80 80 107, 350
Et ₂ O, reflux 267 OMe OMe Zn/Ag, CH ₂ I ₂ , (64) 359 Et ₂ O, reflux	OTMS	Zn/Ag, CH2I2, Et2O, reflux	2 2 2 3 OTMS OTMS	n-C ₆ H ₁₃ n-C ₁₀ H ₂₁ BnO(CH ₂ ) ₃ BnO(CH ₂ ) ₄ n-C ₆ H ₁₃ ()	() (87) (90) (80) (90)				80 80 80 80 107, 350
OMe Zn/Ag, CH ₂ l ₂ , Et+0, reflux (64) 359	OTMS	Zn/Ag, CH2l2, Et2O, reflux Zn/Ag, CH2l2 (xs),	2 2 2 3 OTMS OTMS	$n-C_6H_{13}$ $n-C_10H_{21}$ BnO(CH ₂ ) ₃ BnO(CH ₂ ) ₄ $n-C_6H_{13}$ ()	(—) (87) (90) (80) (90)				80 80 80 107, 350
$ \begin{array}{c c}  & Zn/Ag, CH_2l_2, \\  & EtrO. reflux \end{array} $ (64) 359	OTMS	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux Zn/Ag, CH ₂ I ₂ (xs), Et ₂ O, reflux	2 2 2 3 OTMS OTMS	n-C ₆ H ₁₃ n-C ₁₀ H ₂₁ BnO(CH ₂ ) ₃ BnO(CH ₂ ) ₄ n-C ₆ H ₁₃ ()	() (87) (90) (80) (90)				80 80 80 107, 350 107, 267
Et-O. reflux	OMe	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux Zn/Ag, CH ₂ I ₂ (xs), Et ₂ O, reflux	2 2 2 3 OTMS OTMS	n-C ₆ H ₁₃ n-C ₁₀ H ₂₁ BnO(CH ₂ ) ₃ BnO(CH ₂ ) ₄ n-C ₆ H ₁₃ ()	() (87) (90) (80) (90)				80 80 80 107, 350 107, 267
NZ EPOLICIUX NZ	OTMS	$Zn/Ag, CH_2I_2,$ $Et_2O, reflux$ $Zn/Ag, CH_2I_2$ (xs), $Et_2O, reflux$ $Zn/Ag, CH_2I_3$	2 2 2 3 OTMS OTMS OTMS	$n-C_{6}H_{13}$ $n-C_{10}H_{21}$ BnO(CH ₂ ) ₃ BnO(CH ₂ ) ₄ $n-C_{6}H_{13}$ ()	() (87) (90) (80) (90)				80 80 80 107, 350 107, 267

360 83 81 79 79, 356 79 347 81
360 83 81 79 79, 356 79 347 81
83 81 79 79, 356 79 347 81
83 81 79 79, 356 79 347 81
81 79 79, 356 79 347 81
81 79 79, 356 79 347 81
79 79, 356 79 347 81
79, 356 79 347 81
356 79 347 81
347 81
81
81
81
88
346
83
354
347
8) 332 : 3.1:1
88
2/1
100
8

TABLE II. CYCLOPROPANATION OF CYCLIC, ACHIRAL O- AND N-SUBSTITUTED ALKENES (Continued)

Substrate	Conditions	Product(s) and Yield(s)	(%) Refs.
	Zn/Ag, CH ₂ I ₂ . Et ₂ O, reflux	$\begin{array}{c c} & X & (\%) \\ \hline O & (25) \\ NCO_2 Me & (37) \\ CH_2 & (70) \end{array}$	288
тмбо	Et ₂ Zn (5 eq), CH ₂ 1 ₂ (5.8 eq), Et ₂ O, 35°	TMSO (>55) TMSO	362
OTMS CO ₂ Me	Zn/Ag, CH ₂ I ₂ , Et ₂ O, rt	OTMS (87) CO ₂ Me	363
otms	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	OTMS (88)	107, 350
	Zn/Ag, CH ₂ I ₂ (xs), Et ₂ O, reflux	OTMS (78)	107 350
OTMS	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O	OTMS (78)	360
OTMS	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O	OTMS (55)	360
OTMS	Et ₂ Zn (1.5 eq), CH ₂ I ₂ (1.5 eq), Et ₂ O	OTMS ()	34' 35
OTMS	Zn/Cu, CH ₂ I ₂ , Et ₂ O	OTMS (77)	36
OR	Zn/Cu, CH ₂ I ₂	$\begin{array}{c} OR \\ \hline Me \\ TMSO(CH_2)_2 \end{array} (78) \end{array}$	34
	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O	OTMS $\frac{R}{n-Bu}$ $r-Bu$ $CH_2=CHCH_2$ $R$ $CH_2=CH(CH_2)_2$	%)
		Ph (	80)

ARI F.H. CVCLOPROPANATION OF CYCLIC ACHIRAL O- AND N-SUBSTITUTED ALKENES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C9 MeO	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	MeO H H (86)	366
OTMS	Zn/Ag, CH2I2, Et2O, reflux	(80)	107, 350
	Zn/Ag, CH ₂ I ₂ (xs), Et ₂ O, reflux		107, 350
OLi	SmI ₂ , CH ₂ I ₂ , THF	OH (62)	88, 110
C ₁₀ OMe	Zn/Cu, CH ₂ I ₂ , Et ₂ O	OMe (30)	367
OMe	Et ₂ Zn, CH ₂ I ₂ , C ₆ H ₆	OMe (94)	368
OMe	$Et_2Zn, CH_2I_2, C_6H_6$	OMe (74)	368
OMe	Et ₂ Zn, CH ₂ I ₂ , C ₆ H ₆	OMe (67)	368
N(Pr-n) ₂ R	$Et_2Zn (1.1 eq),$ $CH_2I_2 (1.5 eq),$ $C_5H_{12}, 5^{\circ}$	$\frac{R}{5-OMe} (\%)$ $\frac{(\%)}{5-OMe} (>30)$ $7-OMe (>26)$ $8-OMe (>36)$	89
OTMS	$Et_2Zn (1.25 eq),$ $CH_2ICl (1.25 eq),$ dry air, cyclohexane	OTMS (60)	354
	Zn/Cu, CH ₂ 1 ₂ , Et ₂ O (conc), reflux	$\frac{\text{Conc } (M)  (\%)}{2.0  (63)}$ $1.25  (58)$ $0.45  (65)$	79 79, 83 79
	Zn/Cu, CH ₂ I ₂ . Et ₂ O, reflux	ОТМS ОН I + II (78) I:II = 2.9:1	84
OTMS	$Et_2Zn (1.5 eq),$ $CH_2I_2 (1.5 eq), Et_2O$	OTMS I ()	347
	Zn/Cu, CH2I2, Et2O (conc), reflux	$I + \bigcirc OTMS II  Conc (M)  (\%) \qquad I:II \\ \hline 2.0  (56)  52:48 \\ 1.25  (66)  82:18 \\ 0.45  (64)  99:1 \end{cases}$	79 79 79,

#### TABLE II. CYCLOPROPANATION OF CYCLIC, ACHIRAL O- AND N-SUBSTITUTED ALKENES (Continued)



#### TABLE II. CYCLOPROPANATION OF CYCLIC, ACHIRAL O- AND N-SUBSTITUTED ALKENES (Continued)



TABLE II. CYCLOPROPANATION OF CYCLIC, ACHIRAL O- AND N-SUBSTITUTED ALKENES (Continued)

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₂		Zn/Cu, CH ₂ I ₂	$D \longrightarrow D \qquad ()$	378
	Br P(O)(OMe) ₂	Zn/Cu, CH ₂ I ₂	$ \begin{array}{c} \text{Br} & (-) \\ {\bigvee} & P(O)(OMe)_2 \end{array} $	99
	(MeO) ₃ Si	Zn/Cu, CH ₂ I ₂	(McO) ₃ Si (77-78)	379
	T	Zn/Cu, CD ₂ I ₂ , Et ₂ O, 60°	T (5)	380, 381
	=	Zn/Cu, CD ₂ I ₂	$\sum_{D}^{D}$ ()	378
C ₂₋₃	R Si(OMe)3	Zn/Cu, CH ₂ I ₂	$R \xrightarrow{(\%)} Br (-)$ $R \xrightarrow{(\%)} Br (-)$ $Me (-)$ $Si(OMe)_3 (-)$	382
C ₂₋₅	R	Zn/Cu, CH ₂ I ₂	R	383
			$\frac{R}{SiMe_3} \qquad (5)$ $SiMe_2OMe \qquad (40)$ $SiMe(OMe)_2 \qquad (30)$ $Si((Me)) \qquad (45)$	
			SiMe ₂ OTMS (70) SiMe(OTMS) ₂ (65) Si(OTMS) ₃ (40)	

TABLE III. CYCLOPROPANATION OF ACYCLIC, ACHIRAL ALKENES

Substrate	Conditions	Product(s) and Yield(s) (%)	Ref
$\begin{array}{c} C_{2.9} \\ R^1 \\ R^2 \\ R^2 \\ 0 \\ \end{array}$	Et ₂ Zn, CH ₂ I ₂ , PhMe, 50°	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	95
C ₃ OEr	Zn anode, 2e-, CH ₂ Br ₂ , ZnBr ₂ present initially,	$CO_2Me H H (62)$ $PhSCH_2 H H (60)$ $TMS H H (71)$ $Me Me H (65)$ $OEt$ $(15)$	70
F	$CH_2CI_2/DMF(9:1)$ Zn/Cu, $CH_2I_2$	F ()	384
PhO	1. Et ₂ Zn (2 eq), CH ₂ Cl ₂ 2. TFA 3. CH ₂ I ₂ , add olefin	PhO(88)	53
	Zn anode, 2c-, CH ₂ Br ₂ , ZnBr ₂ present initially, CH ₂ Cl ₂ /DMF (9:1)	" (50)	70
TMSO	$Zn/Cu, CH_2I_2$	TMS0(80)	379
И	$Zn/Cu$ , $CH_2l_2$ , $Et_2O$ , sonication	(30)	38:
Si(OMe) ₃	$Zn/Cu$ , $CH_2I_2$ , sonication	Si(OMe); (81)	38 [.] 38
	Zn/Cu, CH ₂ I ₂	" (40)	38
М	Zn anode, 2e-, CH ₂ Br ₂ , ZnBr ₂ absent initially, CH ₂ Cl ₂ /DMF (9:1)	OH (42)	70
	Zn*, CH ₂ I ₂ , DME/Et ₂ O	" (67)	44
	Zinc source, MeCHI ₂ , Et ₂ O, reflux	$\begin{array}{c cccc} & & & I + & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	66
(EtO) ₂ MeSi	$Zn/Cu, CH_2I_2$	(EtO) ₂ MeSi (77-78)	37'
OMc MeO OMe	Zn/Cu, CH ₂ I ₂	MeO OMe OMe (12)	38
OTMS	Zn/Ag, CH ₂ l ₂ (xs), Et ₂ O, reflux	OTMS (84)	10 26
		$\sim$	39

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
CO ₂ Me	Zn/Cu, CH ₂ I ₂ , Et ₂ O	CO ₂ Me (78)	209
CO ₂ CD ₃	Zn/Cu, CH ₂ I ₂ , Et ₂ O	.CO ₂ CD ₃ ()	209
CO ₂ Et	Zn/Cu, CH ₂ I ₂	$\bigcirc$ CO ₂ Et (31)	391
	$Et_2Zn, CH_2I_2$		392
	Zn, CF ₂ Br ₂ , I ₂ (cat.), THF, rt	F. (17)	74
СНО	Zn/Ag, CH ₂ I ₂	CHO ()	393
	Zn/Ag, CH ₂ I ₂	" (56)	394
CO ₂ H	$Zn/Cu, CH_2I_2, Et_2O$	CO ₂ H (12)	209
ОН	Et ₂ Zn, MeCHI ₂ , Et ₂ O	D = OH I + OH II (74) I:II = 1:2	395
OAc	Zn/Cu, CH ₂ I ₂		396
∕∕∕_OAc	Zn/Cu, CH ₂ I ₂ , Et ₂ O	OAc (62)	209
OMe	Zn/Cu, CH ₂ J ₂ , Et ₂ O	OMe (97)	209
творосон	$Et_2Zn$ (1 eq), $CH_2I_2$ (2 eq) -78 to -20°; TiCl ₄ (0.15	eq) TBDPSO	31
OH	Zn/Cu, CH ₂ I ₂ , DME	OTBDPS (51)	397
B O O	Et ₂ Zn, CH ₂ I ₂ , PhMe, 50°	" B 0 (63)	95
$\sim$	EtZnI, $CH_2I_2$	()	398
	N ₂ HC ZnBr ₂ , Et ₂ O	(43)	399
	CHBr ₃ /Et ₂ Zn (3:2), dry air (10 mL/min)	Br (84)	73, 103
	Zn, CF ₂ Br ₂ , I ₂ (cat.), THF, rt	F.F (4)	74
	$EtZnI$ , $CH_2I_2$	/ ()	398
	CHBr ₃ /Et ₂ Zn (3:2), dry air (10 mL/min)	(85) Br	73, 103
	$Et_2Zn$ , CHI ₃ , olefin (xs), 0 to 20°	(63) syn:anti = 69:31	274
	Zn, CF ₂ Br ₂ , I ₂ (cat.), THF, rt	$\bigwedge_{\mathbf{F} \in \mathbf{F}} (7)$	74

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
	N ₂ HC CHN ₂	$\wedge$ $\wedge$	
		(62)	399
	ZnBr. Et O		
	211012, 6120	Br	
	CHBr ₃ /Et ₂ Zn (3:2).	(85)	73,
	dry air (10 mL/min)	$\sim$	103
	Et.7n CHL		274
	excess olefin, 0 to 20°		214
		$\wedge$ $\wedge$	
> > OH	$\Delta_{\rm CCl}$ (0.02 eq) EtaO	OH (58)	41
		" ( <b>57</b> )	270
	$E_{1}O_{1}$ , $C_{1}O_{2}D_{2}$ , Et ₂ O, 45°, sonication	(37)	270
		Promoter X (%)	
	$Zn/Cu$ , $CH_2X_2$ ,	" TiCl ₄ Br (36)	43
	promoter, Et ₂ O	ultrasound Br (57)	
		$TiCl_4$ l (42)	
	Zn anode, 2e-, $CH_2X_2$ ,	Conditions $CH_2X_2$ (%)	
	conditions,	" no ZnBr ₂ present initially $CH_2Br_2$ (56)	70
	CH ₂ Cl ₂ /DMF (9:1)	ZnBr ₂ present initially $CH_2Br_2$ (52)	
		$Z_n Br_2$ present initially $CH_2 BrCl$ (54)	
		no $2\pi Br_2$ present initially $CH_{212}$ (47)	
		Cl Br	
	Zn anode, 2e-, CHX ₃ ,		70
	CH ₂ Cl ₂ /DMF (9:1)	он учу он он	
		1 11 111	
		$CHX_{3} \qquad I(\%) \qquad III(\%) \qquad III(\%)$	
		$CHCl_3 (10) (10) ()$	
		$CHBr_{2}(1) (27) (3)$ $CHBr_{2}(1) (5) (20) (7)$	
	Zn anode 2e Me-CBr.		
	ZnBr ₂ present initially,	(51)	70
	CH ₂ Cl ₂ /DMF (9:1)	ОН	
<u> </u>	Zn/Cu, CH ₂ I ₂ , Et ₂ O	(71)	209
ОН		и сон	
TBDMSO	Et ₂ Zn, CH ₂ I ₂ , hexane	TBDMSO OH (84)	400
	-	<b>`</b>	
(EtO)Me ₂ Si	$Zn/Cu$ , $CH_2I_2$	(EtO)Me ₂ Si (77-78)	379
8 R ²		R ² R ²	
PL	Zn/Cu, CH ₂ I ₂ , Et ₂ O	$R^1$ $R^3 + R^1$ $R^3 +$	401
$R^{2}$ $R^{3}$		$\mathbf{R}^2$ $\mathbf{R}^2$	
$\mathbf{R}$ $\mathbf{R}^{3}$ $\mathbf{R}^{3}$		$\mathbf{R}^2$ $\mathbf{R}^2$ $\mathbf{R}^2$ $\mathbf{R}^2$	
$\mathbf{R}$ $\mathbf{R}^3$ $\mathbf{R}^3$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$R^{2}$ $R^{3}$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\mathbf{R}$ $\mathbf{R}^3$ $\mathbf{R}^3$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\mathbf{R}$ $\mathbf{R}^3$ $\mathbf{R}^3$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\mathbf{R}$ $\mathbf{R}^3$ $\mathbf{R}^3$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\mathbf{R}$ $\mathbf{R}^3$ $\mathbf{R}^3$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\mathbf{R}$ $\mathbf{R}^3$ $\mathbf{R}^3$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$R \rightarrow R^3$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$R \rightarrow R^3$	Ft.7n CH-L	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	97
$R \rightarrow R^3$ $R^2$ $R \rightarrow ZnPr-i$	Et ₂ Zn, CH ₂ I ₂ , Et ₂ Q, 0° to rt	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97
$R \rightarrow R^3$ $R^2$	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O, 0° to π	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
CD ₃ CD ₃ CD ₃	Zn/Cu, CH ₂ I ₂ , PhMe	$CD_3$ ()	402
CD ₃	Zn/Cu, CH ₂ I ₂ , PhMe	CD ₃ ()	402
CF3 OEt	Zn/Ag, CH ₂ I ₂ , Et ₂ O, heat, sonication	CF ₃ OEt (25)	403
MeO ₂ C CO ₂ Me	Zn/Ag, CH ₂ I ₂ , Et ₂ O	$MeO_2C$ CO ₂ Me (72)	404
CD3	Zn/Cu, CH ₂ I ₂ , PhMe	CD ₃ ()	402
OTMS	Zn/Ag, CH ₂ I ₂ (xs), Et ₂ O, reflux	OTMS (87)	107. 267
OTMS <i>E:Z</i> = 17:83	$Zn/Ag$ , $CH_2I_2$ (xs), $Et_2O$ , reflux	OTMS (85)	107, 267
OMe	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	OMe (69)	405
OBu	$Zn/Cu$ , $CH_2I_2$ , $I_2$ (cat.), $Et_2O$ , reflux	OBu ()	406
ОВи	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	OBu ()	406
CO ₂ R	Zn/Cu, CH ₂ I ₂ , Et ₃ O, reflux	$CO_2 R \qquad \frac{R}{Me} \qquad \frac{(\%)}{(74)}$ Et ()	407 304
HO CO ₂ Me	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	HO CO ₂ Me ()	408
V∕OH	$Et_2Zn$ (6 cq), $CH_2I_2$ (6 cq), ( $CH_2CI_2$ ), -10° to rt	OH (87)	409
Br.	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	Br, (77)	410
	Zn/Hg, TMSCl, Et ₂ O, reflux	OH (15) cis:trans = 2:1	77
	Zn/Cu, CD ₂ I ₂	D $D$ $D$ $()$	411
	Et ₂ Zn (0.67 eq), CHBr ₃ (1 cc dry air (10 mL/min), olefin (xs), 0-10°	q), Br ^{3⁴} (61)	103
	Zn, CF ₂ Br ₂ , I ₂ (cat.), THF, rt	F F (72)	74
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
---------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------	---------------------
Et OH	Et ₂ Zn (1 eq), CH ₂ I ₂ (2 eq), -78 to -20°, TiCl ₄ (0.15 eq)	EtOH (94)	31
ОН	Et ₂ Zn (1 eq), CH ₂ I ₂ (2 eq), -78 to -20°, TiCl ₄ (0.15 eq)	OH (90)	31
	Zn anode, 2e-, Me ₂ CBr ₂ , ZnBr ₂ present initially, CH ₂ Cl ₂ /DMF (9:1)	OH (53)	70
Me Me Si OLi	Et ₂ Zn (1.5 eq), CH ₂ I ₂ (3 eq), Et ₂ O, π	$ \overset{\text{Me_Me}}{\searrow} \overset{\text{Me}}{\underset{OH}{}} \overset{(68)}{\Longrightarrow} $	357
$= \langle TMS_{Ge(OMe)_3} $	$Zn/Cu, CH_2I_2.$ Et ₂ O, 50°	Ge(OMe) ₃ (33)	100
TMS	$Zn/Cu, CH_2I_2$	(60-84)	379, 412, 413
C5-8 R OH	Et ₂ Zn (2 eq), CH ₂ ICł (4 eq), (CH ₂ Cl) ₂ , 0°	$\begin{array}{c c} R & (\%) \\ \hline H & (87) \\ HC \equiv CCH_2 & (51) \\ Pr & (83) \\ CH_2Cl & (73) \\ TBDMSO(CH_2)_2 & (82) \end{array}$	94
R OH	$Et_2Zn$ (2 eq), $CH_2ICl$ (4 eq), ( $CH_2Cl$ ) ₂ , 0°	$R \xrightarrow{OH} \frac{R}{H} \frac{(\%)}{HC=CCH_2} (36)$	94
C ₅₋₁₀ OH	Zn/Cu, CH ₂ I ₂ , Et ₂ O	OH R R R R R R R R R R R R R	414
CO ₂ Me	Zn/Ag, CH ₂ I ₂ , Et ₂ O	MeO ₂ C CO ₂ Me (55)	404
MeO ₂ C CO ₂ Me	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux; repeated twice	MeO ₂ C CO ₂ Me (67)	415
	$Zn/Cu$ , $CH_2I_2$ , $Et_2O$ , $reflux$	" (54)	416, 417
CO ₂ Et	Zn/Cu, CH2I2, Et2O, reflux	$CO_2Et$ (75)	304
ОН	Sm (4 eq), $CH_2I_2$ , THF, -78° to rt	(91) mono:bis =>100:1	418
	Zn (xs), CH ₂ I ₂ (1.2 eq), Et ₂ O, 35°	" (51)	419
	Zn/Cu, $CH_2I_2$ , Et ₂ O, reflux	" (74)	420
	$Et_2Zn$ (3 eq), $CH_2I_2$ (3 eq), $C_6H_6$ , rt	(63) O	421
BnOOTBDMS	Et ₂ Zn (1.5 eq), CH ₂ I ₂ (2.5 eq), (CH ₂ Cl) ₂ , 0°	BnOOTBDMS (96)	422
	$Zn/Cu$ , $CH_2Br_2$ , promoter, $Et_2O$	Promoter         (%)           TiCl ₄ (49)           ultrasound         (30)	43

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
	Zn/Cu, CH ₂ Br ₂ ,	" (30)	270
	Et ₂ O, 45°, sonication		
		x/y Temp (%) syn:anti	
	$Et_2Zn$ (x eq), CHBr ₃ (y eq),	0.65 0-10° (68) 2.5:1	73,
	dry air (10 mL/min),	- Area	103
	olefin (xs), temp	Br $1 50^{\circ}$ (42) 2.4:1	103
	Et ₂ Zn, CHI ₃ ,	(34) syn:anti = 67:33	274
	olefin (xs), 50°	ч _с Ц	
	Zn, CF ₂ Br ₂ , I ₂ (cat.),	F. F.	74
	THF, rt		/4
- ~	Zn/Cu, CH ₂ I ₂	n ()	423
t-Bu		t-Bu´ ∨	
Et	Zn/Cu, CH ₂ I ₂	Et ()	424,
$\widehat{}$			423
Et Et	$Za/Cu$ , $CH_2I_2$	$Et^{-} \bigvee Et^{-}$	424,
1	Zalca CU I		42.3
$\wedge \wedge$	ZUVCU, CH212		420
	Zn/Cu, CH ₂ I ₂	()	423
i-Pr		i-Pr [>	
	Z-/C: CH I	Et	473
$\checkmark$		Et	-25
		F	
	Zn, CF ₂ Br ₂ , I ₂ (cat.),	F (40)	74
	THF, rt		
	Zn/Cu CHala	()	411
	Zn/Cu, CD ₂ I ₂		411
		D	
<b>N</b>			
$\rightarrow \rightarrow$	CH ₂ Br ₂ , conditions	$\frac{\text{Conditions}}{7n/\Omega_{\text{L}} \text{ Et } \Omega_{\text{reflux}}} $ (%)	24
		Zn, THF (41)	
	Zn/Ag CHala	" ()	427
	2007.12, 017272		
	$Zn/Cu$ , $CD_2I_2$	$/\chi $ ()	411
		ס´ שׁ	
	7n CE Pr. I ()	(96)	71
	ZII, CI 2012, 12 (Cal.),		,4
		F F	
	$Et_2Zn (1 eq), CH_2I_2 (2 eq),$	<b>•</b> •	
л-Рт ОН	TiCl ₄ (0.15 eq), CH ₂ Cl ₂ ,	<i>n</i> -Pr OH (85)	31
	-78 to -20°		
	Et ₂ Zn (3 eq), CH ₂ I ₂ (12 eq),	" (81)	428
	C ₆ H ₆ , rt		
∕ ^{OH}	$Et_2Zn$ (3 eq), $CH_2I_2$ (12 eq),	OH (74)	428
	$C_6H_6$ , rt	V	
OH	Et ₂ Zn, CH ₂ I ₂ ,	OH (78)	429
Y=~~~~	$E_{12}$ $E$	$\gamma \gamma $	-

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
	$Et_2Zn$ (3 eq), $CH_2I_2$ (3 eq), $CH_2Cl_2$ , -20° to rt	" (81)	409
TMS	Zn/Cu, CH ₂ I ₂	TMS (62)	379
TMS	Zn/Cu, CH ₂ I ₂		430
TMS OH	EtZnI, CH ₂ I ₂ , Et ₂ O	OH (99)	101
	$EtZnI$ , $CH_2I_2$	" (>72)	431
R	Et ₂ Zn, CH ₂ I ₂ , (CH ₂ Cl) ₂ , -20°	R I OH + R II OH	155
		R         (%)         I:II           Me         (68)         5:1	
		TBDPSOCH ₂ (72) >95:5	
		<i>i</i> -PT ( <i>12</i> ) 0:1 Ph (80) 5:1	
		C ₆ H ₁₁ (78) 7:1	
CO2Et	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	CO ₂ Er ()	304
			408
HO CO ₂ Me	$Zn/Cu, CH_2l_2,$ Et ₂ O, reflux	HO CO ₂ Me (40-80)	432 433
OH	$Zn/Cu$ , $CH_2I_2$ , $I_2$ (cat.), $Et_2O$ , reflux	OH (73)	434
он	$Zn/Cu, CH_2I_2, I_2$ (cat.), EtaO. reflux:	$\overset{\text{OH}}{\downarrow}$ (43)	435
$\mathbf{x} = \mathbf{x}$	repeated once	X X	
$\frown \frown \frown \frown$	Et ₂ Zn (x eq), CH ₂ IX (y eq). dry air (10 mL/min), C ₆ H ₆ , 50°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50
, where the second s	Et ₂ Zn (1 eq), CH ₂ IX (1.5 eq dry air (10 mL/min), C ₆ H ₆ , 50°, 1 h	$(9, 50^{\circ})$ $(76)$ $(76)$ $(90)$ $(1 (94)$	50
	$\label{eq:chi} \begin{array}{l} Zn/Cu,\ CH_2I_2,\ I_2\ (cat.),\\ Et_2O,\ reflux \end{array}$	(3)	436
но	$Et_2Zn, CH_2I_2$	HO (72)	43*
TMS	Zn/Cu, CH ₂ I ₂	TMS (86)	379
TMS	$EtZnl, CH_2I_2$	TMS (95)	438
	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	$\begin{array}{c} TMS \\ \hline \\ OH \end{array} I (75) + \begin{array}{c} TMS \\ \hline \\ OMe \end{array} I (14) \end{array}$	43
RICO	$Zn/Cu$ , $CH_2I_2$ , $I_2$ (cat.), $Et_2O$ , reflux	$\begin{array}{c cccc} & & R^{1} & R^{2} & (\%) \\ \hline & & Me & Et & () \\ R^{1} & & Et & Me & () \end{array}$	406

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
$C_7$ - $C_9$ OH $R^1$ $()_n$ $R^2$	Zn/Cu, CH ₂ I ₂	$ \begin{array}{c} OH \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\ (-) \\$	439
Ph D	$Zn/Cu, CH_2I_2$	Ph D ()	440
R	Et ₂ Zn, CH ₂ IX	$\begin{array}{c} R & (\%) \\ F & (-) \\ Cl & (-) \end{array}$	441
MeO	Et ₂ Zn, CH ₂ I ₂	()	442
OMe	$Et_2Zn, CH_2I_2,$ PhMe, 65°	(70) OMe	443
Ph	$CH_2X_2$ , conditions	$\begin{array}{c c} \hline & Conditions & X & (\%) \\ \hline \hline Zn/Cu, Et_2O, reflux & Br & (46) \\ \hline Zn, THF & I & (43) \end{array}$	24
	Zn anode, 2e-, CH ₂ X ₂ , conditions, CH ₂ Cl ₂ /DMF (9:1)	" $\frac{Conditions}{ZnBr_2 \text{ present initially}} = \frac{X}{R}  (\%)$ no ZnBr_2 present initially I (33)	70
	1. Et ₂ Zn (2 eq), CH ₂ Cl ₂ 2. TFA 3. CH ₂ I ₂ , add olefin	" (85)	53
	Et ₂ Zn (x eq), CH ₂ IX (y eq), catalyst, C ₆ H ₆	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50
	Et ₂ Zn (x eq), CH ₂ IX (y eq), dry air or O ₂ (10 mL/min), $C_6H_6$ , 50°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50
	$Et_2Zn (1 eq), CHBr_3 (1 eq),$ dry air (10 mL/min), olefin (xs), 50°	Br (trace)	73, 103
	$Et_2Zn$ , CHI ₃ , olefin (xs), 50°	$s^{s}$ (44) syn:anti = -	274
	Zn, CF2B12, I2 (cat.), THF, rt	F (15)	74

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
$rac{1}{2}$ $rac{$	H Zn, (ClMe ₂ SiCH ₂ ) ₂ , Et ₂ O, reflux	Ph (53)	76
	$D_{2n}$ , (ClMe ₂ SiCH ₂ ) ₂ , Et ₂ O, reflux	Ph (44) endo:exo = 1:1	76
	MeO-CHO Zn, (ClMe ₂ SiCH ₂ ) ₂ , Et ₂ O, reflux	OMe (99) cis:trans = 25:1	76
	C $C$ $C$ $C$ $C$ $C$ $C$ $C$ $C$ $C$	Ph (19) endo:exo = 1:1	76
	$\sum_{\text{Zn, (ClMe_2SiCH_2)_2,}} O$ Et ₂ O, reflux	Ph., (59) endo:exo = 11:1	76
	Zn, (ClMe ₂ SiCH ₂ ) ₂ , Et ₂ O, reflux	Ph	76
	Zn/Ag, CH ₂ I ₂	$\int \frac{\mathbf{I}(-)}{\mathbf{I}(-)} + \int \frac{\mathbf{II}(-)}{\mathbf{II}(-)} + \int \frac{\mathbf{II}(-)}{\mathbf{III}(-)} + \text{other products}$	444
$\rightarrow = \diamond$	Zıı/Cu, CH ₂ I ₂ , Et ₂ O, reflux	(35)	445
	Et ₂ Zn, CH ₂ I ₂ , PhMe, rt	I (7-13) + II (7-45)	446
	Conditions	I + II + III	104
		$\begin{tabular}{ c c c c c } \hline Conditions & I (\%) & II (\%) & III (\%) \\ \hline Zn/Cu, CH_{2}l_{2}, AcCl, Et_{2}O & (9) & (18) & (1) \\ \hline Zn/Cu, CH_{2}Br_{2}, AcCl, Et_{2}O & (2) & (4) & (0) \\ \hline Et_{2}Zn, CH_{2}l_{2}, PhMe & (5) & (34) & (1) \\ \hline Et_{3}Al, CH_{2}l_{2}, PhMe/CH_{2}Cl_{2} & (13) & (39) & (8) \\ \hline \end{tabular}$	
AcOCO ₂ Me	$Zn/Cu$ , $CH_2I_2$ , $I_2$ (cat.), Et ₂ O, reflux	AcOCO ₂ Me (77)	408
HO CO ₂ Me	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	HO CO ₂ Me ()	408
$\bigcirc \bigcirc \bigcirc$	$Et_2Zn$ (2 eq), CH ₂ ICl (4 eq), (CH ₂ Cl) ₂	(>99)	447

	TABLE III. CY	CONDITION OF ACYCL	IC, ACHIRAL ALKENES (Continued) Product(s) and Yield(s) (%)	Refs
	Jubilate	Conditions		
		Zn/Cu, CH ₂ I ₂	(87)	448
	n-BuOH	Et ₂ Zn (2 eq), CH ₂ ICl (4 eq), (CH ₂ Cl) ₂ , 0°	<i>п</i> -Ви(31)	94
	n-Bu OH	$Et_2Zn (2 eq), CH_2ICl (4 eq),$ (CH ₂ Cl) ₂ , 0°	n-Bu OH (78)	94
	n-C ₆ H ₁₃	Zn/Cu, CH ₂ Br ₂ , Et ₂ O, 45°, sonication	<i>n</i> -C ₆ H ₁₃ (28)	270
		Zn/Cu, CH ₂ Br ₂ , AcCl (0.02 eq), Et ₂ O	" (61)	41
		Zn anode, 2c-, CH ₂ Br ₂ , no ZnBr ₂ present initially, CH ₂ Cl ₂ /DMF (9:1)	" (66)	70
		Zn/Cu, $CH_2X_2$ , promoter, $Et_2O$	$\begin{array}{c c} \hline Promoter & X & (\%) \\ \hline TiCl_4 & Br & (50) \\ ultrasound & Br & (28) \\ \hline TiCl_4 & I & (56) \end{array}$	43
		Et ₂ Zn (1 eq), CH ₂ IX (1.5 eq) dry air (10 mL/min), C ₆ H ₆ , 50°	$\frac{X}{I} = \frac{(\%)}{66}$	50
	$\widehat{}$	Zn/Cu, CH ₂ l ₂	()	449
		R3Al (x eq), CH2I2 (1.2 eq), solvent, rt	R         x         Solvent         (%)           Me         1.1         hexane         (75)           Et         1.2         CH ₂ Cl ₂ (66)	59
	$\sim \sim \sim \sim$	Zn/Cu, CH ₂ I ₂	()	450
	n-Pr Pr-n	Zn/Cu, CH2I2, Et2O, reflux	<i>n</i> -Pr <b>P</b> r- <i>n</i> (21)	451
	n-Bu	Zn/Cu, CH ₂ I ₂	n-Bu ()	423
	$\neq \downarrow$	Zn/Cu, CH ₂ I ₂		423
	h-Bu	Zn/Cu, CH ₂ I ₂	t-Bu (−)	423
	НО Е:Z = 80:20	Zn/Cu. CH ₂ I ₂ . Et ₂ O, heat	HO (>40) E:Z = 76:28	452
	Me Me Me Si Si	Zn/Cu, CH ₂ I ₂	$\bigvee_{i=1}^{Me} S_{i} \bigvee_{i=1}^{Me} S_{i} \bigvee_{i=1}^{ME$	379
	TMS	Zn/Cu, CH ₂ I ₂	TMS (30)	379
	TMS	Zn/Cu, CH ₂ I ₂		453
C ₈₋₉	R	Et ₂ Zn, CH ₂ I ₂	R (%) 4-OMe (54) 4-Me (36) R	454

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
	Zn/Cu, CH ₂ l ₂ , 13 ₂ O, reflux	- R (%) 2-Me (45) 4-Me () 4-OHe () 4-OEL ()	455
$\frac{C_{n+0}}{R^{1}} \frac{Me_{i}R^{2}}{R^{1}}$	$\mathrm{El}_2 \mathrm{Zn}(1$ eq), $\mathrm{CH}_2 \mathrm{I}_2(2$ eq), $\mathrm{El}_2 \mathrm{O},  \alpha$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	357
R R	ZarCu, CH ₂ I ₂ , AcCl (cat.), solvent	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	104
C ₉ MaO OMe	ZuCu, CH3I3. Ei30, reflux	Me (-HyO (28) (h) (k) MeO (CO3E) MeO (320)	45
Ph-08m , Ph-	'OBu Za/Cu, CH ₂ I ₂ (5 eq), I ₂ (cat.), EI ₂ O, reflux, 15 h	Ph 08a + Ph 6 (>99) (17)	92
Me0	ZaVCa, CH ₂ I ₂ , I ₂ (cat.), Di ₂ O, wffax	Me0(42)	45
Pt ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Eig2n (3 eq), CH ₂ DX (6 eq), (CH ₂ Cl) ₂ , -23°, 90 min	$PH \rightarrow 0$ $\frac{X = (91)}{CI = (100)}$ 1 (85)	31
OMe	Zn/Ag, CH ₂ I ₂ , B ₂ O, reflas	(47)	451
Ph OBn	Bi ₂ Zn (2 eq), CH ₂ IX (4 eq), (CH ₂ Cl) ₂ , 0°, 15 min	Phr OBin <u>Ci (1005</u> I (96)	51
	RZsCH ₂ X (I) + Ed2sCH ₂ X (II), CD ₂ Cl ₃ , 0°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	45
Photomore	1. Bi ₂ Zn (2 eq), CH ₂ Cl ₂ 2. TFA 3. CH ₂ J ₂ , add olefin	Ph OTBDMS (95)	53

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
Ċ,		Zn, $CH_2I_2$ , $I_2$ (cat.), DME, reflux	(72)	460
		$Zn/Cu, CH_2I_2$		461
Ph.		$CH_2X_2$ , conditions	Conditions         X         (%)           Ph.         Zn/Cu, Et ₂ O, reflux         1         (40)         2           Zn, THF         Br         (35)         3	24
		Zn/Hg, TMSCl, HC(OR) ₃ , Et ₂ O, reflux	Ph $OR$ $R$ (%) cis:trans Me (64) 2:1 n-Pr (43) 2:1	77
		Zn/Hg, TMSCI, (EtO) ₂ CH(OPh), Et ₂ O, reflux	Ph OEt (67) cis:trans = 2:1	77
		O OMe Zn/Hg, TMSCl, Et ₂ O, reflux	Ph OTMS (55) <i>cis:trans</i> = 3:1 7	77
		O Zn/Hg, TMSCl, Et ₂ O, reflux	$Ph \qquad \qquad OH \qquad (23)  cis:trans = 5:2 \qquad 7$	77
Ph		$Et_2Zn (5 eq), CH_2IX (10 eq),$ (CH ₂ Cl) ₂ , 23°, 1 h	$\begin{array}{c cccc} X & (\%) \\ \hline Cl & (92) \\ I & (88) \end{array}$	51
		Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	" (41)	370
		<ol> <li>Et₂Zn (2 eq), CH₂Cl₂</li> <li>TFA</li> <li>CH₂I₂, add olefin</li> </ol>	" (77)	53
		Zn, CF ₂ Br ₂ , I ₂ (cat.), THF, rt	Ph F (29)	74
Ph		Zn/Cu, CH ₂ I ₂	Ph (>75)	462
Ph		$CH_2X_2$ , conditions	$\begin{array}{c c} & Conditions & X & (\%) \\ \hline & Zn/Cu, Et_2O, reflux & I & (61) \\ & Zn, THF & Br & (35) \end{array}$	24
		Zn/Cu, CH ₂ I ₂	" (>75)	462
		Zn/Hg, TMSCl, HC(OMe) ₃ , Et ₂ O, reflux	$Ph \xrightarrow{OMe} (56) \ cis:trans = 2:1$	77
		Zn, $CF_2Br_2$ , $I_2$ (cat.), THF, rt	F (71)	74
РЬОН		Zn anode, 2e-, CH ₂ BrCl, ZnBr ₂ present initially, CH ₂ Cl ₂ /DMF (9:1)	Ph OH (59)	70
		Et ₂ Zn (2 eq), CH ₂ IX (4 eq), (CH ₂ Cl) ₂ , 0°, 30 min	$\frac{X}{Cl} (96)$ I (16)	51
		Et ₂ Zn (2 eq), CH ₂ I ₂ (3.3 eq), hexanes, $-20^{\circ}$ to rt	" (86)	463
		Et ₂ Zn (2 eq), CH ₂ I ₂ (3 eq), TiX ₄ (0.1 eq), PhMe/hexane, -23°, 9 h	$ \frac{X  (\%)}{  (22)} \\ OPr-i  (35) \\ Cl  (77) $	30

Substrate	Conditions	Froduct(s) and Tield(s) (%)	KCIS.
	1. Et ₂ Zn (2 eq), CH ₂ Cl ₂ 2. TFA	" (80)	53
	3. $CH_2I_2$ , add olefin		
		Lewis acid (%) at $0^{\circ}$ (%) at $-20^{\circ}$ (%) at $-40^{\circ}$	
		- (23) (<5) (<5)	
		BBr ₃ (93) (90) (60)	
		$B(OMe)_3$ (50) (10) (4)	
	$Et_2Zn$ (1 eq), $CH_2I_2$ (2 eq),	$TiCl_4$ (94) (90) (60)	
	$CD_2Cl_2$ , Lewis acid,	" $Ti(OPr-i)_4$ (50) (45) (8)	31
	temp, 6 h	$TiCl_2(OPr-i)_2$ (85) (80) (45)	
		$SiCl_4$ (90) (88) (58)	
		$SnCl_4$ (83) (55) (55)	
		$Et_2AlCl$ (93) (87) (70)	
		$Zn(OTf)_2$ (45) (18) (7)	
		$ZnI_2$ (50) (14) (9)	
	Sm/Hg, CH ₂ I ₂ ,	" (90)	57
	THF, -78° to rt	(77)	57
	$SmI_2$ (xs), CH ₂ ICl, THF, -78° to rt	" (98)	58
	$Et_2Zn$ (x eq),	1	
	MeCHI ₂ (y eq),	<u>і т т і п</u>	69
	$CH_2Cl_2, 0^\circ$	Ph OH Ph OH	
		х у (%) <b>I-Ш</b>	
		$\frac{15}{15}$ 20 (85) 93.7	
		2.2  4.4  (82)  80.11	
		5 50 (59) 02.7	
		5 5.0 (58) 55.7	
	$I. Et_2 Zn (I. I eq)$		
	$2. \operatorname{Zni}_2$	(62) <b>1:11 =</b> $/1:29$	464
	$5. 2n(CHIMe)_2, CH_2CI_2, 0^2$		
Me Ph	$Et_2Zn$ (1.5 eq), $CH_2I_2$ (3 eq),	Me Ph (52)	357,
OLi	Et ₂ O, rt	ОН	465
Me Ph	Et ₂ Zn (1.5 eq), CH ₂ I ₂ (3 eq),	" (60)	357,
SI OH	Et ₂ O, rt		465
OTROMS		OTBOMS .	
	Zn/Cu, CH2I2, Et2O	(60-70)	466
ŃH Ö		ŃH Ö	
0		U	
но			
***	Zp/Cu, CHala	(81)	438
	Et ₂ O, reflux		
OMe		OMe	
$\mathbf{i}$			
n CO-Ft	Zn/Cu, CH ₂ I ₂ ,	(75)	304
mer X contra	$Et_2O$ , reflux	- mil Vivzer	
/ \		/ \	
$\frown$	Zn/Cu, CH ₂ I ₂		467
~		~	
Сх	Et ₂ Zn (3 ea), CH ₂ I ₂ (3 ea)	Сх ОН (96)	468
	$CH_2Cl_2$ , $-20^\circ$ to rt		
		N	
	Zn/Cu, CH ₂ I ₂ , Et ₂ O	(35)	209
$\sim$	Zn/Cu, CH ₂ I ₂ ,	(88)	469
	Et ₂ O, reflux	~	
$\sim \sim \sim \sim$	7.0.041		460
	Et O	V (00)	-107
	$Et_2O$ , reflux		

Substrate	Conditions		Product(s) a	nd Yield(s) (	(%)		Re
OH	EtZnI, CH ₂ I ₂ , Et ₂ O	OH	(92)				438
TMS	Zn/Cu, CH ₂ I ₂	TMS	MS	(45)			470
R OH SnMe ₃	Conditions	R OH SnMe ₃	R SnMe ₃ TMS SnMe ₃ TMS	Condition Zn/Cu, C Zn/Cu, C Sm/Hg, C Sm/Hg, C	ons H2I2 H2I2 H2I2	(%) (0) (64) (68)	471 98
E.		F		Diving, C		(00)	
$R^1$ $OR^2$	Ζι/Cu, CH ₂ I ₂ (x eq), I ₂ (cat.), Et ₂ O, reflux	R ¹ OR ²	R           Ph(CH2)2           Ph           Cx           Cx	K H H MOM Bn Bn H MOM Bn Bn H Bn H Bn	x 1.2 5 5 10 5 10 5 10 5 10 5 10 5 10 5 5 5	(12) (0) (77) (78) ^b (78) (40) (87) (47) (66) (0) (78) (26) (12) (44) (75) (39)	92
	Et ₂ Zn (x eq), CH ₂ J ₂ (2x eq), hexane, -23 then 0°		$\frac{R^{1}}{Ph(CH_{2})_{2}}$ $Ph(CH_{2})_{2}$ $Ph(CH_{2})_{2}$ $Ph$ $Ph$ $Ph$ $Cx$ $Cx$ $\frac{R^{1}}{P(1-R)}$	R ² MOM Bn Bn MOM Bn Bn Bn R ²	x 5 5 7.5 5 7.5 5 7.5 5 7.5 x	(%) (0) (41) (70) (0) (3) (31) (0) (34) (%)	92
$R^1 \longrightarrow OR^2$	Zn/Cu (x eq), $CH_2l_2$ (x eq), Et ₂ O, reflux, 20 h	$R^1 \longrightarrow OR^2$	Ph(CH ₂ ) ₂ Ph	H Bn	5 10	(51) (84)	92
Ph CD ₃	Et ₂ Zn, CH ₂ I ₂ , isooctane, 100°	Ph CD ₃ CD ₃	(—)				472
Ph OMe	Zn/Cu, CH ₂ I ₂	Ph O	Me (76	i)			473
O Ph	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O	Ph O	(—)				474
F OAc	Zn/Cu, CH2l2, Et2O, reflux	F I (39)	OAc+	F	т П (2	OA 26)	475 475
Ph	Zn/Cu, $CH_2I_2$ , Et ₂ O, reflux	Ph OAc	(55)				470
ОН	$Zn/Cu$ , $CH_2I_2$ ,		∕∽он	(44)			475

TABLE III. CYCLOPROPANATION OF ACYCLIC, ACHIRAL ALKENES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
Q		Q	
Ph O	Et ₂ Zn (7 eq), CH ₂ I ₂ (7 eq), C $_6$ H ₆ , reflux	Ph (21)	476
Ph	Zn/Cu, $CH_2I_2$ , $I_2$ (cat.), $Et_2O$	Ph ()	474
Ę,	Zn, CH ₂ I ₂ , I ₂ (cat.), DME, reflux; repeated twice	(65)	460
	Zn/Cu, CH ₂ I ₂ , Et ₂ O	" (63)	477
Ph	$Et_2Zn$ (2 eq), $CH_2I_2$ (3.3 eq), hexanes, $-20^\circ$ to rt	Ph OH (50)	463
Ph	$2n/Cu, CH_2I_2$	OH Ph (67)	473
OH Ph	Sm/Hg, CH2IX (n eq), THF, -78° to rt	$\begin{array}{cccc} OH & & \underline{n & X & (\%)} \\ & & 4 & Cl & (14) \\ Ph & & 4 & I & (9) \\ & & 12 & I & (53) \end{array}$	58
Ph	Zn/Cu, CH ₂ l ₂	ОН Рh ()	478
	Sm/Hg (xs). CH ₂ IX, THF, -78° to rt	" <u>X (%)</u> " <u>C1 (21)</u> I ()	58
Me Ph Si OLi	Et ₂ Zn, CH ₂ I ₂	Me Me Ph Si OH (70)	357, 465
Me Me Ph Si OH	Et ₂ Zn (1.5 eq), CH ₂ I ₂ (3 eq), Et ₂ O, rt	" (70)	357, 465
	Et ₂ Zn (1 eq), CH ₂ I ₂ (2 eq), solvent, rt, 6 h	$\begin{array}{c c} Solvent & (\%) \\ \hline CH_2Cl_2 & (73) \\ \\ {}^{''} Et_2O & (71) \\ hexane & (50) \\ \hline THF & (0) \\ DMF & (0) \\ \end{array}$	357
Me Si OH Ph	$Et_2Zn (1.5 eq), CH_2I_2 (3 eq),$ $Et_2O, rt$	$ \begin{array}{c} Me \\ Me \\ Si \\ OH \end{array} $ (78)	357, 465
CO ₂ Et	Zn/Hg, TMSCl, HC(OEt)3, Et2O, reflux	$CO_2Et$ (44) $cis:trans = 2:1$ H	77
	Zn/Cu, CH ₂ l ₂	() + cyclopropanation products	479
	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	(79)	257

Substrate	Conditions	Product(s) and Yield(s) (%)	Ref
	$Zn/Cu$ , $CH_2I_2$ , $Et_2O$ , reflux	(40)	257
	Conditions		104
		$\begin{tabular}{ c c c c c } \hline $I$ (Conditions $I$ (%) $I$ ($	
	Zn/Cu, CH2I2, AcCl (cat.), solvent	SolventI (%)II (%)III (%) $Et_2O$ (26)(11)(8)DME(26)(9)(4)THF(16)(7)(1) $i$ - $Pr_2O$ (25)(8)(2)EtOAc(14)(8)(1)dioxane(11)(5)(1)(CH_2Cl)_2(9)(2)(4)	104
OH	Zn/Cu, CH ₂ I ₂	V (69) + (69) + П (6)	480
	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux		) 48
Un Con	"MCH ₂ X"		59
	<i>i</i> -Bu ₃ Al, CH ₂ I ₂ ,	MCH ₂ x         (%1:%11:%11) $E_{12}Zn, CH_{2}I_{2}$ 3:49:8 <i>i</i> -Bu ₃ Al, CH ₂ I ₂ 79:0:0           I         (92-96)	25
	<i>i-</i> Bu ₃ Al, TCHI ₂ , CHCl ₃	T ^r ()	48
Сно	ClMe ₂ Si SiMe ₂ Cl Zn/Hg	(66) H (66)	1
СНО	ClMe ₂ Si SiMe ₂ Cl Zn/Hg	" (57)	1





TABLE III. C	CYCLOPROPANATION OF ACYCL	IC, ACHIRAL ALKENES (Continued)	
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
n-C _s H ₁₁ Pr-n	Zn/Cu, CH ₂ I ₂	$n-C_5H_{11}$ Pr-n (—)	450
n-Bu	Zn/Cu, CH ₂ I ₂	п-Ви (—)	450
$\rightarrow \uparrow \leftarrow$	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	(75)	488
n-Bu Pr-n	Zn/Cu, CH ₂ I ₂	<i>n</i> -Bu Pr- <i>n</i> (—)	450
ОН	Zn/Cu, CH ₂ I ₂ , Et ₂ O	OH (43)	489
ОН	$Zn/Cu$ , $CH_2I_2$ , $Et_2O$	OH (45)	489
HO	EtZnl, CH ₂ I ₂ , Et ₂ O	HO (65)	438
HOTTMS	EtZnl, CH ₂ l ₂ , Et ₂ O	I + II (51) $I = -1:1$	438
	EtZnl, CH ₂ l ₂	HO TMS ()	490
Me Me C ₆ H ₁₃	$Et_2Zn~(1.5~eq),~CH_2I_2~(3~eq),$ $Et_2O,~rt$	$\begin{array}{c} Me Me (85) \\ C_6 H_{13} M^{o^{*}} \\ \end{array} \end{array} $	357
Pr Si OH Pr	$Et_{2}Zn$ (1.5 eq), $CH_{2}I_{2}$ (3 eq), $Et_{2}O,$ rt	$\begin{array}{c} Me & Me \\ Pr & Si & OH \\ Pr & Pr \end{array} $	357
TMS	Zn/Cu, CH ₂ I ₂	TMS (50)	471
	EcZnI, CH ₂ I ₂	$\begin{array}{c} \text{TMS} & \underline{n} & (\%) \\ \hline & & 1 & (-) \\ \text{HO} & & 2 & (-) \end{array}$	490
	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	(56) Ph (56)	491
PhFOH	Zn/Cu. CH ₂ I ₂ , I ₂ (cat.), solvent, reflux	$\begin{array}{c cccc} F & \underline{Solvent} & (\%) \\ \hline Ph & Et_2O & (68) \\ \hline OH & Et_2O & (65)^b \\ DME & (57) \end{array}$	92
	$Zn/Cu, CH_2I_2$	()	461
Ph	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	Ph ()	491
Ph	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	Ph ()	491
Ph	$Zn/Cu, CH_2I_2,$ $I_2$ (cat.), $Et_2O$	Ph ()	474

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	ОН		ОН	
	Ph	Zn/Cu, CH ₂ I ₂	Ph (61)	473
	Рһ	Et ₂ Zn (1 eq), CH ₂ I ₂ (2 eq), -78 to -20°, CH ₂ Cl ₂ . TiCl ₄ (0.15 eq)	Ph OH (88)	31
	PhMc ₂ Si OH	Et ₂ Zn (1.5 eq), CH ₂ I ₂ (2 eq), <i>i</i> -Pr ₂ O, rt	PhMe ₂ Si OH (76)	492, 493
		Et ₂ Zn (3 eq), MeCHl ₂ (3 eq), <i>i</i> -Pr ₂ O, rt	$PhMe_2Si \longrightarrow OH $ (23) cis:trans = 64:36	492, 493
	PhMe ₂ Si OH	Et ₂ Zn (1.5 eq), CH ₂ I ₂ (2 eq), <i>i</i> -Pr ₂ O, π	PhMe ₂ Si OH (60)	492, 493
		Et ₂ Zn (2 eq), MeCHI ₂ (2 eq), <i>i</i> -Pr ₂ O, rt	$PhMe_2Si^{-1}OH  (59) \ cis:trans = 25:1$	492, 493
		Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux		257
		Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux		494
	но	Zn/Cu, CH ₂ l ₂	но (49)	495
	ТМЯ	Zn/Cu, $CH_2I_2$ , Et ₂ O, reflux, 1 h	(>72)	496
	НО	EtZnI, CH ₂ I ₂ , Et ₂ O	(98) HO	438
C ₁₂		Zn/Cu, CH ₂ I ₂	(13)	497
	$( \downarrow )_{3}^{N}$	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	$( \searrow )_{3}^{N}$ (36)	498
	D C ₇ H ₁₅ C ₃ H ₇	Zn, CH ₂ I ₂ , DME, 85-90°	$\begin{array}{c} D \\ C_7H_{15} \\ C_3H_7 \end{array} \qquad (\longrightarrow)$	499
	C ₃ H ₇ CD ₂ C ₆ H ₁₃	Zn, CH ₂ I ₂ , DME, 85-90°	$C_{3}H_{7}$ CD ₂ C ₆ H ₁₃ ()	499
	C ₃ H ₇ CD ₂ C ₃ H ₁₁	Zn, CH ₂ I ₂ , DME, 85-90°	$C_3H_7$ CD ₂ C ₅ H ₁₁ ()	499
	$Z_n Pr-i$ $C_{10} H_{21} - n$	$Et_2Zn$ , $CH_2I_2$ , $Et_2O$ , 0° to rt	$\sum_{\mathbf{C}_{10}\mathbf{H}_{21}\cdot n}^{\mathbf{Z}_{n}\mathbf{P}_{T}\cdot i} \qquad (>70)$	97
	C ₇ H ₁₅ C ₃ H ₇	Zn, CH ₂ I ₂ , DME, 85-90°	C ₇ H ₁₅ C ₃ H ₇ ()	499
		Zn, CD ₂ I ₂ , DME, 85-90°	$C_{7}H_{15}$ $C_{3}H_{7}$ (95)	499

Substrate	Conditions		Product(s) and Yi	eld(s) (%)	Refs.
<i>n</i> -C ₁₀ H ₂₁	$R_3Al$ (x eq), $CH_2I_2$ (1.2 eq), solvent, rt	n-C ₁₀ H ₂₁	R         x           Me         1.2           Me         1.2	$\begin{array}{c c} Solvent & (\%) \\ \hline CH_2Cl_2 & (98) \\ hexane & (91) \\ \end{array}$	59
			Me 0.6 Et 1.2	$CH_2Cl_2$ (90) $CH_2Cl_2$ (99)	
			Et 1.2 Et 1.2	C ₆ H ₆ (94) CHCl ₂ (96)	
			Et 0.6	hexane (89)	
			<i>i</i> -Bu 1.2 R (%	$CH_2Cl_2$ (96)	
	$R_3Al$ (3 eq), MeCHI ₂ (3 eq), CH ₂ Cl ₂ , rt	n-C10H21	Mc (94 <i>i</i> -Bu (84	() 1.1:1 () 0.7:1	59
С ₈ Н ₁₇ - <i>n</i> ОН	Zn/Cu, CH2I2. Et2O, reflux	C ₈ H ₁₇ -n	(>22)		500
C ₁₃ OH C ₆ H ₄ OMe-3	Zn/Cu, CH ₂ I ₂ , Et ₂ O	OH C ₆ H ₄ O	(98) Me-3		501
Ph Me	Sm/SmI ₂ , THF, reflux	Ph N Me	(41)		78
CN CN	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	Y (	(4) CN	0)	502
Bu-t	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	$\sim$	Bu-t	(30)	469
	$Zn/Cu$ , $CH_2I_2$	6X	(70)		503
D.	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O	PP	(79)		504
	Zn/Cu, CH ₂ l ₂ . Et ₂ O, reflux			(40)	505
ОН	Zn/Cu, CH ₂ Br ₂ , Et ₂ O, reflux, AcBr or ultrasound		ОН +	и (48) І-Ш – 1 3-1	506
	Et ₃ Al, CH ₂ I ₂ , hexane, rt	I + II (90) I:II = ~1	1.5:1	(40) 1.11 - 1.5.1	506
	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux		(81)		507
<i>E:Z</i> = 82:18	Zn/Cu, CH2I2, Et2O, rt	$\sim \sim \sim$	$\downarrow \sim$	(—) <i>E:Z</i> = 84:16	452
<i>n</i> -C ₉ H ₁₉	Zn/Cu, CH ₂ I ₂	n-C ₉ H ₁₉	()		450
n-Bu Bu-n	Zn/Cu, CH ₂ I ₂	n-Bu Bu-n	(—)		317

TABLE III. CYCLOPROPANATION OF ACYCLIC, ACHIRAL ALKENES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₄ Br	Zn/Cu, CH ₂ l ₂	Br (-)	508
Ph Ph	$Et_2Zn. CH_2I_2$	Ph Ph ()	509
Ph Ph	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	$Ph \longrightarrow Ph$ (24)	370
	1. Et ₂ Zn (2 eq), CH ₂ Cl ₂ 2. TFA 3. CH ₂ I ₂ , add olefin	" (70)	53
Ph Ph	1. $Et_2Zn$ (2 eq), $CH_2Cl_2$ 2. TFA 3. $CH_2I_2$ , add olefin	Ph (72)	53
Ph	Zn/Cu, CH ₂ I ₂ , El ₂ O, reflux	(30)	510
MeO	$Et_2Zn (2 eq),$ CH ₂ ICl (4 eq). (CH ₂ Cl) ₂	MeO H (27)	447
Ph Me	Sm/Sml ₂ , THF, reflux	Ph- $N$ -(41) endo:exo = 9:1 Me	78
Ph N Me	Sm/SmI ₂ , THF, reflux	$\frac{Ph}{N} $ $Me $ $(41) endo:exo = 1:8$	78
A	$Et_2Zn$ (2 cq), $CH_2I_2$ (2 cq)	(92)	511
$\left\langle \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Zn dust, C ₆ H ₆	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	113
но	Sm/Hg, CH ₂ I ₂	но (89)	512
	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux, ultrasound	(68)	513
	$Zn/Ag$ , $CH_2I_2$ , $Et_2O$ , reflux, ultrasound	(63)	513
	Zrı/Cu, CH2l2, Et2O, reflux	$\begin{array}{c} R \\ R \\ R \\ R \\ R \end{array} \qquad \begin{array}{c} R \\ R \\ R \\ R \end{array} \qquad \begin{array}{c} R \\ H \\ C \\ C$	514

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	n-C ₉ H ₁₉	Zn/Cu, CH ₂ I ₂	n-C ₉ H ₁₉ ()	450
-	C ₆ H ₁₃	1. Et ₂ Zn (2 eq), CH ₂ Cl ₂ 2. TFA 3. CH ₂ I ₂ , add olefin	$C_6H_{13}$ (99)	53
C ₁₅	Ph Ph	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	Ph (78)	514a
	Ph Ph	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	Ph (37)	515
		$Zn/Cu$ , $CH_2I_2$	(15)	497
	Ph Ph	Zn/Ag, CH ₂ I ₂ . Et ₂ O, reflux	Ph (52)	516
	Dr.	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O	$\downarrow$ (-)	504
	OHC., E:Z = 3:2	CIMe2Si SiMe2CI Zn/Hg	H (41)	112
	СНО	ClMc ₂ Si SiMe ₂ Cl Zn/Hg	" (47)	112
	CHO	CIMe2Si SiMe2Cl Zn/Hg	(47)	112
	И	Zn/Cu, CH ₂ I ₂ , Et ₂ O/DME, reflux	ОН (82)	517
		$R  N_2$ Znl ₂ , Et ₂ O	$R \xrightarrow{C_{11}H_{19}} + R \xrightarrow{C_{11}H_{19}} H$	75
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		C ₁₁ H ₁₉ N ₂ ZnI ₂ , Et ₂ O	$\begin{array}{c} C_{11}H_{19} \\ C_{11}H_{19} \\$	75

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
ОН	C ₁₁ H ₁₉ ZnI ₂ , Et ₂ O	$\begin{array}{c} C_{11}H_{19} \\ I \\ OH \\ (-) I:II = - \end{array}$	H ₁₉ 75
n-C ₉ H ₁₉	Zn/Cu, CH ₂ I ₂	n-C ₉ H ₁₉ ()	450
Bu ₃ Sn OH	Et ₂ Zn, CH ₂ I ₂ , PhMe, 40°	Bu ₃ Sn OH ()	518
Bu ₃ Sn OH	Zn/Cu, CH ₂ I ₂ , <i>i</i> -Pr ₂ NEt, DME, 23°	$Bu_3Sn \longrightarrow OH$ (70)	208
	Et ₂ Zn (2 eq), CH ₂ I ₂ (2 eq), <i>i</i> -Pr ₂ O, rt	" (39)	493
κ.	Et ₂ Zn (2 eq), MeCHI ₂ (2 eq), <i>i</i> -Pr ₂ O, rt	$Bu_3Sn^{-}$ (28)	493
MeO MeO MeO	EtZnl. CH2I2. I2 (cat.). THF	MeO MeO (46)	519
Ph Ph Ph	Zn/Cu, CH ₂ I ₂ , Et ₂ O	Ph Ph Ph Ph (35)	520
Ph Ph	Zn/Cu, CH ₂ I ₂	$\bigvee_{Ph}^{Ph} (3)$	521
Ph OAc	Zn/Cu, CH ₂ I ₂	Ph OAc (76)	473
Ph Ph	Zn/Cu, CH ₂ l ₂	Ph (77)	522
O OH CO ₂ H	Zn/Cu, CH ₂ I ₂ , THF	O O O O O Me (40)	523
F OH Ph	$Zn/Cu$ , $CH_2I_2$ , $Et_2O$ , reflux	F (53) Ph	475
SiMe ₂ Ph	Me3Al, CH2I2, CH2Cl2/hexane, rt	SiMe ₂ Ph (64)	524
$MeO_2C$ $\swarrow_6$ $\swarrow_6$ $CO_2Me$	$Zn/Ag$ , $CH_2I_2$ , $Et_2O$ , reflux	$MeO_2C + f_6 + CO_2Me \qquad (42)$	525
O () () () () () () () () () ()	$Zn/Cu$ , $CH_2I_2$	$M_{5} / M_{7} OMe$ ()	526
(15) ()) OMe	$Zn/Cu, CH_2I_2$	OMe (-)	526

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	THPO	$Et_2Zn, CH_2I_2,$ $C_6H_6, O_2$	THPO $\mathcal{M}_{7} \mathcal{M}_{7}^{\text{Cl}}$ (67)	525
	$\begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	Zn/Cu, CH ₂ I ₂	$M_{5} M_{7} H + M_{7} M_{5} H (-)$	527
	M ₅ → M ₇ OMe	Zn/Cu, CH ₂ I ₂	$\gamma_{5} \gamma_{7} \gamma_{7$	528
	C ₁₂ H ₂₅ OAc	$Zn, CH_2l_2, DME$	C ₁₂ H ₂₅ OAc (35)	529
	n-C ₉ H ₁₉	Zn/Cu, CH ₂ I ₂	n-C ₉ H ₁₉ ()	450
	Bu ₃ Sn	Et ₂ Zn, CH ₂ I ₂ , PhMe, 40°	Bu ₃ Sn OH ()	518
	TMS OH C ₈ H ₁₇	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O, reflux	$ \begin{array}{c} \text{TMS OH} \\ \hline \\ C_8H_{17} \end{array} \qquad (\longrightarrow) $	530
0	HO OH	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O, reflux	$HO \underbrace{C_8H_{17}}_{OH} ()$	530
C ₁₇	MeO	Zn/Ag, CH ₂ I ₂ , Et ₂ O	MeO (7)	531
	n-C ₉ H ₁₉	Zn/Cu, CH ₂ I ₂	<i>n</i> -C ₉ H ₁₉ (—)	450
	BnO C8H17 OH OH	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O, reflux	$\begin{array}{c} \text{TMS} \swarrow \\ \text{BnO} & \begin{array}{c} (-) \\ \text{OH} & \text{OH} \end{array} \end{array} $	530
	BnO OH OH	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O, reflux	$BnO \longrightarrow OH OH C_8H_{17} ()$	530
C ₁₇₋₁	⁸ V OH R	$Et_2Zn, CH_2I_2, (CH_2Cl)_2, 0^\circ$	OH <u>R</u> (%) <u>H</u> (70) <u>R</u> <u>Me</u> (70)	532
C ₁₈	Ph SiMe2Ph	Mc ₃ Al, CH ₂ I ₂ , CH ₂ Cl ₂ /hexane, rt	Ph SiMe ₂ Ph (90)	524
	NC-	$Zn/Cu$ , $CH_2I_2$ , $Et_2O$ , reflux	NC	533
	ОН	Sm, CH ₂ I ₂	ОН (>35)	534
	O V J 4 O Me	Zn/Cu, CH ₂ I ₂ , ultrasound, DME, reflux	$\gamma_{4}$ $\gamma_{7}$ $\gamma_{7$	45

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Zn/Cu, CH ₂ I ₂	$\begin{array}{c} T & T \\ & & T \\ & &$	535
My OMe	Zn/Cu, CH ₂ I ₂ . ultrasound, DME, reflux	(91)	45
	Zn, Red-Al, DME; CH ₂ 1 ₂ , ultrasound, DME, 85-90°	" (82)	536
$4^{14}C$ labeled	Zn/Cu, CH ₂ I ₂	(-) ¹⁴ C labeled	537
M5 Mg OMe	Zn/Cu, CH ₂ I ₂	$M_5 M_9 OMe$ ()	526
	$Zn/Cu$ , $^{14}CH_2I_2$	$\bigvee_{5^{14}C} \bigvee_{9}^{O} OMe \qquad (-)$	537
W7 OH	Zn/Cu, CH ₂ I ₂	0 (73) (73)	535, 538
	Et ₂ Zn, CH ₂ I ₂ , C ₆ H ₆	" ()	539
	$Zn/Cu$ , ${}^{13}CH_2I_2$	$\mathcal{H}_{7^{13}C} \mathcal{H}_{7} \mathcal{OH} (-)$	540
H77 CH77 OH	Et ₂ Zn, CH ₂ I ₂ , C ₆ H ₆	(-)	539
	Zn/Cu, CH ₂ I ₂	(-)	528
	Zn/Cu, ¹³ CH ₂ I ₂	(-) (-)	540
ОН	$Et_2Zn$ , $CH_2I_2$	O ()	541
Bu ₃ Sn TMS OH	Conditions	$\begin{array}{c c} Bu_{3}Sn & \hline Conditions & (\%) \\ \hline \\ TMS & OH & \hline \\ Sm/Hg, CH_{2}I_{2}, THF & (90) \\ SmI_{2}, CH_{2}ICI, THF & (81) \\ Et_{2}Zn, CH_{2}ICI, (CH_{2}CI)_{2} & (65) \end{array}$	140
С19	Sm, CH ₂ I ₂	(>38)	534
Y Yg	$Zn/Cu$ , $CH_2I_2$	(-)	542
E:Z = 1:9	Et ₃ Al. CH ₂ I ₂	(98)	543
	Zn/Cu, CH ₂ I ₂ , Et ₂ O, rt		544

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
TsO O= O O O	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), El ₂ O/DME	TsO O O O O O O O O O O O (32)	545
СНО	ClMe ₂ Si SiMe ₂ Cl Zn/Hg	H (46) + H (30)	112
n-C ₁₄ H ₂₉ CO ₂ Me	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	$n-C_{14}H_{29}$ (81)	408
n-C ₁₄ H ₂₉ CO ₂ Me	Zn/Cu, $CH_2I_2$ , $I_2$ (cat.), Et ₂ O, reflux	$n-C_{14}H_{29}$ CO ₂ Me (95)	408
C ₁₁ H ₂₃ SiMe ₂ Ph	Me ₃ Al, CH ₂ I ₂ , CCl ₄ , 0°	$C_{11}H_{23}$ SiMe ₂ Ph (91)	102
²² PhS Si SiMc ₂ Ph	$Me_3Al, CH_2I_2$	$PhS \xrightarrow{Si}_{SiMe_2Ph} (50)$	546
PhO ₂ S Me Me SiMe ₂ Ph	Ei ₂ Zn, CH ₂ I ₂ , CH ₂ Cl ₂	PhO ₂ S Si SiMe ₂ Ph (>30)	546
C ₂₇ Bu ₃ Sn Bu ₃ Sn OH	Sm/Hg, CH ₂ I ₂ , THF, -78° to rt	Bu ₃ Sn (77) Bu ₃ Sn OH	140
	Zn/Cu, CH2I2, Et2O, reflux	$ \begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	547

^a The reaction is done in the presence of 2 equivalents of Et₂O. ^b The conditions include irradiation with ultrasound.

158

CO.P		CO ₂ R CO ₂ R	
HN CO2K	Et ₂ Zn, CHFl ₂ , conditions, CH ₂ Cl ₂		548
<i>,</i>		F Z F	
		$\frac{R}{Rn} = \frac{40^{\circ} \text{ then rt}}{(c10)} = \frac{1}{100}$	
		Bn MS4Å, DME, rt (25) 64:36	
		<i>r</i> -Bu MS4Å, DME, 0° (30) 60:40	
PhN_CO ₂ Bn	Et ₂ Zn, CHFL,	$Ph N CO_2Bn$ I + $Ph N CO_2Bn$ II	548
	conditions	, , , , , , , , , , , , , , , , , , ,	• • •
		$\square \mathbf{F}$ $\square \mathbf{F}$	
		Conditions (%) I:II	
		hexane, $-20^{\circ}$ (79) 65:35	
		PhMe. $-20^{\circ}$ (64) 66:34	
		THF, $-20^{\circ}$ then rt (0) —	
		Et ₂ O, -20° (73) 63:37	
		CCl ₄ , -20° (75) 60:40	
		CHCl ₃ , -20° (81) 63:37	
		$CH_2Cl_2, -20^\circ$ (79) 69:31	
		$CH_2CI_2, -40^{\circ}$ (78) 71:29 $CH_2CI_2, -78^{\circ}$ (68) 76:24	
		CH12CH2, 70 (00) 70.24	
Ph N ^{-CO₂R}	EtoZn (2 eq), CHEI $_{2}$ (2 eq)	$Ph N CO_2 R$ I + $Ph N CO_2 R$ II	91
		l l l l	548
,		$\square F$ $\square -F$	
		<u>R (%) I:II</u>	
		Bn (78) 70:30	
		<i>t</i> -Bu (63) 62:38	
EtO	Zn/Ag, CH2I2, Et20, reflux	ErO (20)	549
n-BuQ	$Et_2ZII (1 eq), CH_2ICI (x eq),$ dry air (x ml/min)	$n$ -BuQ, $(\pi)$ $(\pi)$ $(\pi)$	50
	Et ₂ O, 50°	1.5 10 (94)	
i-BuO	$Zn/Cu, CH_2I_2$	i-BuO ()	449
	1. EtaZn (2 eq). CHaCla		
PhCO ₂	2. TFA	PhCO ₂ (90)	53
- ~	3. $CH_2I_2$ , add olefin		
Et		Et $(46)$ transvisio = 3:1	77
	Zn/Hg, TMSCI, HC(OMe) ₃ , Et O, reflux	MeO. $(46)$ trans: $cis = 3:1$	11
U O	El2O, Tenux		
		$OR^1$ $P^1$ $P^2$ $P^3$ (7)	
$R^2$	Zn/Ag CHala EtaO	$\mathbf{R}^2$	550
R'O'		R'O' Me Me (59)	
K,		K ^o Me Me H (60)	
$\rho = \rho^2$		$\mathbf{R}^1$ $\mathbf{R}^1$ $\mathbf{R}^2$ $\mathbf{R}^3$ (%)	
	Et ₂ Zn, CH ₂ I ₂	OSiMe ₂ R ² $H$ <i>t</i> -Bu <i>i</i> -Pr (61)	551
OR ³		$OR^3$ Ph Me Et ()	
OBn		OBn	
UBN	$Et_2Zn$ (1.5 eq),	(90)	553
OTMS	CH2I2 (1.5 eq), Et2O, rt	`< `otms	
OSmX.		ОН	
PhO,	Sm, CH ₂ I ₂ , THF, 50°	PhO (60)	110
$\checkmark$ $\checkmark$		$\sim$ $>$	552
		P	

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	OMe	Zn/Cu, CH ₂ I ₂ , DME	OMe ()	554
	, or OTMS E:Z = 5:95	Zn/Ag, $CH_2I_2$	۶۵۳ ^۰ OTMS (61)	81
	OAc	McO CHO Zn, (ClMe ₂ SiCH ₂ ) ₂ , Et ₂ O, reflux	OMe (89) endo:exo = 2:1	76
C ₄	OTMS	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	OTMS (75)	107, 555
		Zn/Ag, CH ₂ I ₂ (xs), Et ₂ O, reflux	OTMS (84)	107, 267
	OTMS	Zn/Ag, $CH_2I_2$ , Et ₂ O, reflux	OTMS O (>30)	556
	OTMS McO OMe	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	OTMS (>45) MeO OMe	556
	TMSO OTMS $\sim 1:1 E:Z$ mixture	$Zn/Cu, CH_2I_2$	TMSO OTMS (42) $\sim 1:1 E:Z$ mixture	557
	TMSO OTMS	Zn/Ag, CH2I2, Et2O, reflux	TMSO TMS (65)	344
	OMe	$Et_2Zn (1.5 eq),$ $CH_2I_2 (1.5 eq), Et_2O, rt$	OMe OTMS (70)	553
	OTMS E:Z = 57:43	$Et_2Zn$ (1.25 eq), $CH_2l_2$ (1.25 eq), dry air, cyclohexane	Et of OTMS (69)	354
	OMe	Zn/Cu, CH ₂ I ₂ , DME	OMe ()	554
	OMe	Zn/Cu, CH ₂ I ₂ , DME	OMe ()	554
	OTMS	Zn/Ag, CH ₂ I ₂	OTMS (63)	81
C4.8	$R^{1}O$ $R^{3}O$ $R^{3}$	Zn/Ag, CH ₂ I ₂	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	341
C5	C→ Cotms	Et ₂ Zn (1 eq), CH ₂ I ₂ (1.5 eq), Et ₂ O, 60°	OTMS (67)	558

TABLE IV. CYCLOPROPANATION OF ACYCLIC, ACHIRAL O- AND N-SUBSTITUTED ALKENES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	$Zn/Ag$ , $CH_2I_2$ , $Et_2O$ . reflux	" (75)	559, 560, 561
OTMS	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	OTMS (80)	107, 555
	Zn/Ag, CH ₂ I ₂ (xs), Et ₂ O, reflux	OTMS (87)	107, 267
OTMS E:Z = 17:83	$Zn/Ag, CH_2I_2,$ $Et_2O, reflux$	otms (70)	107, 555
	$Zn/Ag, CH_2I_2$ (xs), Et ₂ O, reflux	OTMS (85)	107, 267
OTMS OTMS	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	OTMS (>40)	556
	Zn/Ag, CH2I2, Et2O, reflux	TMSO TMS (70)	344
OTMS $E:Z = 2:3$	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	OTMS (90) $E:Z = 2:3$	82
<i>E:Z</i> = 37:63	$Et_2Zn (1.25 eq),$ $CH_2I_2 (1.25 eq),$ dry air, cyclohexane	" (51)	354
OMe	Zn/Cu, CH ₂ I ₂ , Et ₂ O/DME, reflux	OMe (55)	562
	Zn/Cu, CH ₂ ł ₂ , dioxane, heat	OTMS (66)	563
OMe	Zn/Cu, $CH_2I_2$ , Et ₂ O, DME, reflux	OMe (80)	564
TMSO	Zn/Cu, CH ₂ I ₂ , Et ₂ O (conc), reflux	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<b>:II</b> 5:85 79, 565 9:1 00:0
	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	$\begin{array}{cccc} R^{1} & R^{2} & \\ TMSO & OTMS & \hline R^{1} & R^{2} & (\%) \\ \hline Et & Et & (70) \\ n-Pr & Me & (60) \\ t-Bu & H & (60) \end{array}$	344
OTMS	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	t-Bu (80)	82
	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	OTMS (57) + OH (10)	355
$ \begin{array}{c} 5-7 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline \end{array} \\ R \\$	Et ₂ Zn, CH ₂ I ₂ , C ₆ H ₆ /cyclohexane	$E_{1O_2C} \xrightarrow{O} R \xrightarrow{R} (\%)$ H (>25) Me (73)	566

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	TMSOOTMS (70)	567
X _n SmO	Sm, $CH_2I_2$ , THF, 50°	HO OH (22)	110. 552
отмя	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	OTMS (70)	107, 555
	Zn/Ag, CH ₂ I ₂ (xs), Et ₂ O, reflux	OTMS (75)	107, 267
OMe	Et ₂ Zn (1.5 cq), RCHI ₂ (1.5 cq), Et ₂ Ο, π	$\begin{array}{c} OMe \\ & R \\ & (\%) \\ \hline H \\ & (80) \\ & Me \\ & (91) \\ \hline R \\ & Ph \\ & (64) \end{array}$	553
OTMS	$Et_2Zn$ (2 eq), $CH_2I_2$ (2 eq), $Et_2O, \pi$	OTMS (80)	553
OZnEt	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O	OH (38)	371
TMSO	Zn/Cu, CH ₂ I ₂ , Et ₂ O (conc), reflux	TMSO	
		Conc (M)         (%)         I:II           10.0         (66)         8:92           2.0         (77)         25:75           1.56         (82)         91:9	79 79, 565 79
		1.25     (80)     97:3       0.91     (65)     99:1       0.45     (78)     100:0	79, 565 79 79, 565
TMSO.	Zn/Cu, CH ₂ I ₂ , Et ₂ O (conc), reflux	Conc (M)         (%)           2.0         (86)           1.25         (66)           0.45         (58)	79, 565
OMe n-C5H11 OTMS	Et ₂ Zn (1.5 eq), CH ₂ I ₂ (1.5 eq), Et ₂ O, rt	$n-C_3H_{11}$ (76)	553
OTMS n-C ₅ H ₁₁ OTMS	Et ₂ Zn (2 eq), CH ₂ I ₂ (2 eq), Et ₂ O, rt	$n-C_{S}H_{11}$ (80)	553
$C_5H_{11}$ , $E:Z = 27:73$	Zn/Ag, CH ₂ I ₂	$C_5H_{11}$ , $r^{s}$ (81)	81

Substrate	Conditions	Product(s) and Yield(s) (%)	Ref
OSmX _n	Sm, CH ₂ I ₂ , THF, 0°	$\begin{array}{c c} OH \\ R \\ \hline \\ R \\ \hline \\ \hline \\ Ph \\ Ph \\ I \\ 4-BrC_6H_4 \\ Br \\ (67) \\ \hline \end{array}$	87
	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	TMSO ^{Ph} (10)	344
	Et ₂ Zn (1.5 eq), RCHI ₂ (1.5 eq), Et ₂ O, rt	$\begin{array}{ccc} OMe & & \mathbf{R} & (\%) \\ OTMS & & \mathbf{H} & (85) \\ R & & \mathbf{Me} & (86) \end{array}$	553
OTMS	Et ₂ Zn (1.5 eq), PhCHI ₂ (1.5 cq), Et ₂ O, rt	Ph Ph OMe Ph (68)	55:
OTMS Ph	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	Ph (90)	82
	Zn/Ag, CH ₂ I ₂	" (49)	103
	$Et_2Zn$ (1.25 eq), $CH_2I_2$ (1.25 eq), dry air, cyclohexane	. (88)	354
	Zn/Cu, CH ₂ I ₂ , Et ₂ O (conc), reflux	$ \begin{array}{c}                                     $	79
	$Zn/Cu, CH_2I_2,$ $EI_2O, reflux$	$\begin{array}{c} \text{OTMS} \\ \text{Ph} \end{array} \begin{array}{c} (67) + \\ \text{Ph} \end{array} \begin{array}{c} \text{OH} \\ (10) \end{array}$	35
	Et ₃ AI (1.2 eq), CH ₂ I ₂ (1.2 eq), <i>n</i> -hexane, rt	OTMS Ph (86)	59
	1. Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux; 2. MeCOCl, reflux	Ph (48)	56
OLi Ph	SmI ₂ , CH ₂ I ₂ , THF	Ph (82)	88
OSmX _n	Sm, CH ₂ I ₂ . THF, 50°	" (71)	11
Ph	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	Ph (39)	37
	Zn/Ag, CH2I2, Et2O, reflux	Ph OMe (53)	56
Ph	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	Ph (75) OMe	56
CO2Et	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	OEi (88)	5
отмя	Zn/Ag, CH ₂ I ₂ ,	OTMS (60)	10

TABLE IV. CYCLOPROPANATION OF ACYCLIC, ACHIRAL O- AND N-SUBSTITUTED ALKENES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Zn/Ag, CH ₂ I ₂ (xs), Et ₂ O, reflux	OTMS (85)	107
TMSO Pr-n TMSO OTMS	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	TMSO Pr-n (70)	344
oLi n-C ₆ H ₁₃	SmI ₂ , CH ₂ I ₂ , THF	0H n-C ₆ H ₁₃ (52)	110
R CTMS	Et ₂ Zn (1.1 eq), CH ₂ I ₂ (1.4 Et ₂ O, reflux	eq), R CTMS 4-OMe (55) 4-Me (80) 2-OTMS (55) 4-OTMS (67)	571
C8-11 OM R ¹ R ²	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	371
OSmX _n OSmX _n	Sm, CH ₂ I ₂ , THF, 50°	ОН (59) ОН	110, 552
OLi Ph	SmI ₂ , CH ₂ I ₂ , THF	OH Ph (56)	88, 110
OSmX _n Ph	Sm, CH ₂ I ₂ , THF, 50°	Ph (51)	110, 552
CO ₂ Et	$Z_n/Cu$ , $CH_2I_2$ , $I_2$ (cat.), Et ₂ O, reflux	CO ₂ Et (>99)	570
	$Et_2Zn$ . $CH_2I_2$ , $Et_2O$ , $rt$		572
$\frac{1}{29\cdot14}$ OM $R^2$ $R^1$	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O	$ \begin{array}{c ccccc} OH \\ R^2 & R^1 & R^2 & M & (\%) & cis:trans \\ \hline n-C_8H_{17} & Me & ZnEt & (82) & 93:7 \\ \hline n-C_5H_{11} & n-C_6H_{13} & ZnEt & (93) & 87:13 \\ Me & Ph & ZnEt & (34) & \\ CH_2=CH(CH_2)7 & i-Pr & ZnEt & (65) & 51:49 \\ \hline n-C_8H_{17} & H & ZnEt & () & \\ \hline n-C_8H_{17} & Me & AlMe_2 & (34) & 41:59 \\ \hline n-C_8H_{17} & Me & BEt_2 & (69) & 74:26 \\ \end{array} $	371
$C_{10}$ OSm $X_n$	Sm, CH ₂ I ₂ , THF, 50°	OH (21) OH	110, 552
	$Zn/Cu$ , $CH_2I_2$ , Ft ₂ O, reflux	(7)	481

TABLE IV. CYCLOPROPANATION OF ACYCLIC, ACHIRAL O- AND N-SUBSTITUTED ALKENES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
OTMS	$Et_2Zn$ , $CH_2I_2$ , $Et_2O$ , $rt$	OTMS (73)	572
C ₁₁ OTBDMS	Et ₂ Zn, McCHI ₂	TBDMSO, Ph I + TBDMSO, II () I: $\Pi$ = -	573
OTBDMS	Et ₂ Zn, MeCHI ₂	TBDMSO, Ph I + TBDMSO, II () I:II = -	573
C11-13 OTBDMS R ¹	Et ₂ Zn, CH ₂ I ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	573
OTBDMS R ¹ R ²	Et ₂ Zn. CH ₂ I ₂	TBDMSO, $R^{1}$ $R^{2}$ $R^{1}$ $R^{2}$ $(\%)$ $Me$ Ph (50-70) $Me$ $n-C_{6}H_{13}$ (50-70) i-Pr Ph (50-70) $i-Pr$ $n-C_{6}H_{13}$ (50-70)	573
C ₁₂ OTMS	$Et_2Zn, CH_2I_2$	OTMS he (63)	574
	$Et_2Zn (0.8 eq),$ $CH_2I_2 (1.25 eq),$ $Et_2O, reflux$	(93)	575
n-C ₆ H ₁₃ O	Et ₂ Zn, CH ₂ J ₂ , Et ₂ O, π	<i>n</i> -C ₆ H ₁₃ , OTMS O (>72)	572
OZnEt	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O	$n-C_9H_{19}$ (92) cis:trans = 57:43	371
	Et ₂ Zn (1 eq), CH ₂ I ₂ (1.15 eq), THF	(>59)	576
OTBS	Et ₂ Zn, CH ₂ I ₂	TBSO R R (%) Ph (50-70) $n-C_6H_{13}$ (50-70)	573
C ₁₃ n-C ₈ H ₁₇ OTMS	$Et_2Zn, CH_2I_2, Et_2O, \pi$	n-C ₈ H ₁₇ OTMS (74)	572



TABLE IV. CYCLOPROPANATION OF ACYCLIC, ACHIRAL O- AND N-SUBSTITUTED ALKENES (Continued)

TABLE XV. CYCLOPROPANATION OF ALKENES USING A SUBSTITUTED DIHALIDE

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
HN ^{CO2R}	Et ₂ Zn, CHFI ₂ , conditions, CH ₂ Cl ₂	HN $\sim^{CO_2R}$ + HN $\sim^{CO_2R}$ F II R Conditions (%) I:II Bn $\sim^{-40^\circ}$ then rt (<10) - Bn MS (4Å), DME, rt (25) 64:36	548
Ph N ^{-CO₂Bn}	Et ₂ Zn, CHFI ₂ , conditions	$Ph \longrightarrow CO_2Bn \qquad Ph \longrightarrow CO_2Bn \qquad F \qquad F \qquad F \qquad II$	548
		<u>Conditions (%) 1:11</u>	
		(79) (79) (5:55)	
		PhMe, $-20^{\circ}$ (64) 65:35	
		THF, $-20^{\circ}$ then rt (0) —	
		$Et_2O, -20^\circ$ (73) 63:37	
		CCl ₄ , -20° (75) 60:40	
		CHCl ₃ , -20° (81) 63:37	
		CH ₂ Cl ₂ , -20° (79) 69:31	
		$CH_2Cl_2, -40^\circ$ (78) 71:29	
		$CH_2Cl_2, -78^\circ$ (68) 76:24	

174

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Zn/Cu. CH ₂ I ₂	()	585
	$Et_2Zn, CH_2I_2$	" (64)	71
	Zn/Cu, MeCHI ₂ . Et ₂ O	(31)	66
	$\sum_{\text{Zn, (ClMe_SiCH_2)_2,}} O$ Et ₂ O, reflux		76
ОН	Zn/Cu, ¹³ CH ₂ J ₂ , solvent	$\begin{array}{c c} & & \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	586
C ₈ CO ₂ Me CO ₂ Me	Zn/Cu, $CH_2I_2$ , $I_2$ (cat.), Et ₂ O, reflux	$CO_2Me$ (30) $CO_2Me$	587
	Zn/Ag, CH ₂ I ₂ , Et ₂ O	(60)	588, 589
TMSO	$Zn/Cu, CH_2I_2$	TMSO OTMS ()	590
	$Zn/Cu, CH_2I_2$	()	568
	Zn/Cu, CH2I2, Et2O, reflux	" (65)	591
A	Zn/Ag, CH ₂ I ₂ , Et ₂ O	(46)	592
НО	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	HO OH (50)	593
	Zn/Cu, CH ₂ I ₂	()	585
	Et ₂ Zn, CH ₂ I ₂ , cyclohexane	" (65)	71
C ₉	Zn/Ag, CH ₂ I ₂ , Et ₂ O	$\begin{array}{c c} R & (\%) \\ \hline H & (70) \\ \hline OR & THP & (74) \end{array}$	404
A	Zn/Ag, CH ₂ I ₂ , Et ₂ O	(53)	592
	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O, reflux	" (74)	302
A	Zn/Cu, CH ₂ I ₂ , DME, ultrasound	I + II (23) I:II = 1:2	594
	Zn/Ag, CH ₂ I ₂ , Et ₂ O	(78)	404

TABLE V. CYCLOPROPANATION OF exo-METHYLENE CONTAINING COMPOUNDS (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	595
	$Et_2Zn (1.4 eq),$ $CH_2I_2 (1.4 eq),$ dry air, PhMe, 55°	H H H (30)	596
	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O		597
<	Et ₂ Zn (1.4 eq), CH ₂ I ₂ (1.4 eq), dry air, PhMe, 55°		596
	Zn/Cu, $CH_2I_2$ , Et ₂ O, reflux	(78)	598
	Zn/Ag, CH ₂ I ₂ , Et ₂ O	(63)	592
	$Z_{11}/C_{11}$ , $CH_2I_2$ , $Et_2O/DME$	(71)	599, 600
	${ m Et_2Zn}$ (1.4 eq), CH ₂ I ₂ (1.4 cq), dry air, PhMe, 55°	$H \rightarrow OH \qquad (81)$	596
	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	(99) Et	601
	$Et_2Zn, CH_2I_2, Et_2O, rt$	(12) + several other products	602
	Zn/Ag, CH ₂ I ₂ , Et ₂ O	(52)	592
	$Et_2Zn, CH_2I_2$	O H (25-30)	603, 604
	Zn/Cu, CH ₂ I ₂ . Et ₂ O, reflux	0 (59)	605
/	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O	$ \begin{array}{c} H \\ 0 \\ H \end{array} $ (87)	597
	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	Ac0 (52)	605
	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	(82)	606
	Zn/Cu, CH ₂ Br ₂ , Et ₂ O, 45°, sonication	(50)	270

TABLE V. CYCLOPROPANATION OF exo-METHYLENE CONTAINING COMPOUNDS (Continued)

Лон

Ĥ

=

=

.

A

==

ó

==

H

Ĥ

AcO_____

**=**0

ò

Э---ОН

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	$Zn/Cu, CH_2Br_2,$	" (67)	41
	AcCl (0.02 eq). Et ₂ O Zn/Cu. CH ₂ X ₂ , promoter, Et ₂ O	$\begin{array}{c c} \hline Promoter & X & (\%) \\ \hline TiCl_4 & Br & (77) \\ ultrasound & Br & (50) \\ \hline TiCl_4 & I & (65) \\ \end{array}$	43
X	Zn/Cu. CH ₂ I ₂ , Et ₂ O, reflux	(85)	605
	$Zn/Cu, CH_2I_2,$	" (74)	45
	ultrasound, DME, reflux R ₃ Al (1.2 eq), CH ₂ I ₂ (1.2 eq), solvent, rt	$\frac{R}{Me} = \frac{Solvent}{CH_2Cl_2} = \frac{(\%)}{(46)}$ $\frac{Me}{i \cdot Bu} = \frac{n \cdot hexane}{n \cdot hexane} = \frac{(96)}{(73)}$	59
OH	Zn/Cu, CH ₂ I ₂	(75) + (8)	480
OH OH	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	(88) OH	595
	$E_{12}Zn (1.4 eq),$ $CH_2I_2 (1.4 eq),$ dry air, PhMe, 55°	HO H H (76)	603, 604
	Zn/Ag, CH ₂ I ₂ , Et ₂ O		404
H O OH	Et ₂ Zn, CH ₂ I ₂ , CH ₂ Cl ₂	H 0' (69)	607
r-Bu	Zn/Cu, CH ₂ I ₂	r-Bu ()	608
	Zn/Ag, CH ₂ I ₂ . Et ₂ O, reflux	(83)	488
	Zn/Ag, CH ₂ I ₂ , Et ₂ O	I + II (27) I:II = 5.3:1	609
OTBDMS	Et ₂ Zn (0.8 eq), CH ₂ I ₂ (1.25 eq), Et ₂ O, reflux	OTBDMS (93)	575
CO ₂ Me	Et ₂ Zn (10 eq), CH ₂ I ₂ (10 eq), CH ₂ CI ₂ , -80° to rt	$O$ $CO_2Me$ $(84)$	611

## TABLE V. CYCLOPROPANATION OF exo-METHYLENE CONTAINING COMPOUNDS (Continued)

TABLE V. CYCLO	PROPANATION OF exo-METHY	LENE CONTAINING COMPOUNDS (Continued)	
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Zn/Ag, CH ₂ I ₂ , Et ₂ O	(63)	609
J.L.	Zn/Ag, CH ₂ I ₂	(70)	612
	Zn/Ag, CH ₂ I ₂ , El ₂ O	(82)	609
Å	Zn/Ag, CH ₂ I ₂ , Et ₂ O	(82)	609
o	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	(78)	613, 614
OH H H O H H H H H H H H H H	Et ₂ Zn (1.8 eq), CH ₂ I ₂ (5.5 eq), Et ₂ O	$\begin{array}{c} OH \\ H \\ H \\ H \\ O \\ H \\ O \\ H \\ H \\ O \\ H \\ H$	615
	Et ₂ Zn (1.2 eq), CH ₂ I ₂ (1.3 eq), C ₆ H ₆	$ \begin{array}{c} H \\ H \\ H \\ H \\ H \end{array} $ (87)	616, 617
$c_{13}$	Zn/Cu, CH2l2, Et2O, reflux		618
CO ₂ Me	Zn/Cu, CH2I2, Et2O, reflux	CO ₂ Me H	5
OH CO ₂ Me	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	(-)	619
Ph O O O O H OMe	Et ₂ Zn, CH ₂ I ₂ , PhMe, 60°	$\begin{array}{c} Ph & O \\ O \\ H \\ H \end{array} \\ OMe \end{array} $ (94)	620
H	Zn/Cu, CH ₂ I ₂	(55) H	621
-OH SO ₂ Me	Et ₂ Zn, CH ₂ I ₂ , dry air, PhMe, 50-55°	() OH SO ₂ Me	622

TABLE V CYCLOPROPANATION OF ero-METHYLEN	E CONTAINING COMPOLINDS (Continued
TABLE TO CICLO ROLANATION OF CO-METHICLEN	E CONTAINING COMPOUNDS (COMPARED

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
HO HO H	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	HO, MO, HO, HO, HO, HO, HO, HO, HO, HO, HO, H	623
	Zn/Cu, CH ₂ I ₂		624
	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	" ()	625
	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O, reflux	(47)	577
CO ₂ Me	Et ₂ Zn (5 eq), CH ₂ I ₂ (20 eq), CH ₂ CI ₂	(48)	626
OMe	Zn/Cu, CH2I2, Et20/DME, 40°	OMe (44)	627
	Fi2Zn, CH2l2	$\langle \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	628
	$Et_2Zn, CH_2l_2, O_2 \text{ (cat.)},$ PhMe, 50°	(74)	632
	$Et_2Zn, CH_2I_2,$ PhMe	(>70)	630
H	Et ₂ Zn (1.4 eq), CH ₂ I ₂ (1.4 eq), dry air, PhMe, 60°	(99)	631
но	$Et_2Zn, CH_2I_2, O_2 \ (cat.), \\ PhMe, 50^\circ$	HO (75)	629, 632
HO	$E_{t_2}Zn, CH_2I_2.$ $C_6H_6, 68^\circ. O_2$	HO HO (77)	633
	Zn/Ag, CH2l2, Et2O, reflux	(80)	634, 635

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₅	Br H O H OTHP	Zn/Ag, CH ₂ I ₂ , Et ₂ O, 40-50°	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	HP 636
I	HO MeO ₂ S' SO ₂ Me	$Et_2Zn, CH_2I_2,$ $O_2$ (cat.), PhMe	$\begin{array}{c} HO \\ HO \\ O \\ MeO_2S \end{array} $ (82)	637
(	H OH	Et ₂ Zn (2.4 eq), CH ₂ I ₂ (3 eq), air. C ₆ H ₆ , 0°	(91)	638
-		$Zn/Ag, CH_2I_2,$ $Et_2O$ , reflux	(88)	488
1	3c	Zn/Ag, $CH_2I_2$ , Et ₂ O, reflux	13 _C (72)	488
C ₁₆		Et ₂ Zn, CH ₂ I ₂		612
	CO ₂ Et	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	(67)	314
C ₁₇		Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	(45)	639
		$Zn(CH_2I)_2$ , $(CH_2CI)_2$	(37)	640
	Br OAc OMe	Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), (CH ₂ Cl) ₂ , 0°	OMe Br OAc OMe OMe	641
	HO.	$Et_2Zn, CH_2I_2, PhMe$	HO, (54)	642
		Zn/Ag, CH ₂ I ₂ , Et ₂ O	(50-70)	643
	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
-----------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------
	J.C.	EtZnl, CH ₂ I ₂ , Et ₂ O	(84)	644
	$\downarrow$	Zn/Ag, CH2I2, Et2O, reflux	(87)	635
C ₁₈		Zn(CH ₂ I) ₂ , (CH ₂ CI) ₂	(60)	640
	The second secon	"MCH ₂ X"	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	645
			$ \begin{array}{c} \hline Zn/Ag, CH_2I_2 & 0.0:100 \\ Zn/Ag, CH_2I_2, Et_2O & 25:21:29 \\ Et_2Zn, CH_2I_2, PhMe & 24:36:24 \\ \end{array} $	
C19	I			
	но	Et ₂ Zn (10 eq), CH ₂ l ₂ (11 eq), PhMe, reflux	HO (95)	646
	The second secon	EtZnl, CH ₂ I ₂ , Et ₂ O	(71)	647
C ₂₀		Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	(77)	648
	AcO H CO ₂ Me	Zn/Cu, CH ₂ I ₂ , Et ₂ O/DME	Aco $OC$ $H$ $CO_2Me$ $(-)$	649
	AcO H CO ₂ Me	Zn/Cu, CH2l2, Et2O, reflux	$AcO \qquad H \qquad (66)$	649
	T C C C C C C C C C C C C C C C C C C C	Zn/Ag, CH ₂ I ₂ , Et ₂ O	(65)	647

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
$\begin{array}{c} C_{20-28} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Zn/Cu, CH2I2, Et2O, reflux	$\begin{array}{c c} R^{1} & R^{2} & (\%) \\ \hline Mc & C_{8}H_{17} & (80) \\ Me & OH & (76) \\ Me & CHO & (90) \\ Me & O_{2}CCF_{3} & (62) \end{array}$	650
	Zn/Ag, CH2I2, Et2O	$C^{13}$ (92)	647
	Zn/Ag, CH2l2, Et2O, reflux	(36)	651
	Zn/Ag, CH2l2, Et2O, reflux	(38)	651
c ₂₂	Zn/Ag, CH ₂ I ₂ , Et ₂ O		647
	Zn/Ag, CD ₂ I ₂ , Et ₂ O	D (75)	647
$\begin{array}{c} \mathbf{C}_{23} \\ & & & \mathbf{C} \\ &$	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	(28)	651
	Z11/Cu, CH2I2, Et2O, reflux		650
C ₃₀ Ph Ph Ph Ph	Zn/Cu, $CH_2I_2$ , I ₂ (cat.), Et ₂ O	Ph Ph (62) Ph Ph	652

	TABLE VI. CYCLOPROPANAT	TON OF POLYENES	
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C4 OTMS	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	OTMS (75)	107, 555
	Zn/Ag, CH ₂ I ₂ (xs), Et ₂ O, reflux	OTMS (84)	107, 267
	$Et_2Zn, CH_2I_2$	()	392
	Zn, $CF_2Br_2$ , $I_2$ (cat.), THF, rt	F. (17)	74
$C_{4.8} \xrightarrow{R^{1}}_{R^{2}} \xrightarrow{R^{2}}_{R^{3}}$ $\xrightarrow{R^{1}}_{R^{2}} \xrightarrow{R^{3}}_{R^{3}}$ $\xrightarrow{R^{1}}_{H} \xrightarrow{R^{2}} \xrightarrow{R^{3}}_{R^{3}}$ $\xrightarrow{R^{1}}_{H} \xrightarrow{R^{2}} \xrightarrow{R^{3}}_{R^{3}}$ $\xrightarrow{R^{2}}_{R^{3}}$ $\xrightarrow{R^{2}}_{R^{3}}$ $\xrightarrow{R^{2}}_{R^{3}}$ $\xrightarrow{R^{2}}_{R^{3}}$ $\xrightarrow{R^{2}}_{R^{3}}$ $\xrightarrow{R^{2}}_{R^{3}}$ $\xrightarrow{R^{2}}_{R^{3}}$ $\xrightarrow{R^{2}}_{R^{3}}$ $\xrightarrow{R^{3}}_{R^{3}}$ $\xrightarrow$	Zn/Cu, CH ₂ I ₂ , Et ₂ O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	401
c _s	$Et_2Zn$ , $CH_2I_2$ , pentane	★ (−)	264
	Zn, CF ₂ Br ₂ , I ₂ (cat.), THF, rt	F (21)	74
OTMS	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	OTMS (80)	107, 555
	Zn/Ag, CH ₂ I ₂ (xs), Et ₂ O, reflux	OTMS (87)	107, 267
OTMS E:Z = 17:83	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	OTMS (70)	107, 555
	Zn/Ag, CH ₂ I ₂ (xs), Et ₂ O, reflux	OTMS (85)	107, 267
ОН	$Et_2Zn (6 eq), CH_2I_2 (6 eq),$ (CH ₂ Cl) ₂ , -10° to rt	ОН (87)	409
C ₆ OMe OMe OMe	Zn/Ag, CH ₂ I ₂ , Et ₂ O	$\begin{array}{c} OMe \\ OMe \\ OMe \\ OMe \end{array} + \begin{array}{c} OMe \\ OMe \\ OMe \end{array} + \begin{array}{c} OMe \\ OMe \\ OMe \end{array} + \begin{array}{c} OMe \\ OMe \\ OMe \\ OMe \end{array}$	266
MeO ₂ C CO ₂ Me	Zn/Ag, CH ₂ I ₂ , Et ₂ O	MeO ₂ C CO ₂ Me (55)	404
$i \cdot \Pr O_2 C$ $i \cdot \Pr O_2 C$ O O O O O O O O O O	Et ₂ Zn, CH ₂ I ₂ , (CH ₂ Cl) ₂ , -20°	i-PrO ₂ C i-PrO ₂ C O O O O O O O O O O	162, 653

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
отмs		OTMS ⊳ I	
	Zn/Ag, CH ₂ I ₂ ,	(85)	107.
	$Et_2O$ , reflux		350
		OTMS	
	Zn/Ag, CH ₂ I ₂ (xs),	(85)	107,
	Et ₂ O, rcflux		267
	Zn/Cu, CH ₂ I ₂	()	268
$\sim$		~ -	
	Zn, CF ₂ Br ₂ , I ₂ (cat.), THF, rt	$\mathbf{F}^{\mathbf{r}} $	/4
OMe	Zn/Cu, CH ₂ I ₂ ,	OMe (80)	564
	Et ₂ O/DME, reflux		
	HO ₂ C CO ₂ H	$TRDPS() \qquad \qquad$	654
1BDP30 OH	но он	ОН	
	Et ₂ Zn, CH ₂ I ₂ ,		
	(CH ₂ Cl) ₂ , -20°		
∕~∕ _{OH}	Sm (4 eq), $CH_2I_2$ ,	OH (91) mono.bis = >100:1	418
	1HF, -/8° to ft		
	$Zn (xs), CH_2I_2,$	" (51)	419
	Et ₂ 0, 55		120
	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	" (74)	420
	Me ₂ NOC CONMe	2	
HO	0,0	HO OH (89)	192,
	`B´ I Bu		655
	$Zn(CH_2I)_2$ ,		
	CH ₂ Cl ₂ , -15 to 25°		
¹ R OH	$Et_2Zn, CH_2I_2,$	R OH + R OH	155
	$(Cn_2Cl)_2, -20$	I II R (%) I:II	
		Me (68) 5:1	
		TBDPSOCH ₂ (72) >95:5 <i>i</i> -Pr (72) 6:1	
		Ph (80) 5:1	
		C ₆ H ₁₁ (78) 7:1	
			070
	$Zn/Cu, CH_2l_2, Et_2O$		+ 279
_		✓ I (42) (1) (4)	
		$\sim$ $\sim$	-
		✓ ↓ +	+
		$\bigvee$ $\bigvee$ $\bigvee$	
		(8) (5) (20)	
		$\checkmark$ $\checkmark$ , $\checkmark$ $\checkmark$	
		$\bigvee \qquad \bigvee \qquad \qquad$	
		(9) (7)	

RIE VI CVCI OPROPANATION OF POI VENES (Continued) т

Zn/Cu, CH₂I₂, Et₂O, reflux

I (12-14)

280

194

	TABLE VI. CYCLOPROPANATIO	N OF POLYENES (Continued)	
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Zn/Cu, CH ₂ I ₂ . Et ₂ O		281
	Zn, CF2Br2, I2 (cat.), THF, π	H = H = H = H = H = H = H = H = H = H =	74
	$Zn/Cu, CH_2I_2.$ $Et_2O, reflux$	TMSOOTMS (70)	567
X _n SmO	Sm, CH ₂ I ₂ , THF, 50°	HO OH (22)	110, 552
отмя	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	(70)	107, 555
	Zn/Ag, CH ₂ l ₂ (xs), Et ₂ O, reflux	OTMS (75)	107, 267
OTMS	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	OTMS ()	107, 350
	Zn/Ag, CH ₂ I ₂ (xs), Et ₂ O, reflux	OTMS (90)	107, 267
OMe	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	OMe (64)	359
OTMS	Et ₂ Zn, CH ₂ l ₂ , Et ₂ O	OTMS (82)	360
ОН	Zn/Ag, CD ₂ I ₂ , Et ₂ O, reflux	D = D = D = D = D = D = D = D = D = D =	656
OH	Zn/Cu, $CH_2I_2$ , $I_2$ (cat.), $Et_2O$ , reflux	OH (73)	434
OH H	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux; repeated once	OH (43)	435
C ₈	EtZnI, $CH_2I_2$ , Et ₂ O, reflux	I + () I:II = 55:4	289

TABLI	E VI. CYCLOPROPANATION	OF POLYENES (Continued)	Dafa
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	EtZnl, $CH_2I_2$ , Et ₂ O, reflux	(23) + (28)	289
MeO	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	(82) MeO	290
CO ₂ Et	Zn/Cu, $CH_2I_2$ , $I_2$ (cat.), Et ₂ O, reflux	(88) CO ₂ Ft	570
+ I:II = 6 : 4	$Et_2Zn, CH_2I_2, 50^\circ$	(36) + other products	292
»—————————————————————————————————————	$Zn/Ag, CH_2I_2$	$ \begin{array}{c} \hline \\ \hline $	444
TMSO	Zn/Cu, CH ₂ I ₂	TMSO OTMS ()	590
TMSO	Et ₂ Zn (6 eq), CH ₂ I ₂ (10 eq), Et ₂ O, O ₂	(>77) >15:1 TMSO	132
	Conditions		150, 657
		$\begin{tabular}{c} Conditions (\%) \\ \hline Et_2Zn, CH_2I_2, CH_2CI_2, -25 to 0^\circ (75) \\ Zn/Cu, CH_2I_2, Et_2O, 35^\circ (61) \end{tabular}$	
ОТМЯ	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux		107, 555
	Zn/Ag. $CH_2I_2$ (xs), Et ₂ O, reflux	OTMS (85)	107, 267
OTMS	Zn/Ag. CH2I2. Et2O, reflux	(88)	107, 350
	Zn/Ag, CH ₂ I ₂ (xs), Et ₂ O, reflux	отмs , (78)	107, 267
OTMS	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O	OTMS (78)	360
OTMS	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O	OTMS (55)	360

## TABLE VI CYCLOPROPANATION OF POLYENES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Zn/Cu, CH ₂ J ₂	()	568
	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	" (65)	591
	Zn anode, 2e-, CH ₂ Br ₂ , ZnBr ₂ present initially. CH ₂ Cl ₂ /DMF (9:1)	(66)	70
	Zn/Cu, CH ₂ I ₂	()	293
	Et ₂ Zn, CH ₂ I ₂ , PhMe, rt	I (7-13) + II (7-45)	446
	Conditions	1 + 11 +	104
		$\begin{tabular}{ c c c c c } \hline $\mathbf{L}(\%)$ & $\mathbf{H}(\%)$ & $\mathbf{H}(\%)$ \\ \hline $\mathbf{Zn}/\mathrm{Cu}, \mathrm{CH}_2\mathrm{I}_2, \mathrm{AcCl}, \mathrm{Et}_2\mathrm{O}$ & $(9)$ & $(18)$ & $(1)$ \\ \hline $\mathbf{Zn}/\mathrm{Cu}, \mathrm{CH}_3\mathrm{Br}_2, \mathrm{AcCl}, \mathrm{Et}_2\mathrm{O}$ & $(2)$ & $(4)$ & $(0)$ \\ \hline $\mathrm{Et}_2\mathrm{Zn}, \mathrm{CH}_2\mathrm{I}_2, \mathrm{PhMe}$ & $(5)$ & $(34)$ & $(1)$ \\ \hline $\mathrm{Et}_3\mathrm{Al}, \mathrm{CH}_2\mathrm{I}_2, \mathrm{PhMe}/\mathrm{CH}_2\mathrm{Cl}_2$ & $(13)$ & $(39)$ & $(8)$ \\ \hline \end{tabular}$	
ОН	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	-OH (31) major	658
ОН	EtZnl, CH ₂ I ₂ , Et ₂ O, reflux	OH (30)	656
	Et ₂ Zn, CH ₂ I ₂ , (CH ₂ CI) ₂ , -20°	0 (89) only product	149
	Conditions	$\begin{array}{c c} & & Conditions & (\%) \\ \hline \\ 0 & & E_{t_2}Zn, CH_2I_2, CH_2CI_2, -25^{\circ} & (63) \\ \hline \\ & & Zn/Cu, CH_2I_2, E_{t_2}O, 35^{\circ} & (60) \end{array}$	150. 657
но	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	НО ОН (50)	593
	Zn/Cu, CH ₂ I ₂	()	448
OH	$Zn/Cu$ , $CH_2I_2$ , $I_2$ (cat.), Et ₂ O, reflux	OH (48)	659
Me Me Me Si Si Me	$Zn/Cu, CH_2I_2$	$\bigvee_{i=1}^{Me} \bigvee_{i=1}^{Me} \bigvee_{i=1}^{Me} We $ (83)	379

······································	TABLE VI. CYCLOPROPANATION	OF POLIENES (Continuea)	
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
C8-10 R R	Zn/Cu. CH2l2. AcCl (cat.), solvent	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	104
$C_{8-12}$ $R$	Sm/Hg, CH2ICl, THF, –50° ւօ rt, 2 h	$\begin{array}{c c} & R & (\%) & dr \\ \hline & Et & (71) & >96:4 \\ Ph & (81) & >96:4 \end{array}$	660
c, o	Zn/Cu, $CH_2I_2$ , $I_2$ (cat.), Et ₂ O, reflux	(8) + (38)	295
	Zn/Cu, $CH_2I_2$ , $I_2$ (cat.), Et ₂ O, reflux	<b>0 0 1</b> (35) + <b>1</b> (11)	295
	Zn/Cu, CH ₂ I ₂	I (35) major product	296
	Et ₂ Zn, CH ₂ I ₂	$\begin{array}{c} \downarrow \\ \downarrow \\ I (10) \end{array} + \begin{array}{c} \downarrow \\ I (53) \end{array} + \begin{array}{c} \downarrow \\ \downarrow \\ I (22) \end{array}$	297
	Zn source, CH ₂ I ₂	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	298
	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	(68)	299
	Zn/Cu, CH2I2, I2 (cat.), Et2O, reflux	$(\rightarrow)$	299
	Zn/Cu, CH ₂ I ₂ , 45°	(~50)	300
~~ U	$Zn/Ag, CH_2I_2,$ $Et_2O, reflux$	" (70)	300
CO-Et	Zn/Cu, CH2I2, I2 (cat.), Et2O, reflux	(>99) CO ₂ Et	570

در

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
MeO.	Zrı/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	MeO (86)	366
À	Zn/Ag, CH ₂ I ₂ , Et ₂ O	(53)	592
	$Et_2Zn$ , $CH_2I_2$ , $Et_2O$ , reflux	" (74)	302
A	Zπ/Cu, CH2I2, DME, ultrasound	(23) I:Π = 1:2	594
OTMS	Zn/Ag, CH ₂ I ₂ . Et ₂ O, reflux	OTMS (80)	107, 350
	Zn/Ag, CH ₂ I ₂ (xs), Et ₂ O, reflux	OTMS (68)	107, 267
	Sml ₂ , CH ₂ I ₂ , THF	OH (62)	88, 110
	Zn/Cu, CH ₂ I ₂		293
RO	Me ₂ NOC B B B Zn(CH ₂ D) ₂ •DME (2.5 eq), CH ₂ Cl ₂ , -10°	RO         OH           R         (%)         de (%)         mono:bis           Bn         (78)         >90         8:1           TIPS         (85)         90         8:1	187 187, 189
но	Et ₂ Zn (2.5 eq), CH ₂ I ₂ (5 eq), CH ₂ CI ₂ , -5° to rt	НО ОН I + (66) I:II:III = НО ОН II +	- 661

TABLE VI CYCLOPROPANATION OF POLYENES (Continued)

но он ш

	TABLE VI. CYCLOPROPANATION	OF POLYENES (Continued)		D +f-
Substrate	Conditions	Product(s) and Yield	(s) (%)	Kets.
	$Me_2NOC$ $CONMe_2$ $O$ $Bu$ $Zn(CH_2l)_2,$ $CH_2Cl_2, 0^{\circ} \text{ to rt}$	нологи	(83)	661
	$\begin{array}{c} Me_2NOC \\ (2.2 eq) O \\ Bu \\ Zn(CH_2l)_2 (4.4 eq), \\ DME/CH_2Cl_2, 0^{\circ} \end{array}$	" (90) 10:1 mixture of diastereomers		194
	Me ₂ NOC OB Bu Zn(CH ₂ I) ₂ , CH ₂ Cl ₂ , 0° to rt	НО	(65)	661
но	Me ₂ NOC CONMe ₂ CONMe ₂ Bu Zn(CH ₂ ) ₂ •DME, MS 4Å, CH ₂ Cl ₂ , -40 to 25°	но	(89)	193, 662
	Me ₂ NOC, CONMe ₂ O, B, O Bu $Zn(CH_2I)_2$ DME, $CH_2CI_2, -78^{\circ}$ to rt	но	(90)	663
HO N Ph	$Z_n/Ag$ , $CH_2I_2$ , Et ₂ O, reflux	HO NHE S Ph	(76) 15:1	261, 664
	$Z_{th}/Cu$ , $CH_2I_2$ , $Et_2O$		(35)	209
OSmX _n OSmX _n	Sm, CH ₂ I ₂ , THF, 50°	OH (21) OH		110, 552
Fe(CO) ₃	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	Fe(CO) ₃ (23)		306, 307
	Zn/Cu, CD ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	D Fe(CO)3		306, 307

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	$Zn/Ag$ , $CH_2I_2$ (3 eq), $Et_2O$	(19) + (5) +	310
		(41) + (4)	÷
		(22) + (5)	
	Zn source, CH ₂ I ₂		⁷ 298
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
°	Zn/Cu, CH ₂ I ₂	(small amount)	295
OTMS	Zn/Ag, CH ₂ I ₂ , Et ₂ Ο, τι	(85) OTMS	665
H	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O, rt	(12) + several other products	602
	Zn/Ag, CH ₂ I ₂ , DME, reflux	(-) + (-) + (-)	666
	Zn/Ag, CH ₂ l ₂ , DME, reflux	(-) + (-) + (-)	7 666
H OH	Zn/Cu, CH ₂ I ₂	HOH ()	667
OH H	$Zn/Cu$ , $CH_2I_2$	OH H H H ()	667
	Zn/Cu, CH2I2, Et2O	TMSO-OTMS (13)	668
A	Zn/Ag, CH ₂ I ₂ , Et ₂ O	(52)	592

TABLE VI. CYCLOPROPANATION OF POLYENES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs
ОН	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	I $OH$ $+$ $II$ $OH$ $I:II = 18:1$	595
OTMS OTHP	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O, reflux	OTMS (87) [10:1] OTHP	669
CO ₂ Et	Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), hexane, -20°(7 h); 20°(10 h)	$CO_2Et$ (61) 88% de	160
	Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), hexane, –20°(7 h); 20°(10 h)	$CO_2Et$ (50) 85% de	160
OTMS	$Et_2Zn, CH_2I_2, C_6H_6$	OTMS (>22) Bu-n	670
OTMS	$Et_2Zn, CH_2I_2, Et_2O$	OTMS (84)	365
OTMS	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	OTMS ()	35
i-Pr O OH	Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), Et ₂ O, rt	OH (82) >99% de	17
BnO BnO BnO OH	Et ₂ Zn (5 eq), CH ₂ ICl (2 eq)	BnO BnO OH (77) 97% de	18
BnO BnO BnO OH	Et ₂ Zn (5 eq), CH ₂ ICI (2 eq)	$BnO \rightarrow O \\BnO \rightarrow O \\OH $ (80) 99% de	18
CO ₂ Et	Zn/Hg, TMSCl, HC(OEt) ₃ , Et ₂ O, reflux	CO ₂ Ei (44) 2:1	71
	Conditions		1
		$\begin{tabular}{ c c c c c } \hline $\mathbf{L}$ (middle middle mid$	

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Zn/Cu, CH2I2, AcCl (cat.), solvent	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	104
	$Zn/Cu, CH_2I_2$	Several other () + cyclopropanation products	479
Si	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	Si (55)	313
OH	"MCH ₂ X"	$ \begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \hline & & & &$	59
	<i>i</i> -Bu ₃ Al, CH ₂ l ₂ , CH ₂ Cl ₂ , п	1 (92-96)	258
	i-Bu₃Al, TCHI₂, CHCl₃, π	т	482
ОН	$Me_2NOC$ $CONMe_2$ $O$ $Bu$ $Zn(CH_2I)_2 \bullet DME (3.0 eq),$ $CH_2CI_2, -10^{\circ}$	OH (65) 65% de mono:bis = 19:1	187, 189
ОН	$Me_2NOC \xrightarrow{CONMe_2} \\ O \\ B \\ Bu \\ Zn(CH_2l)_2 \bullet DME (2.5 eq), \\ CH_2CL = 10^{\circ}$	OH (70) 65% de mono:bis = 19:1	187, 189
	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	(26) + (7)	481
СНО	CIMe2Si SiMe2CI Zn/Hg	(57)	112
Сно	CIMe2Si SiMe2CI Zn/Hg	(66) Н (66)	112
ЮН	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	(83)	671

TABLE VI. CYCLOPROPANATION OF POLYEN'ES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Sm/Hg, CH ₂ I ₂ ,	" (58)	672
OH	Zn/Cu, CH ₂ I ₂	(75) + (8)	480
BnO BnO BnO OH	Et ₂ Zn (5 eq), CH ₂ ICl (2 eq), PhMe, $-35$ to 0°	BnO BnO OH OH S00 S00 S00 S00 S00 S00 S00 S00 S00 S0	189
ОН	Zn anode, 2e-, CH ₂ Br ₂ , ZnBr ₂ present initially, CH ₂ Cl ₂ /DMF (9:1)	ОН (70)	70
	Zn*, CH2I2, DME/Et2O	" (77)	44
	Sm (5 eq), $CH_2I_2$ (5 eq), TMSCl (0.2 eq), THF, $-78^{\circ}$ to rt	" (97)	63
	Sm source (xs), CH ₂ IX, THF, -78° to rt	Sm source         X         (%)           "         Sm/Hg         I         (89)           Sm/Hg         Cl         (97)	57, 58 58
	"MCH ₂ X"	$\begin{array}{c} & & \\ I \\ & & \\ I \\ & \\ I \\ I \\ I \\ I \\$	+ 59 59 58
	Me2NOC O B B B u Zn(CH ₂ I) ₂ ·DME (1.6 eq),	OH (87) 93% ee mono:bis = >20:1	187, 189
ОН	CH ₂ Cl ₂ , 0° to rt Sm source (xs), CH ₂ IX, THF, -78° to rt	Sm source         X         (%)           Sm/Hg         I         (99)           OH         Sm/Hg         Cl         (97)           Sml2         Cl         (99)	57, 58 58 58
Fe(CO)3	Zn/Cu, $CH_2I_2$ , $I_2$ (cat.), Et ₂ O, reflux	Fe(CO) ₃ (42)	306, 307
	Zn/Cu, CD ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	$D \xrightarrow{D} D \xrightarrow{D} $	306, 307
OTMS OTMS	Et ₂ Zn (3 eq), CH ₂ I ₂ (3 eq), Et ₂ O/PhMe, reflux	(40)	369

TABLE VI. CYCLOPROPANATION OF POLYENES (Continued)

. .

215

C11

TABLE VI. CYCLOPROPANATION OF POLYENES			OF POLYENES (Continued)	
	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Ph	$Me_2NOC CONMe_2$ $Bu$ $CONMe_2$ $Bu$ $Ch_2(1)_2 \bullet DME (3 eq),$ $CH_2(1)_2 \bullet -10^\circ$	Ph OH (84) 91% ee mono:bis = >20:1	187, 189
		Zn/Ag, CH ₂ l ₂ , DME, 60°	(9) + (37)	673
		Zn/Ag, CH ₂ I ₂	(32) + (15) +	316
216	OTBDMS	Et ₂ Zn, CH ₂ I ₂ , PhMe, heat	(13) OTBDMS H (75)	108
	OTBDMS	Et ₂ Zn (1.2 eq), CH ₂ I ₂ (1.2 eq), Et ₂ O	OTBDMS OTMS (82)	674
	OTMS	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O	OTMS (87)	365
		EtZnl, CH ₂ I ₂ , Et ₂ O	HO TMS (81) OMe	438
	ОН	Sm/Hg (xs), CH2IX, THF, -78° to rt	$\begin{array}{c} OH \\ \hline Cl \\ (99) \\ 200:1 \\ \hline 1 \\ (98) \\ 50:1 \\ \end{array}$	58
	OH	Sm/Hg (xs), CH ₂ IX, THF, -78° to rt	$\begin{array}{c} OH \\ OH \\ I \\ $	58
217	OTMS	Et ₂ Zn, CH ₂ l ₂ , Et ₂ O	OTMS R (%) H (>72) Ph (>48)	360
	C ₁₂	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O/C ₆ H ₆ , reflux	(7) + (30) + (1)	319
		Zn/Cu, CH ₂ I ₂	I(<1) + II(23) + IV(5) + V(5)	320

I ABLt Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Zn/Ag, CH2I2, Et2O	I + П (27) I:II = 5.3:1	609
CO ₂ R	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	323
	Zn/Cu, CH ₂ I ₂	(13)	497
	Zn/Ag, CH ₂ I ₂	(70)	612
ОН	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	OH (30)	323
но	$Me_2NOC \qquad CONMe_2 \\ O \\ B \\ Bu \\ Bu$	но ОН (100)	162, 675
	Zn(CH ₂ I) ₂ , CH ₂ Cl ₂ , 0 to 25° or: Zn(CH ₂ I) ₂ , CH ₂ Cl ₂ /DME, $-15$ to 25°	" (100)	162, 653
	$Me_2NOC, CONMe_2$ $OB_{I}$ $Bu$ $Zn(CH_2I)_2, CIL (CIL DME_1) = 15 to 25^{\circ}$	но ОН (93)	162, 192, 653, 655
	or: Zn(CH ₂ L) ₂ , CH ₂ Cl ₂ , 0 to 25°	" (94)	162, 192, 653, 675
$( \downarrow )_{3}^{N}$	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	$\begin{pmatrix} & & \\ & & \end{pmatrix}_{3}^{N}$ (36)	498
$C_{13}$ $C_{O}(\eta^5 - C_5 H_5)$	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	(19)	306, 307
Ph	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O	Ph (59)	360
Ph	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O	OTMS (88) Ph	360
	Zn/Cu, CH2i2, Et2O, reflux	$\begin{array}{c} & & \\ & & \\ & & \\ & H \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ $	618









]	FABLE VI. CYCLOPROPANATION	N OF POLYENES (Continued)	163
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	EtZnI, CH ₂ I ₂ , Et ₂ O, reflux	(84)	644
	Zn(CH ₂ l) ₂ , (CH ₂ Cl) ₂	(60)	640
OEt O CO ₂ Et	Et ₂ Zn. CH ₂ I ₂	H $OEt$ $(-)$	133
OH MeO	Zn/Cu, CH ₂ I ₂ , DME	OH (>71) MeO	682
	Zn. $CH_2I_2$ , sonication, THF	" (80)	683
TBDMSO	Et ₂ Zn, CH ₂ ICl, (CH ₂ Cl) ₂ , $0^{\circ}$	TBDMSO- H H OMc (>99)	109
TBDMSO		TBDMSO	
t-Bu t-Bu t-Bu O t-Bu O O Ph	Et ₂ Zn, CH ₂ lCl, PhMe, 0°	r-Bu r-Bu HO HO Ph	684
J.C.	"MCH ₂ X"		645
HO		$\frac{MCH_{2}X}{Zn/Ag, CH_{2}I_{2}} \frac{(\% I:\% III:\% III)}{0.0:100}$ $Zn/Ag, CH_{2}I_{2} 0.0:100$ $Zn/Ag, CH_{2}I_{2}, Et_{2}O 25:21:29$ $Et_{2}Zn, CH_{2}I_{2}, PhMe 24:36:24$ $HO \longrightarrow OTBDMS (90)$	192, 655
4	Bu Zn(CH ₂ I) ₂ , CH ₂ Cl ₂ /DME, -40°	4	

 $\label{eq:ch2l} \begin{array}{l} Zn(CH_2I)_2, \\ CH_2Cl_2/DME, -15 \text{ to } 25^\circ \end{array}$ 

	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	M5 0 Me	Zn/Cu, CH ₂ I ₂ , ultrasound, DME, 85-95°	(57)	375
	M ₄ OMe	Zn/Cu, CH ₂ I ₂ , ultrasound, DME, reflux	1 (97)	45
		Et ₂ Zn (38 eq), CH ₂ I ₂ (30 eq), C ₆ H ₆ , 60°	(91)	336
C ₁₈₋₂₈	$ \begin{array}{c} {}^{8} \text{ TMSO} & \text{OTMS} \\ ( )_{n} \\ ( )_{n} \\ \text{TMSO} & \text{OTMS} \end{array} $	${ m Et}_2{ m Zn}$ (5 eq), ${ m CH}_2{ m I}_2$ (6 eq), ${ m C}_6{ m H}_6$ , reflux, 3 h	$\begin{array}{c ccccc} TMSO & OTMS & & \frac{n & (\%)}{7 & (>33)} \\ (& & & \\ (& & & \\ (& & & \\ n & & & \\ (& & & \\ n & & & \\ (& & & \\ n & & & \\ (& & & \\ n & & & \\ (>33) \\ TMSO & OTMS & & 12 & (>35) \\ \end{array}$	376
C ₁₉	O H OH	i. n-BuLi (1 eq), Et ₂ O, -20° 2. IZnCH ₂ I (15 eq), Et ₂ O, rt	О О Н О ОН (66)	111
	CO ₂ Me OH	Zn/Cu, CH ₂ I ₂ , J ₂ (cat.), Et ₂ O, 40°	CO ₂ Me (65)	685
	$OSmX_n$	Sm, CH ₂ I ₂ , THF, 50°	$\mathcal{H}_{7} \mathcal{H}_{7} \mathcal{H}_{7} $ (70)	110, 552
	тмзо	Zn/Ag, CH2I2. Et2O, reflux	(85) ~1:1	81, 350
	тма	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	TMSO (-)	81, 350
C ₂₀		Zn/Cu, CH ₂ I ₂ , Et ₂ O, rt		544
	Aco H CO ₂ Me	Zn/Cu, CH ₂ I ₂ , Et ₂ O/DME	$AcO$ $H$ $CO_2Me$ $(-)$	649
	CI-CI-CO Et	Et ₂ Zn, CH ₂ I ₂	CI-CO-Fr (24)	133

## TABLE VI. CYCLOPROPANATION OF POLYENES (Continued)

]	TABLE VI. CYCLOPROPANATION	OF POLYENES (Continued)	
Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
T C	Zn/Ag, CH ₂ I ₂ , Et ₂ O	(65)	647
AcO OTBDMS	Zn/Ag, CH ₂ I ₂ , Et ₂ O	AcO (57)	686
TBDMSO Aco	Zn/Ag, CH ₂ I ₂ , Et ₂ O	TBDMSO (87)	686
СНО	ClMe ₂ Si SiMe ₂ Cl Zn/Hg		112
$TMSO_{(1)} (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)$	Et ₂ Zn (2 eq), CH ₂ I ₂ (2 eq), PhMe, 80°	$() = (CH_2)_{10}^{OTMS} $	377
C ₂₀₋₂₈	Zn/Cu, $CH_2I_2$ , Et ₂ O, reflux	$\begin{array}{c} R \\ R \\ C_{\delta}H_{17} \\ C$	650
C ₂₁ HO OTBDMS	Me ₂ NOC	HO (1), OTBDMS (72) +	662
но ОН	$\begin{array}{c} & \overset{i}{B}u\\ Zn(CH_2I)_2 \bullet DME, MS (4 \text{ Å}),\\ CH_2CI_2, -25^\circ \text{ to } rt\\ Me_2NOC, & & CONMe_2\\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	HO $(26)$ HO $(556)$	662
ТІРSO ()5 ОН	$Me_2NOC$ $CONMe_2$ $O$ $Bu$ $Bu$ $Zn(CH_2l)_2 \bullet DME (3 eq),$ $CH_2CL_2 = 10^{\circ}$	TIPSO $(1)_{5}$ OH (81) 90% de mono:bis = 9:1	187. 189
OH OH OH	Zn/Cu, CH ₂ I ₂	ОН -ОН (70)	687







TABLE VI. CYCLOPROPANATION OF POLYENES (Continued)

	Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
Br		Et ₂ Zn, CH ₂ ICl, (CH ₂ Cl) ₂ , 0°	OH (69)	93
-OZnEt		Zn/Cu, MeCHBr ₂ , Et ₂ O, reflux	н ОН (85) Н	68
р		$Zn/Cu, CD_2l_2$	$D \rightarrow H \rightarrow OH ()$	698
но		Zn/Cu, CH2Br2, Et2O, reflux	HO (64)	699
		Zinc reagent, CH ₂ X ₂ , Et ₂ O, reflux	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	66
Юн		Zn/Cu, MeCHBr ₂ , Et ₂ 0, reflux	H $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$	68

TABLE VII. CYCLOPROPANATION OF CYCLIC, CHIRAL ALKENES

	Substrate	Conditions		Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
		Zinc reagent, MeCHI ₂ , Et ₂ O, reflux	1 + 11	Zinc reagent         (%)         I:II           Zn/Cu (30 mesh)         (62)         78:22           Zn/Ag (30 mesh)         (78)         76:24           Zn/Cu (dust)         (71)         76:24           Et ₂ Zn         (60)         76:24           EtZn/I         (60)         76:24	66 66 120 66
		Zn/Cu, MeCHI ₂ , Et ₂ O, reflux	H	$ \begin{array}{c} H \\ H \end{array} \rightarrow H \\ \begin{array}{c} H \\ H \\ H \end{array} \rightarrow H \\ \begin{array}{c} H \\ H \\ H \end{array} \rightarrow H \\ \begin{array}{c} H \\ H \\ H \\ H \end{array} \rightarrow H \\ \begin{array}{c} H \\ H $	700 8:22
C ₅₋₈	OH ()n	Zn/Cu, CH ₂ I ₂	он () _n	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	700a
C ₆	OBn O O	Et ₂ Zn, CH ₂ I ₂		(5)	702
	он	Zn/Cu, CH ₂ I ₂	" (—) ОН		702
		Sm/Hg, CH ₂ I ₂ , THF, –78°		() Me H	703
		Zn/Cu, CH ₂ I ₂		()	702
	BnO NHAc	Et_2Zn (10 eq), $CH_2I_2$ (10 eq), $CH_2CI_2$ , 0° to rt	BnO	NHAc (50)	122
	Bno N Bz	$Et_2Zn~(10~eq),~CH_2I_2~(10~eq),$ $CH_2CI_2,~0^\circ$ to $rt$	BnO HO	Ac (<75)	122
	OR ¹	Et ₂ Zn, CH ₂ I ₂ , PhMe, $0^{\circ}$ to rt	OR ¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ti 126
	NHCOCF ₃	Zn/Cu, $CH_2I_2$ , $I_2$ (cat.), Et ₂ O, reflux		4COCF ₃ (50)	123
	Me NCOCF3	Zn/Cu, $CH_2I_2$ , $I_2$ (cat.), Et ₂ O, reflux		COCF3 (22)	123
	OBn	Et ₂ Zn (2 eq), CH ₂ IX (4 eq), (CH ₂ Cl) ₂	OBn H	$\frac{X}{Cl} = \frac{(\%)}{()} = \frac{dc}{78-85}$ I (99) >99.5	51
	BnOOH	Sm/Hg, CH ₂ ICl, THF, -78°	BnO	-OH (>99)	704, 705
	HO	Zn/Cu, CH2l2, Et2O	НО	(61)	706

TABLE VII. CYCLOPROPANATION OF CYCLIC, CHIRAL ALKENES (Continued)



Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
ОН	Zn/Cu, CH2Br2, Et2O, reflux	OH (29)	699
OH	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	(89)	707
OH	Zn anode, 2e-, CH ₂ BrCl, ZnBr ₂ present initially, CH ₂ Cl ₂ /DMF (9:1)	он (75)	70
	Zn/Cu, CH2Br2. Et2O, reflux	(13)	708
	$Et_2Zn$ (2 eq), CH ₂ IX (4 eq), (CH ₂ Cl) ₂	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51
	Sm (5 eq), CH ₂ I ₂ (5 eq), TMSCl (0.2 eq), THF, -78° to rt	" (87)	63
	Sm source, CH ₂ IX, THF, temp	" $\frac{\text{Sm source}}{\text{Sm/Hg (xs)}} X = \frac{\text{Temp}}{\text{I}} (\%) \frac{(\%)}{(92)} \frac{\text{syn:anti}}{200:1}$ $\text{Sm/Hg (xs)} C1 = -78^{\circ} \text{ to rt} (96) > 200:1$	57, 58 58
		Sml ₂ (xs) Cl -78° to π (89) >200:1	58
	EtZnl, MeCHI ₂ , Et ₂ O, reflux	H $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$	708
	Zn source, MeCHI ₂ , Et ₂ O	Zinc source         (%)         I:II           Zn/Cu         (84)         72:28           Et ₂ Zn (1 eq)         (79)         62:38           Et ₂ Zn (2 eq)         (60)         63:37	120 119 199
	Sm, MeCHI ₂ , THF, -78° to rt	I + II (100) I:II = 5:1	57, 58
Si McO Me	$Zn/Cu$ , $CH_2I_2$ , $Ei_2O$	I + II (-) $MeO Me MeO Me III (-)$	709
Si 1-BuO´ Me	$Zn/Cu$ , $CH_2I_2$ , $Et_2O$	r-BuO' Me	709
$C_{6.7}$ OH $R^1$	Et ₂ Zn, CH ₂ I ₂ , dry air, (CH ₂ Cl) ₂ , 0°	$\begin{array}{cccc} OH & R^1 & R^2 & (\%) \\ R^1 & H & H & (75-80) \\ R^2 & Me & H & (75-80) \\ \end{array}$	710
С ₆₋₁₇ ОН 	Et ₂ Zn, CH ₂ ICl, dry air, (CH ₂ Cl) ₂ , 0° to rt	$ \begin{array}{ccccc} OH & R & (\%) \\ \hline H & (67) \\ \hline R & Et & (98) \\ & n-C_4H_9 & (88) \end{array} $	711
		Bn         (60) $n-C_8H_{17}$ (60) $n-C_{11}H_{23}$ (66)	

TABLE VII. CYCLOPROPANATION OF CYCLIC, CHIRAL ALKENES (Continued)

243

د

	TABLE VII. CY	CLOPROPANATION OF CYC	LIC, CHIRAL ALKENES (Continued)	
	Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
C ₇	CI	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	(2) + (17) + (17) + (22)	282
	OAc	Zn/Cu, CH ₂ I ₂	OAc (21)	712
	OH CO ₂ Me	Sm/Hg, CH ₂ I ₂ , THF, -78°		703
	Aco OMe	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	AcO OTr (28)	713
	OH OH	Zn/Ag, CD ₂ I ₂ , Et ₂ O, reflux	D $D$ $D$ $D$ $D$ $D$ $D$ $D$ $D$ $D$	656
	NHCOCF ₃	Zn/Cu, $CH_2I_2$ , $I_2$ (cat.), Et ₂ O, reflux	NHCOCF ₃ (80)	123
	OH OTBDPS	Sm/Hg, MeCHI ₂ , THF, –78°	OH OTBDPS (45)	714. 715
		Zn/Cu, CH ₂ I ₂	()	449, 450
		Zn/Cu, CH ₂ l ₂	()	450
	OH CH	Zrı/Cu, CH2Br2, Et2O, reflux	OH (27)	708
	OH OH	Sm/Hg (xs), CH ₂ I ₂ , THF, $-78^{\circ}$ to rt	OH H (64) >30:1	58
		SmI ₂ (xs), CH ₂ ICl, THF, -78° to π	" (86) >30:1	58
		Zinc source, MeCHI ₂ , Et ₂ O	$ \begin{array}{c} OH \\ H \\ -H \end{array} + \begin{array}{c} OH \\ H \\ H \end{array} + H \\ H \end{array} + H $	
			Zinc source         (%)         I:II:III:IV           Zn/Cu         (74)         19:2:59:20	120

Et₂Zn Et₂Zn (1 eq) Et₂Zn (2 eq)

(72)

(74) (79) 20:10:49:21

0:49:0:51

0:52:0:48

120 119

119

Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
НО	$Et_2Zn, CH_2I_2, CH_2Cl_2, 0^\circ$	НО (66)	716, 717
R	Zn/Cu, CH2I2, Er2O, reflux	$\begin{array}{c} & \hline R & (-) & \hline R & syn:anti \\ \hline Me & 43:57 \\ COMe & 49:51 \\ CN & 45:55 \\ CO_2Me & 40:60 \\ CO_2Et^a & 35:65 \\ CO_2Bu-t & 47:53 \\ CH_2OH & 47:53 \end{array}$	718
$R^{2}$	Zn/Cu, CH ₂ I ₂	$\begin{array}{ccc} R^{1} & OH \\ R^{2} & (-) \\ R^{3} \end{array} \begin{pmatrix} R^{1} & R^{2} & R^{3} \\ H & Me & H \\ H & Me & H \\ H & Ph & H \\ H & H & Me \end{array}$	700a
MeO ₂ C	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	(53) MeO ₂ C	719
	Zn/Cu, $CH_2I_2$ , $I_2$ (cat.), $Et_2O$	HO,COBu-t (30) major	720
OH CO ₂ Bn	Sm/Hg, CH ₂ I ₂	OH (39) CO ₂ Bn	721
CO ₂ Me	Zn/Cu, $CH_2I_2$ , Et ₂ O, reflux	CO ₂ Me () 20:80	718
	Conditions		104
		$\begin{tabular}{ c c c c c c c } \hline Conditions & I (\%) & III (\%) & III (\%) \\ \hline Zn/Cu, CH_2I_2, AcCl, Et_2O & (9) & (18) & (1) \\ \hline Zn/Cu, CH_2Br_2, AcCl, Et_2O & (2) & (4) & (0) \\ Et_2Zn, CH_2I_2, PhMe & (5) & (34) & (1) \\ \hline Et_3Al, CH_2I_2, PhMe/CH_2Cl_2 & (13) & (39) & (8) \\ \hline \end{tabular}$	
он	$Et_2Zn$ , $CH_2I_2$ , PhMe, rt	I (7-13) + II (7-45) OH	446
	Zn/Ag, CH ₂ I ₂	(47-48)	303
	$Et_2Zn, CH_2I_2$	" (47-48) ОН ОН	303
	EtZnI, CH ₂ I ₂ , Et ₂ O, reflux	I + II (>99) I:II = 7:3	303

TABLE VII. CYCLOPROPANATION OF CYCLIC, CHIRAL ALKENES (Continued)

246

....

Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
ОН	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	.OH (31) major	658
ОН	EtZnl, CH ₂ I ₂ , Et ₂ O, reflux	OH (30)	656
ОН	Zn/Cu, CH ₂ I ₂	()	722
СССОН	Za/Cu, CH ₂ I ₂	()	722
ОН	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	(52)	723
NHCOCF ₃	$Zn/Cu$ , $CH_2I_2$ , $I_2$ (cal.), $Et_2O$ , reflux	NHCOCF ₃ (26)	123
ОН	Sm/Hg (xs), CH ₂ I ₂ , THF, -78° to rt	OH H (85) >40:1	58
	SmI ₂ , CH ₂ I ₂ , THF, -78° to rt	" (86) >40:1	58
	Zn/Cu, MeCHI ₂ , Et ₂ O, reflux	$\begin{array}{c} OH \\ H $	700
	Zinc source, MeCHl ₂ , Et ₂ O	H H H H	
		Zinc source         (%)         I:II           Zn/Cu         (88)         28:72           Et ₂ Zn (1 eq)         (60)         52:48           Et ₂ Zn (2 eq)         (76)         29:71	66 119 119
C ₉ OH	EtZnI, MeCHI ₂ , Et ₂ O, reflux	OH H (34)	65
MeO ₂ C	Zn/Cu, CH ₂ I ₂	$MeO_2C \xrightarrow{D D} D \xrightarrow{(-)}$	311
MeO ₂ C	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	(69) MeO ₂ C	290

## TABLE VII. CYCLOPROPANATION OF CYCLIC, CHIRAL ALKENES (Continued)



TABLE VII. CYCLOPROPANATION OF CYCLIC, CHIRAL ALKENES (Continued)



TABLE VII. CYCLOPROPANATION OF CYCLIC, CHIRAL ALKENES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
<b>A</b>	Zn/Cu, CH2I2, I2 (cat.), Et2O, reflux	(66)	295
MeO ₂ C	$Zn/Cu, CH_2I_2$	MeO ₂ C ()	311
СОрме	Zn/Cu, CH ₂ l ₂ , Et ₂ O, reflux	(90)	733
	Zn/Cu, CH ₂ Br ₂ , Et ₂ O, 45°, sonication	(40)	270
	Zn/Cu, CH2Br2, AcCl (0.02 eq), Et2O	" (53)	41
	Zn/Cu, CH ₂ X ₂ , promoter, Et ₂ O	$\begin{array}{c ccc} & \underline{Promoter} & X & (\%) \\ \hline & TiCl_4 & Br & (55) \\ ultrasound & Br & (40) \\ & TiCl_4 & I & (61) \end{array}$	43
×	Zn/Cu, CH ₂ I ₂ , Et ₂ O	(53)	734
	$Zn/Cu$ , $CH_2I_2$ , ultrasound, DME, reflux	" (67)	45
K	Zn*, CH ₂ I ₂ , DME/Et ₂ O	(54)	44
	Zn/Cu, CH2Br2, AcCl (0.02 eq), Et2O	(76)	41
	Zn/Cu, CH ₂ Br ₂ , AcCl (0.02 eq), Et ₂ O	(76)	41
	R3Al (x eq), CH2I2 (1.2 eq), solvent, rt	$\frac{R \times Solvent}{Me  1  CH_2Cl_2  (57)}$ $\frac{R \times Solvent}{Me  1  hexane  (80)}$ $\frac{n-Pr  1.2  hexane  (78)}{Re  1  hexane  (78)}$	59
H	Zn/Hg, TMSCl, HC(OMe) ₃ , Et ₂ O, reflux	MeO = H (65) syn:anti = 5:2	77
	Conditions		104
		$\begin{tabular}{ c c c c c } \hline Conditions & I (\%) & II (\%) & III (\%) \\ \hline Zn/Cu, CH_2I_2, AcCI, Et_2O & (30) & (8) & (36) \\ \hline Zn/Cu, CH_2Br_2, AcCI, Et_2O & (27) & (9) & (21) \\ \hline Et_2Zn, CH_2I_2, PhMe & (19) & (25) & (17) \\ \hline Et_3Al, CH_2I_2, PhMe/CH_2Cl_2 & (26) & (13) & (12) \\ \hline \end{tabular}$	

## TABLE VII. CYCLOPROPANATION OF CYCLIC, CHIRAL ALKENES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti Ret	fs.	
	Zn/Cu, CH ₂ I ₂ , AcCl (cat), solvent	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	
ОН	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	(96) 735 OH	5	
ЮН	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	(83) 67	1	
	Sm/Hg, $CH_2I_2$ , THE 78° to rt	" (58) 67.	2	
HO	Et ₂ Zn, CH ₂ I ₂	HO (95) 73	36	
TMS	Sm/Hg, CH2ICl, THF	OH TMS (67) 73 73	37, 38	
	$Et_2Zn, CH_2I_2, (CH_2CI)_2, \pi$		)6	
	Zn anode, 2e-, CH ₂ Br ₂ , ZnBr ₂ present initially, CH ₂ Cl ₂ /DMF (9:1)	(8) 70	0	
OTMS	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	I + II () 73 -OTMS -OTMS	33	
HO	$Et_2Zn$ , $CH_2I_2$ , $CH_2Cl_2$ , 0° to rt	HO OTBDMS (50) 72	39	
HO	Et ₂ Zn, CH ₂ I ₂ , CH ₂ Cl ₂ , 0° to rt	HO OTBOMS (53) 72	'39	
C ₁₁ CO ₂ Me	$EtZnI$ , $CH_2I_2$	(51) 4:1	25	
CO ₂ Me CO ₂ Me	Zn/Cu, CH ₂ I ₂ . Et ₂ O, reflux	CO ₂ Me (75) 74	40	
	Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
-----	-------------	---------------------------------------------------------------------------------------------	---------------------------------------------------------	---------------------
	он		ŎН	
		Et ₂ Zn (2 eq), CH ₂ I ₂ (2 eq), DME, reflux	(86)	741
		Zn/Ag, CH ₂ I ₂ , DME, 60°	(9) + (37)	673
	HO. CI	Zn/Ag, CH2l2, Et2O, reflux	HO. CI CI (63) + I (9)	742
N58		Et_2Zn (2 eq), $CH_2I_2$ (12 eq), $C_6H_6$ , rt		130, 743, 744
		Et ₂ Zn, CH ₂ I ₂		745
		$Et_2Zn$ (2 eq), $CH_2I_2$ (8 eq), $C_6H_6$	о он <b>А</b> о н <b>А</b> о н <b>А</b> о (73)	744
	OH	Zn/Ag, CH2l2, Et2O	OH (77)	671
	OH O	Zn/Cu, CH ₂ I ₂ , Et ₂ O	OH (96)	746
		Zn/Cu, CH2I2. Et2O, reflux	" (76)	747
050	OH OC	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	OH (78)	748
	С Н Н	Zn/Cu, CH ₂ l ₂ , Et ₂ O, rt	(97)	749
	ССССОН	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	(65)	750
	HO	Zn, CH ₂ I ₂ , DME sonication	(68)	714, 715

## TABLE VII. CYCLOPROPANATION OF CYCLIC, CHIRAL ALKENES (Continued)





## TABLE VII. CYCLOPROPANATION OF CYCLIC, CHIRAL ALKENES (Continued)

	TABLE VII. C	YCLOPROPANATION OF CYCI	JC, CHIRAL ALKENES (Continued)	
	Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
4-MeCe	OH H4	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	OH (>75) 4-MeC ₆ H ₄	767
r-BuO	OH	Zn/Cu, CH ₂ I ₂	(80) + (15)	679
но		Zn/Cu, CH ₂ I ₂ , Et ₂ O/DME, 65°	HO (81)	118
но	The second secon	Zn/Cu, CH ₂ I ₂ , Et ₂ O/DME	H0 (65)	752, 762
но	OAc	Zn/Ag, CH ₂ l ₂ , Et ₂ O, reflux	HO OAc (49)	768
H HÓ	$\overline{\langle}$	Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), (CH ₂ Cl) ₂ , 0°	H HO (81)	769
H HO	$\overline{\langle}$	Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), (CH ₂ Cl) ₂ , 0°	(78)	769
H	H	$Et_2Zn, CH_2I_3,$ (CH ₂ Cl) ₂ , 0°	(45) 1:1	726
C15	Ph	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	(46) Ph	328
MeO	MeO OMe	Zn/Cu, CH ₂ I ₂	MeO MeO MeO OH OH	680
A		Zn/Cu, CH ₂ I ₂ , DME, reflux	(40)	666
но		Et ₂ Zn (2 eq), CH ₂ ICl (4 eq), (CH ₂ Cl) ₂ , 0°	HO (91)	117

л

Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
OH CH	Zn/Cu, CH ₂ I ₂ , Et ₂ O	OH T + II +	330
OH		он (-) I:II:III:IV = 26:49:6:19 ОН	
	Zn/Ag, CH2l2, Et2O	(66) TMS OH	671, 770
MeO	Et ₂ Zn, CH ₂ ICl, (CH ₂ Cl) ₂ , 0°, 2 h	MeO H (85)	771
HO	Et ₂ Zn (7 eq), CH ₂ l ₂ (8 eq), C ₆ H ₆ , reflux	но- Н (34)	772
HOH	Et ₂ Zn (9 eq), CH ₂ I ₂ (10 eq), C ₆ H ₆ , rt	HO H (86)	772
HOHH	Et ₂ Zn (51 eq), CH ₂ I ₂ (56 eq) neat, rt	HO H (69)	772
	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	OH TMS (74)	671, 770
ТМЗ	Zn/Ag, CH2l2. Et2O, reflux	(84) TMS	671, 770
C ₁₇ TMS OH	${\rm Et}_2{\rm Zn}$ (5 eq), ${\rm CH}_2{\rm I}_2$ (4 eq), PhMe, 0°	TMS OH (93)	753
, OH H	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O/THF, reflux	(74)	366
,OH H	Sm/Hg, CH2ICI, _78° to rt	OH (88)	774

TABLE VII. CYCLOPROPANATION OF CYCLIC, CHIRAL ALKENES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
s OH MeO	Zn/Cu, CH ₂ I ₂ , DME	OH (>71)	682
он	Zn, CH ₂ I ₂ , sonication, THF	" (80) OH	683
R, R, MeO	$Zn/Cu$ , $CH_2I_2$ , $CH_2Cl_2$	R, R, H (%) H (75)	775 776
OH MeO	Zn/Cu, CH ₂ I ₂ , CH ₂ Cl ₂	ОН (73)	776
Me0	Zn/Cu, CH ₂ I ₂ , DME/Et ₂ O. reflux	MeO (81)	714, 715
r-Bu r-Bu HO HO O Ph	Et ₂ Zn, CH ₂ ICl, PhMe, 0°	TBSO t-Bu t-Bu t-Bu t-Bu t-Bu t-Bu t-Bu t-Bu	684
MeO ₂ C OH	Zn/Cu, CH2I2, Et2O, reflux	MeO ₂ C OH (57)	777
MeO ₂ C OH	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	MeO ₂ C OH (40)	777
OH OH OH	$Zn/Cu$ , $CH_2I_2$ , $Et_2O$		778
HOAC	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	HO (69)	773
HOM	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, $60^{\circ}$	HOrm (>14)	779



TABLE VII. CYCLOPROPANATION OF CYCLIC, CHIRAL ALKENES (Continued)

	TABLE VII	. CYCLOPROPANATION OF CYC	CLIC, CHIRAL ALKENES (Continued)	
	Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
	OAc H	Zn/Cu, CH ₂ I ₂ , ultrasound, DME, reflux	OAc (75)	45
	HO	Zn/Cu. CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	HO (81)	773
Cu	OH H H	Et ₂ Zn, CH ₂ ICl, (CH ₂ Cl) ₂ , 0°	(98)	785
C ₂₀	но	Et ₃ Al, CH ₂ I ₂ , hexane, reflux	OH (53)	786
	нотон	Zn/Cu, CH ₂ J ₂	HO OH (88)	787
	HO HO HO HO H H H H H	EtZnI, CH ₂ I ₂ , Et ₂ O	HO $HO$ $HO$ $HO$ $HO$ $HO$ $HO$ $HO$	788
			R         (%)         I:II           Me         (—)         85:15           Et         (—)         50:50 <i>i</i> -Bu         (70)         15:85	
	Aco, HO,	Zn/Cu, CH2I2, I2 (cat.), Et2O	Aco (63)	789
	OH CH	Zn/Cu, CH ₂ I ₂	(56)	790
C ₂₁	OH OH	Zn/Cu, CH ₂ I ₂	OH OH OH (70)	687









TABLE VII. CYCLOPROPANATION OF CYCLIC, CHIRAL ALKENES (Continued)



^a C₆H₆ was used as solvent.

	Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti					
5 O F OBn	Conditions, solvent	Y O F	)Bn				92	
			Conditions		Solven	t (%)	de (%)	
			Zn/Cu, CH ₂ I ₂ (5	eq)	Et ₂ O	(34)	>98	
			$Et_2Zn$ (10 eq), $CH_2I_2$	(20 eq)	hexane	(50)	>98	
			Et ₂ Zn (2.5 eq), CH ₂	2 (5 eq)	CH ₂ Cl	(73)	>95	
CD ₃ OH		Zn/Cu, CH ₂ I ₂	CD ₃ OH (-	-)				804
OH CD3		Zn/Cu, CH ₂ I ₂	OH CD3	—)				804
			OR	R	x	(%)	de (%)	
		Et ₂ Zn, CH ₂ IX		Н	Cl	(54)	55	146,
			$\sim$			(5.1)	17	805
				н МОМ	ı T	(61)	17	147
				Bn	ī	(94)	68	147
				Bn	ī	(73) ^a	48	147
				TBDPS	Cl	(84-95)	> <del>9</del> 9	146,
								147
1			1	R		(%) d	e (%)	
$\gamma_{0}$		Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq),	$\rightarrow \rightarrow 0$	м	ом	(86)	65	147
	R	CH ₂ Cl ₂ , -23 to 0°		R Bi	1	(100)	35	
			· <b>V</b> ~	TI	BDPS	(90)	>99	

TABLE VIII. CYCLOPROPANATION OF ACYCLIC, CHIRAL ALKENES

Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
D D D	Zn/Cu, CH ₂ I ₂	$D \rightarrow D$ ()	804
HO OTBDMS	Sm, CH2ICl (4 cq)	HO OTBDMS (39) I:II = 3:4	806
Boc N HO	Sm, CH2ICI (4 eq)	$HO \qquad \qquad HO \qquad HO \qquad \qquad HO \qquad H$	806
OH	Zn/Cu, $CH_2I_2$ , Et ₂ O, reflux	OH (61)	807
OH	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	OH ()	807
	Zn/Cu, CH ₂ I ₂	OH ()	804
	$Zn/Cu$ , $CD_2I_2$	$\begin{array}{c} OH \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	804
$C_{5}$ s $R^2$ OH $R^1$ Me	Zn/Cu, CH ₂ l ₂ , Et ₂ O, reflux	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	135
C ₅₋₁₃ OH R ¹ R ²	Et ₂ Zn (5 eq), CH ₂ I ₂ (5 eq), CH ₂ CI ₂ , -10° to π	$R^{1} \qquad R^{2} \qquad (\%) \qquad syn:anti$ $R^{1} \qquad R^{2} \qquad (\%) \qquad syn:anti$ $Me \qquad Me \qquad (75) \qquad 6:1$ $n \cdot Pr \qquad Et \qquad (87) \qquad 110:1$ $Ph \qquad Et \qquad (97) \qquad 130:1$ $Ph \qquad i \cdot Pr \qquad (97) \qquad >200:1$ $Ph \qquad n \cdot Bu \qquad (98) \qquad 150:1$ $Ph \qquad t \cdot Bu \qquad (84) \qquad >200:1$	136
С6	Zn/Cu, CH ₂ I ₂ , Et ₂ O, rt	(89) 81% de	148
ГОН	Et ₂ Zn (2 eq), CH ₂ ICl (4 eq) (CH ₂ Cl) ₂ , 0°	(86)	94
но СН ормв	Zn/Cu, CH ₂ I ₂ , Et ₂ O, rt	HO OPMB () >98% de	148
$C_{6-11}$ $R^2$ $R^1$ $R^3$	Zn/Cu, CH ₂ I ₂	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	808

Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
R OH	Conditions, CH ₂ ICl	R OH I + R OH II	660, 809
		R         Conditions         (%)         I:II           Cx         Et ₂ Zn, (CH ₂ Cl) ₂ (80)         20:80           Cx         Sm/Hg, THF         (76)         15:85           PMBOCH ₂ Et ₂ Zn, (CH ₂ Cl) ₂ (81)         70:30           PMBOCH ₂ Sm/Hg, THF         (90)         35:65	
$C_{6-15}$ OH $R^1$ $R^3$ $R^3$	$Zn/Cu$ , $CH_2I_2$	$R^{1} \xrightarrow{OH}_{R^{2}} R^{3} \qquad \begin{array}{c} R^{1} & R^{2} & R^{3} & (\%) \\ \hline Ph & H & Me & () \\ Ph & Me & Me & () \\ Me & Me & Me & () \\ Ph & H & Ph & () \end{array}$	808
	Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), (CH ₂ CI) ₂ , rt	HO, H-, (93) O PMP	810
OH CN	Et ₂ Zn, CH ₂ I ₂ , CH ₂ Cl ₂ , 20°, 48 h	OH CN (80)	811
СССОН	$Zn/Cu$ , ¹³ $CH_2I_2$ , solvent	$\begin{array}{c c} & \underbrace{Solvent}_{1_{3}C} & \underbrace{(\%)  syn:anti}_{pentane} \\ OH & \underbrace{Et_2O} & (-) & 1:1 \end{array}$	586
TBDPSO	Zn(CH ₂ I) ₂ , CH ₂ Cl ₂	TBDPS0 OH (	812
C ₇₋₉ TMS OH R	Sm/lig (xs), CH2l2, THF, –78° to rt	TMS OH R $R$ $(%)$ syn:anti Me (67) >100:1 n-Pr (67) >100:1	139, 140
C7-12 OH TMS R	Sm/Hg (xs), CH ₂ I ₂ , THF, -78° to rt	$\begin{array}{c c} OH \\ TMS \\ \hline \\ R \\ \hline $	139, 140
	Conditions	$\begin{array}{c} & & \\ \hline TBDPSO & & \\ \hline \hline Conditions & (\%) \\ \hline \hline Et_2Zn, CH_2I_2, CH_2CI_2, -25 to 0^{\circ} & (75) \\ \hline Zn/Cu, CH_3I_2, Et_2O, 35^{\circ} & (61) \\ \hline \end{array}$	657
O BnO OH	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O, 0°	$\begin{array}{c} 0 \\ 0 \\ BnO \end{array} \stackrel{O}{\longrightarrow} I + \begin{array}{c} 0 \\ 0 \\ BnO \end{array} \stackrel{O}{\longrightarrow} I \\ 0 \\ OMe \end{array} \stackrel{OH}{\longrightarrow} I \\ OMe \end{array} \stackrel{(90)}{\longrightarrow} I:II = 1.9:1$	813
	Et ₂ Zn (2 eq), CH ₂ I ₂ (4 eq), CH ₂ Ci ₂ , -40°		814
ОН	Zn/Cu. CH ₂ I ₂ , I ₂ (cat.). Et ₂ O, reflux	OH (48)	659

TABLE VIII. CYCLOPROPANATION OF ACYCLIC. CHIRAL ALKENES (Continued)

Substrate	Conditions		Product(	s) and	Yield(s)	(%), Rat	io syn : an	ti	R
ET ET	Sm/Hg (xs), CH ₂ IX. THF, $-78^{\circ}$ to rt	Et	рн	<u></u>	<u>ג</u> כז	(%) (67) (59)	<u>syn:anti</u> 1:10 —		5
	$Et_2Zn, CH_2I_2,$ $(CH_2CI)_2, -20^\circ$	$\bigwedge^{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$			(89 only pro	) oduct			1
$\vee$		$\vee$			С	onditions	5	(%)	
	Conditions		× \ \ \ \	Е	t ₂ Zn, CH Zn/Cu, C	2I ₂ , CH ₂ CH ₂ I ₂ , Et only pro	Cl ₂ , -25° ₂ O, 35° duct	(63) (60)	1: 6:
			R		x	(%)	syn:anti		
R OH	Sm/Hg, CH ₂ IX,	R OH	n-]	Bu	<b>C</b> 1	(77)	>45:1		5
	THF, -78° to rt		n-1 t-F	Bu Su	i Ci	(36)	120:1 >30:1		5
			t-E	3u	I	(99)	200:1		5
			Ph		Cl	(67)	100:1		5
			Ph		I	(62)	100:1		5
3-12 R	Sm/Hg, CH ₂ ICl, THF,	$\nabla \nabla$	√ ^R	_	R	(%)	dr		6
ОН	-50° to rt, 2 h		он		Et Ph	(71) (81)	>96:4 >96:4		
0H		Ċ	рн <u>1</u>	<u>זי</u>	R ²	X	(%)	syn:anti	
$R^1$ $R^2$	Sm/Hg, CH ₂ IX, THF, -78° to rt		R ²	-Bu	Ме	I	(98)	1:5.1	5 5
			,	1-Bu	i-Pr	Cl	(93)	5:1	5
			,	2-Bu	<i>i</i> -Pr	I	(74)	1.5:1	5 5
			t	-Bu	i-Pr	I	(46)	>200:1	5
			I	h	Me	Cl	(99)	1:1.3	5
			Ŧ	'n	Me	I	(98)	1:6	5
			I	'n	i-Pr	Cl	(82)	200:1	5
			F	<b>`</b> h	i-Pr	I	(88)	200:1	5
			I	Ph	n-Bu	I	(99)	1:1.4	5
			F	'n	<i>n</i> -Bu	Cl	(99)	1:1.4	5
			F	'n	t-Bu	I	(76)	>200:1	5 5
⁻¹⁹ R ¹ OR ⁵	$Et_2Zn$ (5 eq), $CH_2I_2$ (5 eq),	R ¹ C	)R ⁵						1
$R^2$ $R^4$ $R^3$	$CH_2Cl_2$ , $-10^\circ$ to rt	$R^2$	R⁴						
		RI	R ²	R ³	R ⁴	R ⁵	(%)	syn:anti	
		H U	Ph Ծե	н ц	Me ⊏∙	Me Me	(95)	1:1.6	
		н	ru Ph	л Н	i-Pr	Me	(93) (94)	>20:1	
		н	n-Pr	н	Et	Bn	(88)	1:2	
		н	Ph	Me	Me	Bn	(98)	1:7	
		Ph(CH _a )a	н	н	Me	Bn	(85)	15.1	
				••			()	1.7.1	

TABLE VIII. CYCLOPROPANATION OF ACYCLIC, CHIRAL ALKENES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
ностор	Et ₂ Zn (2.5 eq), CH ₂ I ₂ (5 eq), CH ₂ Cl ₂	HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO HO	
OH TMS	Et ₂ Zn (4-4.5 eq), CH ₂ l ₂ (4-4.5 eq), CH ₂ Cl ₂ , -18 to -5°	OH Ph         R         (%) Ph         GC purity (%) 97           TMS         OBn         (82)         97           OBn         (82)         96           CO ₂ Pt-n         (64)         95	145
Ph OH CO ₂ Et	Et ₂ Zn, CH ₂ I ₂ , CH ₂ CI ₂ , rt	OH CO ₂ Et () >98:2	815
Boc O Ph	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O, reflux	Ph $Ph$ $I + O$ $Ph$ $I = 3:1$	151
Ph	$Et_2Zn$ (x eq), $CH_2I_2$ (y eq), $CH_2CI_2$ , -10° to rt	$\begin{array}{c ccccc} OH & & & V & (\%) & I:II \\ \hline Ph & & Ph & & 2 & 1 & (75) & 6.6:1 \\ \hline I & II & & II & 5 & 5 & (>95) & 7.0:1 \\ & & 5 & 10 & (>95) & 3.2:1 \\ & & 10 & 5 & (85) & 6.6:1 \end{array}$	136
	Et ₂ Zn (5 eq), CH ₂ ICl (5 eq). CH ₂ Cl ₂ , $-10^{\circ}$ to rt	2 4 (90) 2.7:1 I + II (80) I:II = 3.7:1	136
R SnMe ₃	Sm/Hg, CH ₂ I ₂	$R \xrightarrow{OH}_{SnMe_3} \frac{R}{TMS} \frac{(\%)  syn:anti}{(26)  >99:1}$	98
CF ₃ CF ₃ R ¹	Sm, CH ₂ I ₂ , THF, 0°	$F_{3}C \xrightarrow{OH} R^{1} R^{2} \xrightarrow{R^{1}} R^{2} \xrightarrow{R^{2}} (\%) \xrightarrow{syn:anti} yyn:anti}{H} Ph (87) \xrightarrow{sy9:1} Ph H (86) \xrightarrow{sy9:1} H C_{6}H_{13} (92) \xrightarrow{sy9:1} yyn:1$	13'
CF ₃ OH R ¹ R ²	Sm, CH ₂ I ₂ , THF, 0°	$\begin{array}{ccccccc} & R^{1} & R^{2} & (83) & 599.1 \\ \hline & & & & \\ \hline & & & \\ F_{3}C & & & \\ \hline & & & \\ F_{3}C & & & \\ \hline & & & \\ R^{2} & & \\ \hline & & & \\ R^{2} & & \\ \hline & & & \\ R^{2} & & \\ \hline & & & \\ R^{2} & & \\ \hline & & & \\ R^{2} & & \\ \hline & & & \\ R^{2} & & \\ \hline & & & \\ R^{2} & & \\ \hline & & & \\ R^{2} & & \\ \hline & & & \\ R^{2} & & \\ \hline & & & \\ R^{2} & & \\ \hline & & \\ R^{2} & & \\ R^{2} & & \\ \hline & & \\ R^{2} & & \\ R^{2} & & \\ \hline & & \\ R^{2} & & \\ R^$	133
Ph Ph R	Et ₂ Zn (5 cq), CH ₂ I ₂ (5 cq), CH ₂ CI ₂ , -10° to π	$\begin{array}{c} OBn \\ \vdots \\ Ph \\ \vdots \\ R \\ i \\ Ph \\ i \\ i \\ Pr \\ (82) \\ 19:1 \end{array} \qquad \begin{array}{c} R \\ (\%) \\ syn:anti \\ 1:9 \\ i \\ $	130 19'
С10-13 л-Ви R	Sm/Hg (xs), CH ₂ I ₂ , THF, -78° to rt	$\begin{array}{c cccc} & R & (\%) & syn:anti\\ \hline n-Pr & (94) & 1.5:1\\ i-Pr & (85) & 5.5:1\\ Cx & (73) & 18:1 \end{array}$	14
C10-23	Et ₂ Zn, CH ₂ ICl, (CH ₂ Cl) ₂ , -30°	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ R \end{array} \qquad \begin{array}{c} R \\ \hline Me(CH_2)_5 \\ \hline Me(CH_2)_{10} \\ \hline Me$	81

	Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
C ₁₁	Ph OR	Conditions, CH ₂ IX	Ph $V$ $OR$ $I + Ph$ $V$ $OR$ $II$	660, 809
			$\begin{tabular}{ c c c c c c c } \hline R & X & Conditions & (\%) & I:II \\ \hline H & Cl & Et_2Zn, (CH_2Cl)_2 & (88) & 80:20 \\ \hline H & Cl & Et_2Zn, PhMe & (94) & 85:15 \\ \hline H & I & Et_2Zn, (CH_2Cl)_2 & (49) & 50:50 \\ \hline H & Cl & Sm/Hg, THF & (74) & 30:70 \\ \hline H & I & Sm/Hg, THF & (40) & 20:80 \\ \hline Na & Cl & Et_2Zn, CH_2Cl_2 & (>99) & 80:20 \\ \hline TBDMS & Cl & Et_2Zn, (CH_2Cl)_2 & (45) & 80:20 \\ \hline \end{tabular}$	
	Рһ	Conditions, CH ₂ ICI	$\begin{array}{cccc} Ph & & & Ph & & \\ I & & & & II \\ \hline \hline Conditions & (\%) & I:II \\ \hline Et_2Zn, (CH_2CI)_2 & (94) & 75:25 \\ Sm/Hg, THF & (95) & 50:50 \\ \hline \end{array}$	660, 809
	Ph	$Et_2Zn (5 eq), CH_2I_2 (5 eq),$ $CH_2CI_2, -10^{\circ}$ to rt	Ph (95) 33:1	136
	OH OH	Sm/Hg (xs), CH ₂ IX, THF, -78° to rt	OH Cl (99) 200:1 I (98) 50:1	58
	OH	Sm/Hg (xs), CH ₂ IX, THF, -78° to rt	OH I (31) OH I (31) OH	58
	n-C ₆ H ₁₃	$\mathrm{Et}_2\mathrm{Zn}$ (2 eq), $\mathrm{CH}_2\mathrm{I}_2$ (7.5 eq), pentane	0H n-C ₆ H ₁₃ (98)	817
		$Et_2Zn$ , MeCHI ₂ , $Et_2O$	<i>n</i> -C ₆ H ₁₅ (90-95) 1:2	817
C ₁₂	Ph OBn	Zn/Cu, CH ₂ I ₂ , Et ₂ O	Ph OBn (48)	818
	H Phr H	Et ₂ Zn, CH ₂ I ₂ , 0°	$H \rightarrow H \rightarrow$	819, 820
	Н ОН	$Et_2Zn, CH_2l_2, 0^\circ$	$H \rightarrow H \rightarrow$	819, 821
	Н Н ОН	$Et_2Zn, CH_2l_2, 0^\circ$	H H H H H H H H H H H H H H H H H H H	819, 821
	H H OH	$Et_2Zn$ , $CH_2I_2$ , 0°	$H \xrightarrow{H} OH \xrightarrow{H} Ph \xrightarrow{H} H \xrightarrow{H} OH$	819, 821

TABLE VIII. CYCLOPROPANATION OF ACYCLIC, CHIRAL ALKENES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
РЬ	$Et_2Zn, CH_2I_2,$ $(CH_2Cl)_2, -20^\circ$		155
	$Et_2Zn$ , $CH_2I_2$ , $CH_2CI_2$	(80) <b>I</b> : <b>II</b> ~ 1:1	822
OH F	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux, 20 h	OH Phr (39)	92
SiMe ₂ (OPr- <i>i</i> ) Ph	$Et_2Zn$ , $CH_2I_2$ , $CH_2Cl_2$ , $rt$	SiMe ₂ (OPr- <i>i</i> ) Ph OH (-) 92:8	815
C ₁₂₋₁₃ Ph OH	$Et_2 Zn \; (5\; eq), \; CH_2 I_2 \; (5\; eq), \\ CH_2 Cl_2, \; -10^\circ \; to \; rt$	$\begin{array}{c c} R & \frac{R}{(\%)} & syn:anti}{Me} & \frac{R}{(\%)} & >200:1\\ Et & (98) & >200:1 \end{array}$	136
C ₁₃ C ₆ H ₄ OMe-4 OH	Et ₂ Zn, CH ₂ I ₂	C ₆ H ₄ OMe-4 (92) OH	823
O Ph	Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), CH ₂ Cl ₂ , -23 to $0^{\circ}$	Ph (91) >98	147
Ph OBn	Conditions, CH ₂ ICI	$\begin{array}{c} Ph & OH \\ \hline OBn \\ \hline \\ $	660, 809
n-C ₆ H ₁₃ OH	Et ₂ Zn, CH ₂ I ₂ , air, pentane	тмs n-С ₆ H ₁₃ ОН (55) 15:85	824
OH n-Bu Ph	Sm (5 eq), CH ₂ I ₂ (5 eq), TMSCI (0.2 eq), THF, -78° to rt	OH n-Bu Ph (90) 1.9:1	63
C ₁₃₋₁₈ PhMe ₂ Si	Me ₃ Al, CH ₂ I ₂ , CH ₂ Cl ₂ /hexane	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	825, 826
PhMe ₂ Si	Me ₃ Al, CH ₂ I ₂ . CH ₂ Cl ₂ /hexane	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	825, 826
C ₁₄ CO ₂ Me SiMe ₂ Ph	Me ₃ Al, CH ₂ I ₂ (2.8 eq), CH ₂ Cl ₂ , $0^{\circ}$ to rt	$CO_2Me \qquad (-) ~1:1$ SiMe ₂ Ph	153
$C_{14-30}$ $R^1$ $OR^2$ $SiMe_2Ph$	Me_3Al, CH_2I_2 (2.8 eq), CH_2Cl_2, 0° to $\pi$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	153
$C_{16}$ $O$	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	$(10) \qquad (10) \qquad $	827

## TABLE VIII. CYCLOPROPANATION OF ACYCLIC, CHIRAL ALKENES (Continued)

	Conditions	resources and reading (10), Railo Syn . unu	Rel
<i>i</i> -Pr ₃ Si OH Me ₃ Si	Sm/Hg (xs), CH ₂ I ₂ , THF, -78° to rt	<i>i</i> -Pr ₃ Si OH Me ₃ Si (14)	140
$\begin{array}{c} C_{16-25} \\ Bu-n  OH \\ (\mathbf{R}^{1})_{3}Sn \\ \end{array} \\ R^{2}$	Sm/Hg (xs), CH ₂ I ₂ , THF, -78° to rt	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	140 139 140 139
C ₁₇ SiMe ₂ Ph	Me3Al, CH2I2, CH2Cl2/hexane, rt	SiMe ₂ Ph (66)	140 524
_	Zn/Cu, $CH_2I_2$ , Et ₂ O, reflux	" (65)	524
$\gamma_3$ OH O $\gamma_7$ OMe	$Zn/Cu$ , $CH_2I_2$	$\mathcal{O}$ $\mathcal{M}e  \mathcal{O}$ $\mathcal{O}$	828
$\gamma_{5}^{OH} \gamma_{7}^{OMe}$	Zn/Cu, CH ₂ I ₂ , ultrasound, DME, 85-95°	(75)	37:
	Zn/Cu, CH ₂ I ₂	$\mathcal{O}_{5}^{\text{OMe}}$ $\mathcal{O}_{7}^{\text{OMe}}$ (90)	82
$\frac{\text{MeO}_2\text{C}}{\text{OH}}$	Et ₂ Zn, CH ₂ I ₂ , CH ₂ CI ₂	$MeO_2C (-) OH (-)$	82
MeO ₂ C	$Et_2Zn, CH_2I_2, CH_2Cl_2$	$MeO_2C  \begin{pmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$	82
$\begin{array}{c} C_{18-19} \\ Me_{N} \\ O \\ R^{1} \\ R^{2} \end{array} \begin{array}{c} Ph \\ Ph \\ R^{2} \end{array}$	Zn source, CH2I2, CH2CI2	$M_{e_{N}} \xrightarrow{Ph} \qquad \qquad$	83
		I     II $R^1$ $R^2$ Zn source     (%)     I:II       H     Me     Zn/Cu     (62)     4:1       H     Me     Ft ₂ Zn     (56)     16:1       H     Et     Zn/Cu     (58)     4:1       H     Et     Et ₂ Zn     (59)     19:1       Me     Me     Zn/Cu     (69)     15:1       Me     Me     Et ₂ Zn     (82)     19:1	
C ₁₈₋₂₃ OH R SnBu ₃	Et ₂ Zn (2 eq), CH ₂ I ₂ (2 eq), PhMe	$\begin{array}{c} & R & (\%) \\ \hline & n-C_5H_{11} & (91) \\ i \cdot Pr & (>90) \\ Ph(CH_2)_2 & (>90) \\ C_X & (>90) \end{array}$	8:
C ₁₉ Ph SiMe ₂ Ph	Me3Al, CH2I2, CH2Cl2/hexane, rt	Ph SiMe ₂ Ph (86) 52:48	5
	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	" (40) 42:58	52
CO ₂ Me	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, 40°	CO ₂ Me (65)	68

TABLE VIII. CYCLOPROPANATION OF ACYCLIC, CHIRAL ALKENES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
C ₁₉₋₂₄ Bu ₃ Sn OH TMS R	Sm/Hg (xs), CH ₂ I ₂ , THF, -78° to rt	$\begin{array}{c cccc} Bu_{3}Sn & OH & \hline R & (\%) & syn:anti \\ \hline Me & (85) & >50:1 \\ TMS & R & n-Pr & (67) & >50:1 \\ \hline Cx & (80) & >50:1 \end{array}$	139, 140
C ₂₀₋₂₅ Bu ₃ Sn OH <i>n</i> -Bu R	Sm/Hg (xs), CH ₂ I ₂ , THF, -78° to rt	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	140
C ₂₃ PhSiMe ₂ Ph	Zrı/Cu, CH2I2, Et2O, reflux	PhMe ₂ Si H Ph	524
Ph SiMe ₂ Ph	$Zn/Cu$ , $CH_2I_2$ , $EI_2O$ , reflux	Ph SiMe ₂ Ph (74)	524
C ₂₄ OH SnBu ₃ TMS	Sm (10 eq), $CH_2I_2$ (10 eq), TMSCl (0.2 eq), THF -78° to rt	OH SnBu ₃ TMS (81) >50:1	63
	Conditions	$\begin{tabular}{ c c c c c } \hline $Conditions & (\%) & syn:anti \\ \hline $Sm/Hg, CH_2I_2, THF$ & (80) & >50:1 \\ Zn/Cu, CH_2I_2, Et_2O & b & \\ SmI_2, CH_2ICI, THF & (0) & \\ Et_2Zn, CH_2ICI, (CH_2CI)_2 & (80) & >50:1 \\ \hline \end{tabular}$	140
$C_{29}$	Zn/Cu, CH2l2, Et2O, reflux	(10)	832
C ₃₃ Bu ₃ Sn OH Bu ₃ Sn Cx	Conditions	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	140

TABLE VIII. CYCLOPROPANATION OF ACYCLIC, CHIRAL ALKENES (Continued)

^a A Zn/Cu couple was used.

^b Only the destannylated product was observed.

298



	Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
	r-Bu ₂ Si _O , OH	$\mathrm{Et}_2\mathrm{Zn}$ (3 eq), $\mathrm{CH}_2\mathrm{I}_2$ (3 eq), $\mathrm{Et}_2\mathrm{O}, 0^\circ$	r-Bu ₂ Si O' OH (96) >250:1	839
C7	OTBDMS	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	(69) OTBDMS	840
	MeO ₂ CN OTMS	Et ₂ Zn, CH ₂ ICl, (CH ₂ Cl) ₂	MeO ₂ CN OTMS (99)	842
	O O O O TMS	Et ₂ Zn, CH ₂ I ₂ , PhMe, 55°	(81) 2:1	842a
	OTMS	Zn/Cu, $CH_2I_2$ , Et ₂ O, reflux	0TMS (64) ~1:1	83
	OLi	Zn/Ag, CH ₂ I ₂ SmI ₂ , CH ₂ I ₂ , THF, -78° to rt	OH (59) 2:3	81 88, 110
	OH MeO	Et ₂ Zn, CH ₂ I ₂ , O ₂ , PhMe	OH MeO (99)	844, 845
C ₈	OTMS	Zn/Ag, CH ₂ l ₂ . Et ₂ O, reflux	(~65)	840
	OTMS	Et ₂ Zn, CH ₂ ICl, (CH ₂ Cl) ₂ , 0°		841
	OTMS TMSO	Et ₂ Zn (6 eq), CH ₂ I ₂ (10 eq), Et ₂ O, O ₂	(>77) >15:1 TMSO	132
	OTMS CO ₂ Me	$Zn/Ag, CH_2I_2,$ Et ₂ O, reflux	OTMS (87) CO ₂ Me	363
	OTBDMS	Zn/Ag, $CH_2I_2$ , Et $_2O$ , reflux	OTBDMS (76)	840
	OH OMe	Zn/Cu, $CH_2I_2$ , $I_2$ (cat.), Et ₂ O, reflux	OH 	846
	OH	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	OH (19)	847

Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Rcfs.
C ₈₋₁₂ OTMS	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O	$\begin{array}{c} \text{OTMS} \\ R \\ $	365
C ₉ OTBDMS	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	OTBDMS (~40)	840
TMSO	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	TMSO H (31)	848
HO H	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	HO HO $H$ (82) >98:2	849
C ₁₀ TMSO-OTMS + TMSO-OTMS	Zn/Cu, CH ₂ I ₂ , Et ₂ O	TMSO-OTMS (13) + TMSO-OTMS (17)	668
OTMS	Zn/Ag, CH ₂ I ₂ , Et ₂ O, rt	(85) OTMS	665
H H OTMS	Zn/Ag, CH2l2. Et2O, reflux		850
OTMS	Zn/Ag, CH2I2, Et2O, reflux	OTMS (94)	665
OTMS	Zn/Ag, CH2I2, Et2O, reflux	(65) OTMS	851
OTMS OTHP	Et ₂ Zn, CH ₂ I ₂ . Et ₂ O, reflux	OTMS (87) 10:1 OTHP	669. 674
OTMS Bu-n	$Et_2Zn, CH_2I_2, C_6H_6$	ОТМS (>22) Ви-л	670
HO OMe + OMe	Et ₂ Zn, MeCHI ₂ , O ₂ , Et ₂ O, reflux	HO (93) + (unchanged)	) 852

TABLE IX. CYCLOPROPANATION OF CHIRAL O- AND N-SUBSTITUTED ALKENES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
OTMS	$Et_2Zn, CH_2I_2, Et_2O$	OTMS (84)	365
OTMS	Et ₂ Zn (2 eq), CH ₂ I ₂ (2 eq), dry air, hexane, 0° to rt	(92) 3.5:1	853
BnO	$Et_2Zn$ , $CH_2I_2$ , $Et_2O$ , $rt$	BnO OH (93)	854, 855
otms	Zn/Cu, CH ₂ J ₂ , Et ₂ O, reflux	r-Bu OTMS (73) 1:1	79, 83
TMS	Et ₂ Zn (1.5 eq), CH ₂ I ₂ (1.3 eq), PhMe, 0°	TMS (>91)	856
$\begin{array}{c} R^{1} \\ Ph \end{array} \\ CO_2 R^2 \end{array}$	Et ₂ Zn (2 eq), CHFI ₂ (2 eq), CH ₂ Cl ₂ , -40°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	91, 548
OTBDMS		OTBDMS	
H : OTBDMS OTMS	Et ₂ Zn, CH ₂ I ₂ , PhMe, heat	(75) H OTBDMS OTMS	108
Отмя	Zn/Cu, CH ₂ I ₂ . Et ₂ O, reflux	(77) OTMS	857. 858
OTMS	$Et_2Zn (1.2 eq).$ $CH_2I_2 (1.2 eq),$ $Et_2O, reflux$	OTMS (82)	674
OTMS	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O	OTMS (87)	365
OMe OH	Zn/Cu, CH ₂ I ₂ , Et ₂ O/DME	OH (59)	859
	Et ₂ Zn (1.3 eq), CH ₂ I ₂ (2 eq), Et ₂ O	0 (91) ~1:1	860
TMSO	Et ₂ Zn, CH ₂ I ₂ , dry air, Et ₂ O, reflux	H TMSO (99)	852





^{*a*} 3 equiv. of  $Et_2Zn$  and  $CH_2I_2$  were used.

^b PhMe was used as solvent.

310

	TABLE X. CYCLOPROPA	NATION OF ALLENES	
Substrate	Conditions	Product(s) and Yield(s) (%), Ratio syn : anti	Refs.
C4 OH	Zn/Cu, CH ₂ I ₂ , Et ₂ O	OH (47) + OH (10)	867
^{c,}	Zn/Cu, CH2I2, Et2O, ultrasound	I (30-40) + II (10-15)	868
	Zn/Cu, CH ₂ I ₂ , Et ₂ O	I (33) + II (13)	404
	Zn/Ag, CH ₂ I ₂		869
он	Me3Al (3 eq), CH2I2 (2 eq), CH2CI2	ОН (71)	581
	Zn/Cu, CH ₂ I ₂ or EtZnI, CH ₂ I ₂	" (<8-10)	870
C ₇₋₁₁ R	Sm/Hg (xs), CH ₂ IX,	$\begin{array}{c c} H \\ R \\ \hline i \cdot \mathbf{Pr} \\ I \\ \hline (67) \\ 4:1 \end{array}$	142,
OH	THF, -78° to rt		418
		<i>i</i> -Bu 1 (57) 50:1	142. 418
		Cx I (64) 9.5:1	142,
		Cx Cl (82) 9.5:1	418 142
		<i>n</i> -C ₇ H ₁₅ I (73) 1:2.1	142, 418
R ¹ OR ²	M source, CH2IX, solvent, temp	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	142
		+ $H$ $R^1$ III + $H$ $R^1$ IV	
	R ⁱ R ²	M source (eq) CH ₂ IX (eq) Solvent Temp (%) I:II:III	:IV
	<i>i</i> -Pr H	$Z_n/Cu (2.1)$ $CH_2I_2 (2)$ $Et_2O$ reflux (73) 40:10:3	5:15
	i-Pr H	Sm(Hg) (7) CH ₂ I ₂ (7) THF $-78^{\circ}$ to rt (67) 80:20: 7n/Cn (2) CH ₃ I ₂ (2) Et ₃ O reflux (40) 83:1	0:0 7 ^a
	Сх Н	$Zn/Cu$ (5) $CH_{2}I_{2}$ (3.5) $Et_{2}O$ reflux (100) 27:50	1ª
	Cx H	$Et_2Zn(1)$ $CH_2ICl(1)$ $CH_2Cl_2$ $0^{\circ}$ (69) 67:3:20	0:10
	Cx H	Et ₂ Zn (2.1) CH ₂ l ₂ (2.1) PhMe $0^{\circ}$ to rt (92) 45:5:	54
	Схн	Et ₃ AI (1.2) CH ₂ I ₂ (1.2) CH ₂ CI ₂ $0^{\circ}$ to rt (<5) — Sm (10) CH ₃ ICI (10) THE -78° to rt (82) 90°10°	0.0
	Cx Li	$Et_2Zn (1)$ $CH_2ICl (1)$ $CH_2Cl_2 = 0^{\circ} to rt (37) = 85:trace$	:13:3
	Cx Na	$H_{1} = Et_{2}Zn (1) = CH_{2}ICl (1) = CH_{2}Cl_{2} = 0^{\circ} \text{ to } rt  (83) = 91:2:4$	4:3
	Cx Na	$H_{2} = Et_{2}Zn (2.4) = CH_{2}ICI (2.4) = CH_{2}CI_{2} = 0^{\circ} \text{ to } rt = (100) = 72:0:2$	2:6
		$E_{12} E_{11} (1) = C_{12} (1$	uace
-8	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	(6)	871
	$Zn/Cu, CH_2l_2$	(low yield)	871
∧ .R ¹		$\bigwedge H \qquad \frac{R^1}{R^2} \qquad \frac{R^2}{X} \qquad (\%)$	
	$Sm/Hg$ (xs), $CH_2IX$ ,	$R^{\dagger}$ -(CH ₂ ) ₄ - I (30)	142
HO K-	THF, -78° to n	$HO R^{2} - (CH_{2})_{4} - CI (58)$	142 142
			418

С ₁₀₋₁₁ ОН			
		OH OH I	
R	Sm, CH ₂ I ₂ , additive, THF, $-78^{\circ}$ to rt	R H I + R H	63
		R Additive (%) I:II	
		$n-C_7H_{15}$ — (34) 2.1:1	
		<i>n</i> -C ₇ H ₁₅ HgCl ₂ (73) 1:2.1	
		$n-C_7H_{15}$ TMSCI (82) 1:1.1	
		$n-C_7H_{15}$ TBDMSCI (78) 1.7:1	
		$n - C_7 H_{15}$ (MeO) ₃ SiCl (66) 1:1.1	
		$n - C_7 n_{15}$ $\Pi(OPT - I)_4$ (79) $1.5:1$	
		$C_X = \frac{1}{1000} 1$	
		$Cx \qquad TBDMSC1  (60) \qquad 44.1$	
		Cx $Ti(OPr-i)_4$ (59) >50:1	
C10.12 p1		$\mathbf{R}^{1}$ $\mathbf{R}^{2}$ (%) synt	anti
	$Sm/Hg$ (xs), $CH_2I_2$ ,	$R^1$ $R^2$ $Cx$ Me (66) 7.9	:1 142,
R	THF, -78° to rt		418
ОН		$\overline{OH}$ <i>n</i> -C ₇ H ₁₅ Me (52) 1:2	.1 142
		Cx OMe (47) 50	142,
		n-C-H15 OME (59) 13	418
C10-13 p3	Sm (v eq) CH.L (v eq)	он он п	418 R ³
$R^1$ $R^2$ $R^3$	TMSCI (z eq), THF, -78° to rt	$R^{1} \xrightarrow{R^{2}} R^{3} \qquad I + \qquad R^{1} \xrightarrow{R^{2}}$	<b>R</b> ³ Ⅱ 63
		$R^1$ $R^2$ $R^3$ x y z	(%) I:II
		<i>n</i> -C ₇ H ₁₅ H H 10 10 8.8	(81) 1:2.2
		<i>n</i> -C ₇ H ₁₅ H H 10 10 0.22	(82) 1.1:1
		<i>n</i> -C ₇ H ₁₅ H H 8 8 0.4	(67) 1:1.6
		<i>n</i> -C ₇ H ₁₅ H H 10 10 1.29	(62) 2.5:1
		Cx H H 10 10 0.2	(65) 17:1
		Cx H H 10 10 0.4	(65) 14.5:1
		Cx H H 10 10 0.2	(80) 7:1
		Cx H H 10 10 02	(44) 50.1
		Cx Me H 10 10 0.28	(52) 25:1
		$n-C_{7}H_{15}$ Mc H 10 10 0.24	(40) 1.2:1
		Cx H <i>n</i> -Pr 10 10 0.3	(52) 4.4:1
	$Et_2Zn, CH_2I_2, Et_2O$		872
		(35) (<5)	(40)
Cx	Sm/He (vc) CH-IV	$X = \frac{X}{C} = \frac{(\%)}{(70)} = \frac{17}{7}$	<u>nti</u> 1 142,

TABLE X. CYCLOPROPANATION OF ALLENES (Continued)

315

314

^a (I+II):(III+IV)

Substrate	Conditions	Product(s) and Yield(s) (%), and de (%)	Ref
	$Et_2Zn, CH_2I_2, Et_2O$	→ (83) >50:1	873 874
	Et ₂ Zn, CH ₂ I ₂ , Et ₂ O	Me0 ₂ C (52) >50:1	873
MeO₂Ć		ме0 <u>2</u> Ć	874
OBn OBn	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	OBn (72) 9:1	163 164
Pr-i O OH	Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), Et ₂ O, 20°	(81) >99	174 176
	Zn/Cu CH-Ia Ia (cat)	$\begin{array}{c} R^{1} \\ \hline \\ $	16
	$Et_2O$ , reflux	$R^2$ Ph H (66) 13:1	16 26
_			16 87
		MeOCH ₂ Me (88) 7:1 CO ₂ Pr- <i>i</i> Me (36) 3:1	16 16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\mathbb{R}^{1} \mathbb{R}^{1}$ $\mathbb{R}^{1} \mathbb{R}^{1} \mathbb{R}^{2}$	
$R^{3}$	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux		16
R ⁴		$R^4$ " <u>R¹</u> R ² R ³ R ⁴ n (%) de(%)	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		Et Me II H 2 (77) 79 Me <i>i</i> -Pr H Me 2 (74) 87	
		Me <i>i</i> -Pr H H 2 (76) >98	
		Me <i>i</i> -Pr H H 3 (90) >98 Me <i>i</i> -Pr Me H 1 (81) >98	
BnOOBn	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.),	BnO OBn $\frac{n}{1}$ (%) $\frac{dr}{9:1}$	10
o'×ò	Et ₂ O, reflux		
$\langle \rangle$		(90) 8:1 4 (80) >20:1	
$-\tau$ ) _n		$\begin{array}{cccc} & & & & \\ & & & 5 & (96) & >20:1 \\ & & 12 & (70) & >20:1 \end{array}$	
OH			-
	Sm/Hg, CH ₂ ICI, THF	(90) 94	7:

Substrate	Conditions	Product(s) and Yield(s) (%), and de (%) Re
$\langle \gamma_{0} \gamma_{Ph}^{Ph} \rangle$	$Et_2Zn$ (3 eq), $CH_2IX$ (6 eq), (CH_2Cl) ₂	$ \begin{array}{c} & & & X & (\%) & de (\%) \\ & & & CI & (90) & 90 \\ & & & I & (-) & 86 \end{array} $ 51
	Zn/Cu, CH2I2, I2 (cat.), Et2O, reflux	$\begin{array}{c} R \\ R \\ O \\$
		$ \begin{array}{ c c c c c c c c } & & & & & & & & & & & & & & & & & & &$
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
I and/or II	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	$\frac{\text{Starting material}}{\text{III}} + \frac{\text{III}}{\text{IV}} + \frac{\text{V}}{\text{V}} + \frac{\text{V}}{\text{VI}} + \frac{\text{III}}{\text{V}} + \frac{\text{V}}{\text{VI}} + \frac{\text{III}}{\text{V}} + \frac{\text{V}}{\text{VI}} + \frac{\text{V}}{\text{VI}} + \frac{\text{III}}{\text{V}} + \frac{\text{V}}{\text{VI}} + $
MeN S Ph S Ph	Zn/Ag, CH ₂ I ₂ , Et ₂ O	MeN 0 Ph OH (91-98) 12
OBn OBn	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	OBn (88) 2:1 16
O OH	Zn/Cu, CH ₂ I ₂ , solvent, temp	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), ZnI ₂ (x eq), solvent, temp, 2-10 h	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

diglyme 20° 0 (0) —

TABLE VI OVOLOBDOBINI FION OF OVOLIC ALVENES CONTABUNCI A CLEANABLE CHUR AL ALVILLADV	0 . N
ABLE AL CICLOPROPANATION OF CICLIC ALKENES CONTAINING A CLEAVABLE CHIRAL AUXILIARY (	Continuea)



	Substrate	Conditions	Product(s) and Yield(s) (%), and de (%)	Refs.
	i-Pr.		i-Pr.	
	ООН	$Et_2Zn$ (5 eq), $CH_2I_2$ (10 eq), $Et_2O$ , 20°	O OH (77) >99	174, 176
C ₈	BnO O O O O O Bn	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	BnO OBn (78) 9:1	164, 878
	MeO O O O Me O O Me O BnO	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	MeO O O O Me (87) BnO	879
	O OBn	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	O O O Bn (54) 9:1	164
	OBn OBn OBn	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	OBn OBn (88) 14:1	163, 164
	MeN 9 S OH Ph	Zn/Ag, CH ₂ I ₂ , Et ₂ O	MeN 9 Ph (91-98)	129
	HO S Ph	Zn/Ag, CH ₂ I ₂ , Et ₂ O	HO SPh (77-96)	129
	i-Pr. O OH	Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), Et ₂ O, 20°	<i>i</i> -Pr- <i>i</i> O OH (80) >99	174, 176
G	i-Pr-i O OH	Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), Et ₂ O, 20°	<i>i</i> -Pr- <i>i</i> O OH (58) >99	174, 176
- ,	BnO O O O O O Bn	Zn/Cu, $CH_2I_2$ , $I_2$ (cat.), Et ₂ O, reflux	BnO OBn (90) 7:1	164, 878
	MeN N S Ph	Zn/Ag, CH ₂ I ₂ , Et ₂ O	MeN 9 Ph OH (77-96)	129, 664

TABLE XI. CYCLOPROPANATION OF CYCLIC ALKENES CONTAINING A CLEAVABLE CHIRAL AUXILIARY (Continued)

	Substrate	Conditions	Product(s) and Yield(s) (%), and de (%)	Refs.
C ₉₋₁₆	BnO OBn	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	165
C ₁₀		Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), hexane, -20°(7 h), 20°(10 h)	$\underbrace{\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$	160
		Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), hexane, -20°(7 h), 20°(10 h)	(50) 85	160
	MeO	Zn/Cu, CH2I2, I2 (cat.), Et2O, reflux	MeO (84) 8:1	880, 881
	BnO OBn	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux, 20 h	BnO OBn (80) 7:1	164, 882
		Zn/Cu, $CH_2I_2$ , $I_2$ (cat.), Et ₂ O, reflux	" (92) 7:1	164, 878
	BnO BnO BnO OH	Et ₂ Zn (5 eq), CH ₂ ICl (2 eq)	BnO BnO OH (77) 97	189
	BnO BnO BnO OH	Et ₂ Zn (5 eq), CH ₂ ICI (2 eq)	BnO BnO BnO OH	189
	i-Pr-i O OH	Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), Et ₂ O, rt	<i>i</i> -Pr, Pr- <i>i</i> O OH (82) >99	177
	r-Bur	Zn/Cu, CH2I2, I2 (cat.), E12O, reflux	t-Bu' (23) + (68)	883
	r-Bu	Zn/Cu, CH2I2, I2 (cat.), Et2O, reflux	r-Bu' (30) + 0, 0 (35)	883
	o .Bu	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	$ \begin{array}{c}                                     $	883

## TABLE XI. CYCLOPROPANATION OF CYCLIC ALKENES CONTAINING A CLEAVABLE CHIRAL AUXILIARY (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%), and de (%)	Refs.
	Zn/Cu, $CH_2I_2$ , $I_2$ (cat.), Et ₂ O, reflux	$R = \frac{R}{OBn} - \frac{(\%)}{(84)} - \frac{dr}{9:1}$ $Ph = (62) = 16:1$	164, 878 260
	Zn/Ag, CH ₂ I ₂ , Et ₂ O	ОН Ph-S=0 NMe (77-96)	129
	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	Bno O O O O O D O Bn $\frac{n}{8}$ ( $\rightarrow$ ) $\frac{dr}{-}$ $11$ ( $\rightarrow$ ) $-$	723
С13	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux, 20 h	о о О О Н (94) 8:1	882
OH O=S MeN Ph	Zn/Ag, CH ₂ I ₂ , Et ₂ O	O=S /// MeN Ph (80)	129
O=S // Ph MeN	Zn/Ag, CH ₂ I ₂ , Et ₂ O	O=S // MeN Ph (76)	129
C ₁₅ RO-OR	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	$\begin{array}{c} RO \\ O $	884

TABLE XI. CYCLOPROPANATION OF CYCLIC ALKENES CONTAINING A CLEAVABLE CHIRAL AUXILIARY (Continued)

^a Reagent was preformed


Substrate	Conditions	Product(s) and Yield(s) (%), and de (%) Re
$rac{1}{2}$	Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), CH ₂ Cl ₂ , $-10^{\circ}$ to rt	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
i-PrO ₂ C i-PrO ₂ C O OAc	Et ₂ Zn, CH ₂ I ₂ , hexane, -20°	i-PrO ₂ C (86) 15 i-PrO ₂ C OAc
$\begin{array}{c} & & & \\ & & & \\ OC^{-}Fc & & \\ Ph_3P' & & \\ O & R^2 \end{array}$	ZnCl ₂ (4 cq), Et ₂ Zn (1.5 eq), CH ₂ I ₂ (4 eq)	$\begin{array}{c cccccc} R^1 & R^2 & (\%) & dr \\ \hline H & Me & (91) & 9:1 \\ \hline H & n-Pr & (91) & 14:1 \\ R^2 & H & n-Pr & (93) & 24:1 \\ \hline H & n-Bu & (95) & 16:1 \\ \hline Me & H & (63) & 1.3:1 \\ \hline Me & Me & (89) & 11:1 \\ \end{array}$
	Et ₃ Al (4 eq), CH ₂ I ₂ (4 eq)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\stackrel{.9}{\operatorname{BnO}} \xrightarrow{\operatorname{BnO}}_{OH} \xrightarrow{O}_{OH} \xrightarrow{R^1}_{R^2}$	Et ₂ Zn (10 eq), CH ₂ I ₂ (10 eq), PhMe, -35 to 0°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
BnO BnO HO R1	Et ₂ Zn (10 cq), CH ₂ I ₂ (10 cq) <i>t-</i> BuOMe, 0°, 22 h	$\begin{array}{c} BnO \\ BnO \\ BnO \\ HO \\ HO \\ R^2 \end{array} \xrightarrow{R^1} \begin{array}{c} R^1 \\ R^2 \\ R$
$\begin{array}{c} R^{1} \\ R^{2} \\ CO_{2}R^{3} \end{array}$	$Et_2Zn$ (5 eq), $CH_2I_2$ (10 eq), hexane, conditions	$\begin{array}{c} R^{1} \\ R^{2} \\ CO_{2}R^{3} \end{array} $
		$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

TABLE XII. CYCLOPROPANATION OF ACYCLIC ALKENES CONTAINING A CLEAVABLE CHIRAL AUXILIARY (Continue	ed)
--------------------------------------------------------------------------------------------------	-----



Substrate	Conditions	Product(s) and Yield(s) (%), and de (%) Re	.efs.
i-PrO ₂ C. CO ₂ Pr- <i>i</i>	Et ₂ Zn, CH ₂ I ₂ , (CH ₂ Cl) ₂ , -20°	$i$ -PrO ₂ C, $O$ $CO_2$ Pr- $i$ (78-83) 16 CO ₂ Pr- $i$ 65	52, 53
$i \cdot PrO_2C$ $n \cdot Pr$ O O $CO_2Pr \cdot i$	Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), hexane, -20°, 5 h	$i \cdot \Pr_{O_2}C^{\bullet} = 0$ $n \cdot \Pr_{O_1} + CO_2\Pr_{O_1} + CO_2\Pr_{O_1} + CO_2\Pr_{O_1} + CO_2\Pr_{O_1} + CO_2\Pr_{O_2} + CO_2P_{O_2} + CO_2$	60, 61
BnO BnO BnO OH Et	$Et_2Zn (7 eq), CH_2I_2 (5 eq),$ $CH_2CI_2, -30^{\circ}$	$B_{nO} \xrightarrow{\text{TIPSO}}_{OH} (93) > 99 \qquad 88$	88
BnO BnO BnO OH Et	$Et_2Zn (x eq), CH_2IX,$ $CH_2Cl_2, temp, time$	$B_{BnO} \rightarrow O \qquad I + 88$	88
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Zn/Cu, CH2I2, I2 (cat.), Et2O, reflux	(58) 2:1 16 00Bn 87	64, 79
PrOOBn HO	Et ₂ Zn (10 eq), CH ₂ I ₂ (10 eq), PhMe, ~35 to 0°	Pr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	57
n-Bu	Zn/Cu, CH2l2. Et2O, temp, time	$\begin{array}{c} \text{CONMe}_2 & \frac{\text{Temp Time (h)}}{\text{reflux}} & \frac{(\%)}{(48)} & \frac{(\%)}{93} & \frac{(\%)}{17} \\ \text{n-Bu} & -\text{CONMe}_2 & \text{rt} & 5 & (67) & 91-94 \end{array}$	78
n-Bu	Zn/Cu, CH2I2, Et2O, reflux	n-Bu $(42) 90$ $(42) 90$ $(17)$ $(17)$	78
O Pr OH	Et ₂ Zn (3 eq), CH ₂ ICI (3 eq), PhMe, -20°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	59
O Pr OR	Et ₂ Zn (5 eq), CH ₂ ICl (5 eq), PhMe, temp	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	.59
$R^{1} \xrightarrow{COR^{2}} B_{O} \xrightarrow{COR^{2}} COR^{2}$	Zn/Cu, CH2I2. Et2O, reflux	$R^{1} \xrightarrow{COR^{2}}_{B} \xrightarrow{R^{1}}_{O} \xrightarrow{R^{2}}_{O} \xrightarrow{(\%)}_{O} \xrightarrow{de(\%)}_{O} \frac{de(\%)}{n-Bu} OMe  (41)  73  17$ $R^{1} \xrightarrow{P}_{B} OMe  (41)  73  17$ $Bn  NMe_{2}  (46)  91$ $Bn  NMe_{2}  (61)  89$ $n-Bu  OPr-i  (44)  86$ $Ph  OPr-i  (60)  73$	78

Substrate	Conditions	Product(s) and Yield(s) (%), and de (%)	Refs.
$R^{1}$ $R^{1}$ $H$	$Et_2Zn$ (2.5 eq), $CH_2I_2$ (2.5 eq), hexane, 0°	$\begin{array}{c} OMe \\ R^2 & N \\ R^1 & N \\ OH & OMe \\ H & Me \\ H & H \\ H & H \\ H & H \\ H & H \\$	889. 890
	Et ₂ Zn. R ² CHI ₂ , hexane, 0°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	889, 890
C ₇ MeO ₂ C OBn	Zn/Cu, CH ₂ I ₂ , I ₂ (cat.), Et ₂ O, reflux	MeO ₂ C, OBn (62) 1:1	163, 164
CO ₂ Pr- <i>i</i>	$Et_2Zn, CH_2I_2$	$CO_2 Pr-i$ $CO_2 Pr-i$ $(65) >90$	167
Ph E:Z = 4.5:1	$Et_2Zn, CH_2I_2$	Ph (60) 2-3:1	167
$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	Et ₂ Zn (2 eq), CH ₂ I ₂ (4 eq), CH ₂ Cl ₂ , 0°	$r - C_5 H_{11}$	891
		order of addition(%)de (%) $CH_2I_2 + sm; Et_2Zn$ (56)75 $Et_2Zn + sm; CH_2I_2$ ()60 $Et_2Zn + CH_2I_2; sm (20^\circ)$ (46)61 $Et_2Zn + CH_2I_2; sm (-15^\circ)$ (70)67	
C ₈ HO N S Ph	Zn/Ag, CH ₂ I ₂ , Et ₂ O, reflux	HO NHO (76) 15:1	261, 664
MeN S OH Ph	Zn/Ag, CH ₂ I ₂ , Et ₂ O	MeN V Ph OH (77-96)	129
	Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), (CH ₂ CI) ₂		170
		$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $	
	Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), (CH ₂ Cl) ₂	$R^2$ $I$ $R^2$ $I$ $I$	170
~		$\frac{R^{1}}{Bn} \frac{R^{2}}{PhC_{6}H_{4}CH_{2}} \frac{(\%)}{Ph(CH_{2})_{3}} \frac{I:II}{(\%)} \frac{dc \text{ of } I(\%)}{dc \text{ of } I(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of } II(\%)} \frac{dc \text{ of } II(\%)}{dc \text{ of }$	<u>%)</u>



TABLE XII. CYCLOPROPANATION OF ACYCLIC ALKENES CONTAINING A CLEAVABLE CHIRAL AUXILIARY (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%), and de (%)	Refs.
$R = 4 - PhC_6H_4CH_2$	Et ₂ Zn (5 eq), CH ₂ I ₂ (10 eq), (CH ₂ Cl) ₂	0 0 0 0 0 0 0 0 0 0 0 (82) 48	170
	Et2Zn (5 eq), CH2l2 (10 eq), solvent, temp		170
		Solvent         Temp         (%)         de (%)           hexane $-78 \text{ to } 0^\circ$ (0) $-$ PhMe $-40 \text{ to } 0^\circ$ (33)         88           PhMe $-40 \text{ to } 0^\circ$ (72)         75           PhMe $-78 \text{ to } 0^\circ$ (81)         72           PhMe ^b $-78 \text{ to } -15^\circ$ (50)         90           (CH ₂ Cl) ₂ $-20 \text{ to } 0^\circ$ (61)         82           (CH ₂ Cl) ₂ $-20 \text{ to } 0^\circ$ (85)         71           (CH ₂ Cl) ₂ ^b $-30 \text{ to } -20^\circ$ (54)         83           THF $-78 \text{ to } 0^\circ$ (0) $-$ PhMe/hex (1:2) $0^\circ$ (50)         76	
PhOOBn HO	Et2Zn (10 eq), CH2I2 (10 eq). PhMe, -35 to 0°	$(CH_2CI)_{2^c} 0^{\circ} (23) 70$ $THF^d -78 \text{ to } 0^{\circ} (0)$ $Ph \qquad O \qquad OBn \qquad (>97) >50:1$ $HO$	157
MeN 5 Ph	Zn/Ag, CH2I2, Et2O	MeN 0 Ph OH (77-96)	129, 664
C9-10 R	Zn/Cu, CH ₂ I ₂ , Et ₂ O, reflux	R	892
		R         (%)         Optical yield (%)           H         (56)         11           Me         (42)         11           OMe         (26)         9           Br         (33)         11           Cl         (52)         10	
C ₁₀ BnO BnO OH	Et ₂ Zn (5 eq), CH ₂ ICl (2 eq), PhMe, -35 to 0°	BnO 0 BnO 0 OH (>80) >94	189

TABLE XII. CYCLOPROPANATION OF ACYCLIC ALKENES CONTAINING A CLEAVABLE CHIRAL AUXILIARY (Continued)

TABLE XII. CYCLOPROPANATION OF ACYCLIC ALKENES CONTAINING A CLEAVABLE CHIRAL AUXILIARY (Continued) Refs. Substrate Conditions Product(s) and Yield(s) (%), and de (%) C₁₁ Conditions, solvent 92 Pt Ph Conditions Solvent (%) dr Zn/Cu, CH₂I₂ (5 eq) Et₂O (34) 2.6:1  $Et_2Zn (10 eq), CH_2I_2 (20 eq)$ hexane (63) 2.7:1  $C_{15}$ BnO BnO BnO BnO BnO BnO  $Et_2Zn (5 eq), CH_2ICl (2 eq),$ 189 он PhMc, -35 to 0° юн (>80) >94

^a Et₂O was used as solvent.

 $^{\textit{b}}$  The reagent was  $Et_2Zn$  (10 eq),  $CH_2I_2$  (20 eq).

^c CH₂ICl was used instead of CH₂I₂.

^d The reaction was with Sm and  $CH_2I_2$ .



Substrate	Conditions Product(s) and Yield(s) (9	b), and ee (%) Refs.
C ₃₋₁₀ P ¹	$Me_2NOC$ CONMe ₂ $R^1$ OH $R^2$	он
	$R^2$	69
$R^3$	Bu $R^3$ Etc7n (2 2 eq) H	^R ³
	MeCHI ₂ (4.4 eq), I	1
	CH ₂ Cl ₂ , 0° $R^1 R^2 R^3$ (%) <b>I:</b>	ee (%)
	H Ph H (96) >50:1	98 90
	$BnOCH_2 H H (80) >50:1$	94
	H H H (>84) 20:1	90
	Et H H (>87) 15:1 H n-Pr H (>80) 10:1	94 93
	Me2NOC CONMe2	
C.		
TroOH	$ \begin{array}{c} B \\ B $	661
	Et ₂ Zn (2.5 eq).	
	CH ₂ I ₂ (5 eq)	
	$CH_2CI_2$ , -5° to rt	
∖ОН	$Me_2NOC$ CONMe ₂ $OH$ (75) >95	191.
	$O_{B'}O(1.2 \text{ eq})$	893,
	l Bu	894
	$Zn(CH_2I)_2$ (2.2 eq),	
	Cn ₂ Cl ₂ , υ το π	
	Me ₂ NOC CONMe ₂	
но	$\begin{array}{c} & & \\ O_{\mathbf{p}} \\ \end{array} \\ O_{\mathbf{p}} \\ \end{array} \\ O_{\mathbf{p}} \\ \end{array} \\ (x \ eq) \\ HO \\ \end{array} \\ \begin{array}{c} HO \\ \end{array} \\ (91) \\ \end{array} $	193.
	$\begin{array}{c} B \\ B \\ B \\ \end{array} \qquad \underbrace{x \qquad ee(\%)}_{-}$	662
	$Z_{II}(CH_2I)_2 DME,$ 1.1 74 2.1 89	
	4 Å MS, $CH_2Cl_2$ , -40 to 25°	
C		
$R^{2}$	$H$ (leg) $R^2$	
R ¹ OH		
	$CONEt_2 \qquad R^1 \qquad R^2 \qquad (\%)$	ee (%)
	$Et_{7}Zn$ (6 eq), $CH_{2}I_{2}$ (3 eq), TBDPSOCH ₂ H (59)	87 ^{<i>a</i>} 198, 1
	$CH_2Cl_2, 0^\circ, 15 h$ H $TrOCH_2$ H (64)	88 198, 1 65 198
	H   TrOCH2 (76)	16 ^b 199
	Ph H (55)	94 198,
	H Ph (44)	92 199 90 108
	$4-C_{6}G_{4} = G_{4} = G_{4}$	94 198.
	$Ph(CH_2)_2$ H (65)	89 198, 1
C ₃₋₁₅ R ¹	Me ₂ NOC CONMe ₂ R ¹	
R ² OH		
$R^3$	$\mathbf{B}_{\mathbf{R}}$ $\mathbf{V}_{\mathbf{R}}$	
	$Zn(CH_2I)_2$ •DME,	
	CH ₂ Cl ₂ , 25°	

Substrate	Conditions	Product(s) and Yield(s) (%), and ee (%)					Refs.
		R [†]	<b>R</b> ²	R ³	(%)	<b>cc</b> (%)	
		Н	Ph	н	(>98) ^c	93	185, 187
		н	Ph	н	(95)	94	186, 187
		н	3-MeOC ₆ H ₄	н	(>98)	93	187
		н	Pr	н	(80) ^c	93	185, 187
		н	Ph(CH ₂ ) ₂	Н	(90)	94	187
		н	BnOCH ₂	н	(87)	94	187
		н	Bu ₃ Sn	н	(82) ^c	~90	187
		н	Bu ₃ Sn	Н	(88)	~90	187
		н	I	н	(83) ^d	90	187
		Bu ₃ Sn	н	Н	(73)	~90	187
		I	н	н	(71) ^d	83	187
		Et	н	н	(90) ^c	93	185, 187
		Et	н	Н	(>98) ^e	~87	187
		TBDPSOCH ₂	н	н	(80) ^c	91	185, 187
		BnOCH ₂	Н	н	(93) ^c	91	187
		BnOCH ₂	н	н	(92)	91	186, 187
		Me	Me	н	(85) ^c	94	185, 187
		н	Ph	Me	(96) ^c	85	187
		н	Ph	Me	(80)	82	187
		н	Et	TIPSOCH ₂	(>98)	89	187
		Me	Me	TIPSOCH ₂	(85)	88	187
		н	-(CH	l ₂ ) ₄ -	(84)	60	187
5 TBDPSO	$HO_2C$ $HO$ $OH$ $Et_2Zn, CH_2I_2,$ $(CH_2CI)_2, -20^\circ$	TBDPSO		ОН	(67)		654
НОЛОН	$\begin{array}{c} Me_2NOC\\ O\\ B\\ Bu\\ \\ Zn(CH_2I)_2, \end{array}$	но	ОН	. (85	))		192, 655
R ¹ R ² OH	CH ₂ Cl ₂ , 0° to $\pi$ Me ₂ NOC CONMe ₂ CONMe ₂ $O_{B}$ Bu Zn(CH ₂ I) ₂ •DME, CH ₂ Cl ₂ , -10°	$R^2$	он	R ¹ R ² EtH HPh PhH	(%) e (90) (90) (86)	ee (%) 82 82 81	187
7 ТгО, ОН	$Me_2NOC CONMe_2$ $O B O (1.2 eq)$ $Bu$ Et: 7a (2 5ec)	Tro	<b>D</b> of	H (78	3)		661
TBDPSO	$CH_{2}L_{1} (2.5 \text{ eq}),$ $CH_{2}L_{2} (5 \text{ eq}),$ $CH_{2}Cl_{2}, -5^{\circ} \text{ to } \text{ rt}$ $Me_{2}NOC \qquad \qquad CONMe_{2}$ $O \qquad \qquad B_{1}$ $Bu$ $Et_{2}Zn, CH_{2}I_{2},$	TBDPSO	$\downarrow$	_ОН (9	9) >99%	5 de	812

Substrate	Conditions	Product(s) and Yield(s) (%), and ee (%)						Refs.
$\begin{array}{c} \frac{1}{72.14} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	OH Zn(CH ₂ I) ₂ •DME (5 eq), CH ₂ Cl ₂ , -35° to reflux	$R^1 \longrightarrow R^2$	ОН	Substrate I II III	(%) (93) (49) (77)	ee (%) 92 96 85		895
7-15 $Me_2N$ $I$ $He_2N$ $He$	OH $Me_2NOC$ , CONMe ₂ OB Bu $Zn(CH_2I)_2$ •DME (5 cq), $CH_2Cl_2, -35^\circ$ to reflux	R ¹ R ²	ОН	Substrate I II III	(%) (0) (85) (51)	ee (%)  93 86		895
H = H + H + H + H + H + H + H + H + H +	$\begin{array}{c} OH \\ + \\ & OH \\ & Bu \\ & Zn(CH_2I)_2 \bullet DME (5 eq), \\ OH \end{array}$	$R^2$ $R^3$	ОН	Substrate I II IV	(%) (83) (85) (93) (0)	ee (%) 91 83 89 —		895
²⁷⁻²² R ² OH	1. Et ₂ Zn (1 eq), 0° 2. (+)-DET, 0° 3. Et ₂ Zn (3 eq), CH ₂ I ₂ (3 eq), CH ₂ Cl ₂ , temp, time	R ² R ¹ PhMe ₂ Si PhMe ₂ Si PhMe ₂ Si PhMe ₂ Si PhMe ₂ Si TMS PhMe ₂ Si TMS PhMe ₂ Si Me Me	OH R ² H H Me Me Me Me Me n-Bu TMS PhMe ₂ Si	Temp           0°           0°           -22°           0°           -20°           -30°           -30°           0°           -30°           0°           0°           0°	Time (h 4 5 6 21 8 5 7 10 5 13 5	) (%) (69) (62) (42) (78) (93) (88) (53) (82) (84) (50) (83)	ee (%) 63 47 77 78 89 92 87 90 87 46 62	184

TARLE YUL CYCLOPPOPANATION WITH STOICHIOMETRIC CHIRAL ADDITIVES (Continued)

Substrate	Conditions			Prod	ict(s) and	t Yield	l(s) (%),	and ee (%	)	Refs
$R^{2}$ $R^{1}$ $OH$ $R^{2}$ $R^{3}$ $R^{4}$				4						197
	Bu 1. Zn(CH ₂ I) ₂ (2.2 eq.)	ъl	T	<b>D</b> 2	ъ3	ъ4	٨f	(77.)	,	
			1	K-	K ²	<u><u> </u></u>	A/	(%)	syn:ar	<u></u>
	2. A $(1.2 \text{ eq})$ . CH ₂ Cl ₂	л u	r T	PA Dh	п 11	Me	<i>к, к</i>	(98)	1.10	0
	$-10^{\circ}$ to rt. 12 h	п	r T	r li Ph	П	Me	د,د م م	(74)	1:12	0
		11 H	r	r II Ph	Me	Me	л, л с с	(92)	1.20	0
		и и	1	Dh	u	Et.	3,3 D D	(97)	1.20	
		н	F	Ph	н	Fr	7,7	(54)	1.20	
		н	,	1-Pr	н	Ft	8,3 R R	(84)	1.12	
		н	r	1-Pr	н	Er	5.5	(54)	1.52	
		н	F	Ph	н	i-Pr	8 R R	(40)	1.12	
		н	F	2h	н	i-Pr	7,7	(16)	1.6.1	
		Ph(CH ₂ )	- Ha	H.	н	Me	R R	(20)	>20.1	
		Ph(CH ₂ )	3 F	4	Н	Me	<i>S,S</i>	(30)	>20:	
	Y Ph				x	у	Solvent	(%)	ee (%)	
Ph	· · · · · · · · · · · · · · · · · · ·	Ph	$\frown_0$	н	2	4	PhMe	(82)	18	182
	$Me_2N$ $O$ $Zn$ $(x eq)$				2	4	THF	(81)	-11	
	Et				2	2	PhMe	(16)	_	
	Et 7- (2> OU L (>				2	2	THF	(25)	_	
	$E_{12}Z_{11}$ (2 eq), $C_{11}Z_{12}$ (y eq),				2	4	hexane	(<10)	_	
	solvent, r				2	4	DME	(85)	23	
					1	4	PhMe	(56)	16	
					1	4	DME	(81)	18	
			Cond	lition	e	Solve	nt (	%) ee i	(%)	
	Ph Ph		7n/Cu	CH	3 <u></u> Ja	DMI	E (	<u>71)</u> 1	8	182
	7		Zn/Cu	. CH		EtaC	) (	70) 2	1	
	$Me_2N$ $Z_n$ (1 eq)		Zn/Cu	. CH		DM	E (	68) 2	4	
	i Et	Z	n(CH ₂ C	, CD- (	 2 ca)	PhM	e (	63) 1	5	
	Conditions, solvent, rt	Z	n(CH ₂ C	Cl) ₂ (	2 eq)	DMI	E (	54) 1	9	
	CONR ₂		R	x	Additiv	ve (	(%) ee	e (%)		
			Me	2	_		(7) .	-14		198
	ОН (1 ес	)	Me	3	_	(	34)	14		199
	ОН		Me	4	—	(	85)	26		
			Me	5		(	84)	64		
	CONR ₂		Me	6	—	(	90)	67		
	EtaZB (x eq) CHaLa (3 eq)		Me	6	_	(	80)	42		
	additive. CH ₂ Cl ₂ /hexane		Me	6	Znl ₂	. (	87)	75		
	$0^{\circ}$ to $\tau$ 15 h		Et	б	—	(	55)	94		
	~		Et	6	$ZnI_2$	. (	87)	90		
			Et	6	THF	; (	85)	91		
			n-Pr	6	_	(	51)	85		
			n-Pr	6	ZnI ₂	. (	88)	79		
			<i>n-</i> Bu	6	_	(	58)	89		
			n-Bu	6	Znl ₂	. (	75)	78		
			i-Pr	6		(	60)	51		
			i_Pr	6	7nL	. (	87)	29		

TABLE XIII. CYCLOPROPANATION WITH STOICHIOMETRIC CHIRAL ADDITIVES (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%), and ee (%)	I
	1. Et ₂ Zn (1.1 eg)		
	2. НО ОН	n	1
	$\rightarrow$		
	XOC COX	X Solvent Temp (%) ee (%	)
	3. $Et_2Zn$ (2 eq),	OEt DME 0° to rt (39) 15	
	$CH_2I_2$ (4 eq), solvent,	OEt PhMe 0° to rt (55) 39	
	temp	OEt $CH_2Cl_2$ 0° to rt (22) 50	
		OEt $CCl_4$ 0° to rt (28) 49	
		OEt $(CH_2CI)_2 = 0^{\circ} \text{ to fr} (13) = 64$	
		$OMe \qquad OH_{C} O^{0} to rt \qquad (12) \qquad 64$	
		$OMe \qquad (CH_2Cl_2 = 0 \text{ to } ff  (12) = 0^4$	
		OPr- $i$ CH ₂ Ch ₂ $0^{\circ}$ to $\pi$ (22) 27	
		OBu- <i>n</i> $CH_2Cl_2$ 0° to rt (17) 58	
		1-pyrrolidinyl CH ₂ Cl ₂ 0° to rt (69) 13	
	6_0	Ph OH (95) 93	1
	ß		
	$CH_2CI_2 = 5^\circ \text{ to } rt$		
	0.00		
Ph		Ph (74) 51	
	Juli-o	- III (74) 31	-
	Zu(CH2F)2, Et2AlCI (0.15	ey,	
	1. $Et_2Zn$ , U°		
	2. (+)-DE1, 0 3. Ft-7n (2 eq)	(60) 70	1
Ph' <u></u> OH	$CH_2I_2$ (4 eq),	РК 🛡 — ОН	
	$(CH_2Cl)_2, -12^\circ$		
	Me2NOC CONMe2		
		(97) 89	
	B	Рћ 🏹 🖵 ОН	:
	Bu		
	Zn(CH ₂ I) ₂ , CH ₂ Cl ₂		
	Mc7NOC. CONMe		
	$\rightarrow$		
$RO_{1}$ $\land$ $\land$ $\land$ $\land$	Ó, _R Ó	$RO_{A} \rightarrow A$	
он	В   Ви	∽Г≻ ∞Г≻ _он	
	Zn(CH ₂ I) ₂ •DME (2.5 eq.)		
	CH ₂ Cl ₂ , -10°	$\frac{R}{R} = \frac{(\%)}{2} \frac{1}{2} $	
	2 2	DII (70) 270 0.1 TIPS (85) 500 8-1	
	Me ₂ NOC CONMe ₂		
HO		НО (83)	(
	B		
	B่บ		
	$Zn(CH_2I)_2$ (5 eq),		
	CH ₂ Cl ₂ , -5° to rt		
	or:	(90) 91	
	$Zn(CH_2I)_2$ •DME,	10:1 mixture of	]
	CH ₂ Cl ₂ , 0°	diastereomers	

TABLE XIII. CYCLOPROPANATION WITH STOICHIOMETRIC CHIRAL ADDITIVES (Continued)

Substrate	Conditions	Proc	luct(s) and	d Yield(s)	(%), and ee	(%)	Ref
	$Me_2NOC$ $CONMe_2$ $B_1$ $Bu$ $Zn(CH_2I)_2 (5.5 eq),$	HO		ОН	(65)		661
но-сон	CH ₂ Cl ₂ , $-5^{\circ}$ to rt Me ₂ NOC, CONMe ₂ O, B Bu Zn(CH ₂ I) ₂ •DME, CH CL $-78^{\circ}$ to rt	но		ОН	(90)		663
	$\begin{array}{c} \text{Me}_{2}\text{CI}_{2}, -78 \text{ Ib } \text{H} \\ \text{Me}_{2}\text{NOC} \\ O \\ B_{1} \\ Bu \\ \text{Zn}(\text{CH}_{2}\text{D}_{2}\text{*}\text{DME}, \text{MS} (4 \text{ Å}), \\ \text{CH}_{2}\text{CI}_{2}, -40 \text{ to } 25^{\circ} \end{array}$	но	4	_он	(89)		193 662
$R \xrightarrow{II} OH$ Mixture of R = H, 2-OC ₆ H ₁₃ - <i>n</i> , 4-NO ₂	$\begin{array}{c} Me_2NOC \\ O \\ B \\ B \\ B \\ U \\ Zn(CH_2I)_2 \text{-} DME (5 eq), \\ CH_2Cl_2, -35^\circ \text{ to reflux} \end{array}$	R	ОН	R H 2-OC ₆ 4-NO ₂	(%) (39) H ₁₃ -n (44) (58)	ee (%) 91 92 89	895
$R = \frac{1}{2}$ OH Mixture of R = 2-OMe, 2-OPr- <i>i</i> , 4-NO ₂	Me ₂ NOC OBO Bu Zn(CH ₂ I) ₂ •DME (5 eq), CH ₂ Cl ₂ - 35° to reflux	R	∕он	R 2-OM 2-OPi 4-NO	(%) e (68) -i (52) 2 (26)	ee (%) 90 93 88	89:
$R \xrightarrow{H} OH$ Mixture of R = H, 2-OPr- <i>i</i> , 2-OC ₆ H ₁₃₋₇ , 4-NO ₂	Me ₂ NOC O B Bu Zn(CH ₂ I) ₂ •DME (5 eq),	R	∕он	R H 2-OPr-1 2-OC ₆ H 4-NO ₂	(%) (58) (50) H ₁₃ -n (63) (76)	cc (%) 91 92 92 90	89:
R = 2-OMe, 2-OPr- <i>i</i> , 2-OC ₆ H ₁₃ - <i>n</i> , 2-NO ₂	CH ₂ Cl ₂ , -35° to reflux Me ₂ NOC, CONMe ₂ OB Bu Zn(CH ₂ I) ₂ -DME (5 eq), CH ₂ Cl ₂ , -35° to reflux	R	∕он	R 2-OMe 2-OPr- 2-OC6 2-NO2	(%) (82) i (77) H ₁₃ - <i>n</i> (80) (86)	cc (%) 88 91 92 88	89:
Рһ	$Me_2NOC CONMe_2$ $B O (1.1 eq)$ $Bu$ $Zn(CH_2I)_2 (x eq),$ solvent 25°	рь Он (>95)	M Li Na K MgBr ZnEt H	x5 5 5 5 5 5	Solvent CH ₂ Cl ₂ CH ₂ Cl ₂	ee (%) 88 58 91 33 85 93	18 18
	Jorren, 23		H H H H H	2.2 1 5 5 5	CH ₂ Cl ₂ CH ₂ Cl ₂ PhMe (CH ₂ Cl) ₂ <i>t</i> -BuOMe	93 93 ^h 93 90 89	
			 U	5	DME	,, 81	

Substrate	Conditions	Product(s) and Yield(s) (%), and ee (%)					
R NHCO ₂ Et	$Me_2NOC \qquad CONMe_2 \\ O \qquad O \\ B \\ Bu \\ Bu$	$R \xrightarrow{NHCO_2Et} \frac{R}{Ph} (\%) = e(\%)$ $Ph(CH_2)_2 (25) -55$	187				
ТгО	$Zn(CH_2I)_2 \text{-DME},$ $CH_2CI_2, -10^{\circ}$ $Me_2NOC \qquad \qquad O \qquad$	TroOH (43)	661				
HO OTBDMS	Me ₂ NOC Bu Zn(CH ₂ I) ₂ ,	HO OTBDMS (>91)	192				
ОН	CH ₂ Cl ₂ , -15 to 25° Me ₂ NOC O B Bu Zn(CH ₂ I) ₂ •DME (3 eq), CH ₂ Cl ₂ , -10°	OH (65) 65% de mono:bis = 19:1	187, 189				
ОН	$Me_2NOC$ $O$ $B_1$ $Bu$ $Zn(CH_2I)_2 \bullet DME (2.5 eq),$	OH (70) 65% de mono:bis = 19:1	187, 189				
но	$CH_2Cl_2, -10^{\circ}$ $Me_2NOC, CONMe_2$ $O_B O_B U_B$ $Zn(CH_2l)_2 (1.5 eq),$ $CH_2Cl_2, -5^{\circ} to rt$	HOOH (70) 75% de	661				
С	$\begin{array}{c} \text{Me}_2\text{NOC} \\ O \\ O \\ B \\ I \\ B \\ U \\ \\ \text{Zn}(\text{CH}_2\text{I})_2 \text{-}\text{DME} (1.6 \text{ eq}), \\ \text{CH}_2\text{Cl}_2, 0^\circ \text{ to rt} \end{array}$	OH (87) 93 mono:bis = >20:1	187, 189				
Ph	Me ₂ NOC O B D Zn(CH ₂ I) ₂ •DME (3 eq), CH ₂ Cl ₂ , -10°	Ph (84) 91 mono:bis = >20:1	187, 189				
	$Me_2NOC \qquad CONMe_2 \\ O \\ B^{0} \\ Bu \\ Zn(CH_2I)_2, CH_2CI_2$	$H \rightarrow H \rightarrow$	819, 821				

Substrate	Conditions	Product(s) and Yield(s) (%), and ee (%)	Refs.
	Me ₂ NOC OB Bu Zn(CH ₂ I) ₂ , CONMe ₂	I + II (81) I:II = 10:1	819. 821
н, н Рћ — ОН	$Me_2NOC$ $CONMe_2$ $CONMe_2$ $B_{U}$ $B_{U}$ $Zn(CH_2I)_2, CH_2CI_2$	$H \qquad H \qquad$	819, 1 821
	Me ₂ NOC O B U Zn(CH ₂ I) ₂ , CONMe ₂	I + II (79) I:II = 1:>10	819, 821
H, H Ph OH	$\begin{array}{c} \text{Me}_2\text{NOC} \\ & \text{CONMe}_2 \\ & \text{O} \\ & \text{Bu} \\ \\ & \text{Zn}(\text{CH}_2\text{I})_2, \text{CH}_2\text{Cl}_2 \end{array}$	$H \qquad H \qquad$	H 819, 821
	$\begin{array}{c} Me_2NOC \\ O \\ Bu \\ Bu \\ Zn(CH_2I)_2, CH_2Cl_2 \end{array}$	I + II (79) I:II = 5:1	819, 821
H Ph	$Me_2NOC$ $OB_{I}$ $Bu$ $Zn(CH_2I)_2, CH_2CI_2$	$H \rightarrow H \rightarrow$	H 819, 820
	Me ₂ NOC OB Bu Zn(CH ₂ I) ₂ , CH ₂ Cl ₂	<b>I</b> + <b>II</b> (78) <b>I:II =</b> 1:>10	819, 820
Рһ	HO ₂ C HO $CO_2H$ OH Et ₂ Zn, CH ₂ I ₂ , (CH ₂ Cl) ₂ , -12°	Рh (72) 6:1	654, 822
	$HO_2C$ $HO$ $OH$ $Et_2Zn, CH_2I_2,$ $(CH_2CI)_2, -12^{\circ}$	Ph (84) 6:1	<b>654.</b> 822
PhOH	1. Et ₂ Zn (1.1 eq), 0° 2. (+)-DET, 0° 3. Et ₂ Zn (2 eq), CH ₂ I ₂ (4 eq), (CH ₂ Cl) ₂ , -12°	Ph(46) 81	183

Substrate	Conditions	Product(s) and Yield(s) (%), and ee (%)	Refs.
нологи		но ОН (94)	162, 192, 653, 675
	Zn(CH ₂ I) ₂ , CH ₂ Cl ₂ , 0 to 25° or: Zn(CH ₂ I) ₂ , CH ₂ Cl ₂ /DME, -15 to 25°	" (93)	162, 192, 653, 655
	Me ₂ NOC O B Bu	но ОН (100)	162, 675
	Zn(CH ₂ I) ₂ , CH ₂ Cl ₂ , 0 to 25° or: Zn(CH ₂ I) ₂ , CH ₂ Cl ₂ /DME, -15 to 25°	" (100)	162, 653
С	$\begin{array}{c} Me_2NOC \\ O \\ B \\ Bu \\ Zn(CH_2I)_2 \bullet DME, \\ CH_2Cl_2, -10^\circ \text{ to rt} \end{array}$	$ \begin{array}{c}                                     $	506
О	$Me_2NOC$ $CONMe_2$ $B_1$ $B_1$ $B_2$ $Zn(CH_2I)_2^*DME (4.2 eq),$ $CH_2CI_2, 0^\circ$	OH (>95) 88 mono:bis = >20:1	187, 189
HO	$Me_2NOC + CONMe_2$ $O = D = O $ $Bu = D = O $ $CONMe_2 = (1.1 eq)$ $Bu = D = O $ $CONMe_2 = (1.1 eq)$ $D = O $ $D = O $ $D = O $	HO (%) mono:bis ee (%) Ac (>95) >20:1 85 Bn (>95) >20:1 86	189, 678
ностори	$Me_2NOC CONMe_2$	TBDPS (>95) >20:1 87 HO OH (80)	661
	Zn(CH ₂ I) ₂ (5 eq), CH ₂ Cl ₂ , -5° to rt Me ₂ NOC O B B B $CONMe_2$ O $CONMe_2$ O $CONMe_2$ O $CONMe_2$ O $CONMe_2$ O $CONMe_2$ O $CONMe_2$ O $CONMe_2$ O $CONMe_2$ O $CONMe_2$ O O $CONMe_2$ O O O O O O O O	" (90). ~10% of 2 other isomers	194

	Substrate	Conditions	Product(s) and Yield(s) (%), and ee (%)	Refs.
	но	Me ₂ NOC B Bu Zn(CH ₂ I) ₂ •DME, CH CL 7 ²⁰ to to	но ОН (86)	663
	но	$\begin{array}{c} H_2Cl_2, -/8^\circ \text{ to ft} \\ \\ Me_2NOC \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	HO (83)	193, 662
	С	CH ₂ Cl ₂ , -40 to 25° Me ₂ NOC, CONMe ₂ $B_{\rm B}$ Zn(CH ₂ l) ₂ •DME (1.6 eq),	OH (84) 93 mono:bis = >20:1	187, 189
	Bu ₃ Sn, OH	$\begin{array}{c} H_2Cl_2, U^*\\ M_2NOC \\ H_2 \\ H$	Bu ₃ Sn. OH (98) 88-90	188
	Bu ₃ SnOH	$Me_2NOC$ $O$ $Bu$ $Bu$ $Et_2Zn, CH_2I_2, CH_2CI_2$	Bu ₃ SnOH (98) 88-90	188
C ₁₇	И	Me ₂ NOC OBO Bu	(74)	681
C ₁₈	HO OTBDMS	$\begin{array}{c} \text{Me}_2\text{NOC} \\ & \text{CONMe}_2 \\ & \text{O} \\ & \text{Bu} \\ \\ & \text{Zn}(\text{CH}_2\text{I})_2, \\ & \text{CH}_2\text{Cl}_2/\text{DME}, -40^\circ \end{array}$	HO OTBDMS (90)	192, 655
		Me ₂ NOC B Bu Zn(CH ₂ I) ₂ , CH ₂ Cl ₂ /DME, -15 to 25°	HO (84)	192
C ₂₁	HO OTBDMS	Me ₂ NOC O Bu	HO OTBDMS (72) +	662
		$Zn(CH_2I)_2$ •DME, MS (4 Å). CH ₂ CI ₂ , -25° to rt	HO OTBDMS (26)	



^a Sense of induction not determined.

^a ZnI₂ (1 eq) was added.

^h Zn(CH₂I)₂ was used instead of Zn(CH₂I)₂•DME.

 $^{\it c}$  Zn(CH_2I)_2•DME (10 eq) was used.

^d The enantiomer of the ligand was used.

^e Absolute configuration of the chiral ligand.

^fIsolated yield of the pure anti isomer.

8 The yield was 85%.



$ \begin{array}{c} & (0,12 \text{ cq}) \\ & (0$	R ² H           H           H           H           H           H           H           H           Ph           Ph           (CH2)2           H           OCH2           H           OCH2           H           DCH2           H           DCH2           H           DCH2           H           DCH2           H           DCH2	R ³ Ph 2-O ₂ NC ₆ H 3-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-CF ₃ C ₆ H, 3.5-(CF ₃ ) ₂ 2-O ₂ NC ₆ H 3-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H	$\begin{array}{c cccc} (\%) & ee (\%) \\ \hline (75) & 68 \\ \hline (4 & (92) & 75 \\ \hline (4 & (72) & 33 \\ \hline (4 & (82) & 76 \\ \hline (4 & (99) & 67 \\ \hline (5 + 1) & (99) & 29 \\ \hline (4 & (82) & 51 \\ \hline (4 & (71) & 31 \\ \hline (4 & (71) & 75 \\ \hline (4 & (82) & 80 \\ \hline (4 & (100) & 82 \\ \hline (4 & (100) & 82 \\ \hline (5 + 1) & (70) & 36 \\ \hline \end{array}$	30, 20 30, 20 30, 20 30, 20 30 30 30 30, 20 30, 20 30, 20 30, 20 30, 20
(0.12  cq) (0.12 cq) NHSO ₂ R ³ Et ₂ Zn (2 cq), CH ₂ I ₂ (3 eq), Ph CH ₂ CI ₂ /hexane, -23°, 5 h Ph Ph Ph H H H H H H H H H H H H H H	R ² H           H           H           H           H           H           H           H           Ph           Ph           (CH ₂ ) ₂ H           OCH ₂ H           DCH ₂ H           DCH ₂ H           DCH ₂	R ³ Ph 2-O ₂ NC ₆ H 3-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-CF ₃ C ₆ H, 3,5-(CF ₃ ) ₂ 2-O ₂ NC ₆ H 3-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H	$\begin{array}{c cccc} (\%) & ee (\%) \\ \hline (75) & 68 \\ \hline (4 & (92) & 75 \\ \hline (4 & (72) & 33 \\ \hline (4 & (82) & 76 \\ \hline (4 & (99) & 67 \\ \hline (6H_3 & (99) & 29 \\ \hline (4 & (82) & 51 \\ \hline (4 & (71) & 31 \\ \hline (4 & (71) & 75 \\ \hline (4 & (82) & 80 \\ \hline (4 & (100) & 82 \\ \hline (100) & 82 \\ \hline (4 & (70) & 36 \\ \hline \end{array}$	30, 20 30, 20 30, 20 30, 20 30 30 30 30, 20 30, 20 30, 20 30, 20 30, 20
$\frac{R^{1}}{Et_{2}Zn (2 eq), CH_{2}I_{2} (3 eq), Ph}$ $Et_{2}CI_{2}/hexane, -23^{\circ}, 5 h$ $Ph$ $Ph$ $Ph$ $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$	R ² H           H           H           H           H           H           H           H           Ph           Ph           (CH ₂ ) ₂ H           OCH ₂ H           DCH ₂ H           DCH ₂ H           DCH ₂	R ³ Ph 2-O ₂ NC ₆ H 3-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-CF ₃ C ₆ H 3,5-(CF ₃ ) ₂ 2-O ₂ NC ₆ H 3-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H	$\begin{array}{c cccc} (\%) & ee (\%) \\ \hline (75) & 68 \\ \hline (4 & (92) & 75 \\ \hline (4 & (72) & 33 \\ \hline (4 & (82) & 76 \\ \hline (4 & (99) & 67 \\ \hline (76H_3 & (99) & 29 \\ \hline (4 & (82) & 51 \\ \hline (4 & (71) & 31 \\ \hline (4 & (71) & 75 \\ \hline (4 & (82) & 80 \\ \hline (4 & (100) & 82 \\ \hline (4 & (100) & 82 \\ \hline (4 & (70) & 36 \\ \hline \end{array}$	30, 20 30, 20 30, 20 30, 20 30 30 30, 20 30, 20 30, 20 30, 20 30, 20 30, 20
Et ₂ Zn (2 eq), CH ₂ I ₂ (3 eq), Ph CH ₂ CI ₂ /hexane, -23°, 5 h Ph Ph Ph H H H H H H H H H H H H H H H	R ² H           H           H           H           H           H           H           H           Ph           Ph           (CH ₂ ) ₂ H           (CH ₂ ) ₂ H           OCH ₂ H           DCH ₂ H           DCH ₂	R ³ Ph 2-O ₂ NC ₆ H 3-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-CF ₃ C ₆ H 3,5-(CF ₃ ) ₂ 2-O ₂ NC ₆ H 3-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H	$\begin{array}{c cccc} (\%) & ee (\%) \\ \hline (75) & 68 \\ \hline (4) & (92) & 75 \\ \hline (4) & (72) & 33 \\ \hline (4) & (82) & 76 \\ \hline (4) & (99) & 67 \\ \hline (6) & (67) & 67 \\ \hline (7) & 75 \\ \hline (100) & 82 \\ \hline (100) & 81 \\ \hline (100) $	30, 20 30, 20 30, 20 30, 20 30 30 30, 20 30, 20 30, 20 30, 20 30, 20 30, 20
Et ₂ Zn (2 eq), CH ₂ I ₂ (3 eq), Ph CH ₂ CI ₃ /hexane, -23°, 5 h Ph Ph Ph H H H H H H H H H H H H H H H	H H H H H Ph Ph (CH ₂ ) ₂ H (CH ₂ ) ₂ H (CH ₂ ) ₂ H OCH ₂ H DCH ₂ H BzOC	Ph 2-O ₂ NC ₆ H 3-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-CF ₃ C ₆ H 3,5-(CF ₃ ) ₂ 2-O ₂ NC ₆ H 3-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30, 20 30, 20 30, 20 30, 20 30 30 30, 20 30, 20 30, 20 30, 20 30, 20 30, 20
CH ₂ Cl ₂ /hexane, -23°, 5 h Ph Ph Ph Ph H H H H H H H H H H H H H H	H H H H Ph Ph (CH ₂ ) ₂ H (CH ₂ ) ₂ H OCH ₂ H DCH ₂ H BzOC	2-O ₂ NC ₆ H 3-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-CF ₃ C ₆ H, 3,5-(CF ₃ ) ₂ 2-O ₂ NC ₆ H 3-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30, 20 30, 20 30, 20 30 30 30, 20 30, 20 30, 20 30, 20 30, 20 30, 20
Ph Ph Ph H H H Ph( Ph( BzC TrO H H H	H H H Ph Ph (CH ₂ ) ₂ H (CH ₂ ) ₂ H OCH ₂ H DCH ₂ H BzOC	3-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-CF ₃ C ₆ H, 3,5-(CF ₃ ) ₂ 2-O ₂ NC ₆ H 3-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30, 20 30, 20 30 30 30, 20 30, 20 30, 20 30, 20 30, 20 30, 20
Ph Ph H H H Ph( Ph( Ph( BzC TrO H H H	H H Ph Ph (CH ₂ ) ₂ H (CH ₂ ) ₂ H OCH ₂ H DCH ₂ H BzOC	4-O ₂ NC ₆ H 4-CF ₃ C ₆ H, 3,5-(CF ₃ ) ₂ 2-O ₂ NC ₆ H 3-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30, 20 30 30 30, 20 30, 20 30, 20 30, 20 30, 20
Ph Ph H H Ph( Ph( BzC TrO H H	H H Ph Ph (CH ₂ ) ₂ H (CH ₂ ) ₂ H OCH ₂ H OCH ₂ H DCH ₂ H BzOC	4-CF ₃ C ₆ H 3,5-(CF ₃ ) ₂ 2-O ₂ NC ₆ H 3-O ₂ NC ₆ H 4-O ₂ NC ₆ H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 30 30, 20 30, 20 30, 20 30, 20 30, 20
Ph H H Ph( Ph( BzC TrO H H	H Ph Ph (CH ₂ ) ₂ H (CH ₂ ) ₂ H OCH ₂ H OCH ₂ H DCH ₂ H BzOC	3,5-(CF ₃ ) ₂ 2-O ₂ NC ₆ H 3-O ₂ NC ₆ H 4-O ₂ NC ₆ H 2-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H	$\begin{array}{cccc} C_{6}H_{3} & (99) & 29 \\ L_{4} & (82) & 51 \\ L_{4} & (71) & 31 \\ L_{4} & (71) & 75 \\ L_{4} & (82) & 80 \\ L_{4} & (100) & 82 \\ L_{4} & (100) & 82 \\ L_{4} & (70) & 36 \end{array}$	30 30, 20 30, 20 30, 20 30, 20 30, 20
H H H Ph( Ph( BzC TrO H H	Ph Ph Ph (CH ₂ ) ₂ H (CH ₂ ) ₂ H OCH ₂ H OCH ₂ H DCH ₂ H BzOC	2-O ₂ NC ₆ H 3-O ₂ NC ₆ H 4-O ₂ NC ₆ H 2-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H	$ \begin{array}{c} \textbf{(a)} & \textbf{(b)} \\ \textbf{(a)} & \textbf{(c)} \\ \textbf{(a)} & \textbf{(c)} \\ \textbf{(c)} \\ \textbf{(c)} \\ \textbf{(c)} \\ \textbf{(c)} \\ (c$	30, 20 30, 20 30, 20 30, 20 30, 20 30, 20
н Н Рһ(י ВzС ТrO Н Н	Ph Ph (CH ₂ ) ₂ H (CH ₂ ) ₂ H OCH ₂ H OCH ₂ H BZOC	2-02NC6H 3-02NC6H 4-02NC6H 2-02NC6H 4-02NC6H 4-02NC6H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30, 20 30, 20 30, 20 30, 20 30, 20
H Ph(I Ph(I BzC TrO H H	PH Ph (CH ₂ ) ₂ H (CH ₂ ) ₂ H OCH ₂ H DCH ₂ H BZOC	4-O ₂ NC ₆ H 2-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H 4-O ₂ NC ₆ H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30, 20 30, 20 30, 20 30, 20
H Ph( Ph( BzC TrO H H	$(CH_2)_2 H$ $(CH_2)_2 H$ $(CH_2)_2 H$ $OCH_2 H$ $OCH_2 H$ $BzOC$	4-02NC6H 2-02NC6H 4-02NC6H 4-02NC6H 4-02NC6H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30, 20 30, 20 30, 20
Ph( Ph( BzC TrO H H	$(CH_2)_2$ H $(CH_2)_2$ H $OCH_2$ H $OCH_2$ H BzOC	2-O2NC6H 4-O2NC6H 4-O2NC6H 4-O2NC6H	$L_4$ (82) 80 $L_4$ (100) 82 $L_4$ (70) 36	30, 20 30, 20
Ph( BzC TrO H H	(CH ₂ ) ₂ H OCH ₂ H OCH ₂ H BZOC	4-O2NC6H 4-O2NC6H 4-O2NC2H	$I_4$ (100) 82 $I_4$ (70) 36	30, 20
Bzt TrO H H	OCH ₂ H OCH ₂ H BzOC	4-O₂NC6H 4-O₂NC6H	4 (70) 36	
TrC H H	DCH ₂ H BzOC	4-0₂NC∠H		30, 20
H H	BzOC		l ₄ (86) 80	30, 20
н		H ₂ 4-O ₂ NC ₆ H	l ₄ (36) 13	30, 20
	TrOC	H ₂ 4-O ₂ NC ₆ H	4 (77) 65	30
Ph			- 3	
$R^1 \swarrow OH$ $R^1 \searrow$	HO, A	R ^I F	$k^2$ (%) ee (%)	<u>)</u>
MSN NSO ₂ C ₄ H ₄ NO ₂ -4	$\chi \sim$	Ph H	i (100) 85	896
$\hat{R}^2$ $\hat{R}^2$ $\hat{R}^2$ $\hat{R}^2$	R ²	Ph(CH ₂ ) ₂ I	fi (97) 54	
11 11		TrOCH ₂ H	H (89) 65	
(0.1 eq)		PhMe ₂ Si H	H (85) 71	
$Et_2Zn$ (2 eq), $CH_2I_2$ (3 eq),		Bu ₃ Sn H	H (93) 60	
CH ₂ Cl ₂ , –23°		н 1	FrOCH, (88) 39	
Substrate Conditions		Product(s) and	Yield(s) (%), and ee	Refs.
$\backslash$				
0 × 0				
Ph-Y -Ph	1			
		(90) 60		31
i-PrO Ti OPr-i		(90) 00		51
$2\pi(CH_2I)_2$ (1 eq),				
CH ₂ Cl ₂ , 0°, 1.5 h				
NHSO ₂ C ₆ H ₄ NO ₂ -4	<b></b>	R	(%) ee (%)	
	CI >> OR	Me	(99) ~0	30
$Ph' \sim OR$ (0.12 eq) $Ph'$		Bn	(97) ~0	
• Ph'         • OR         (0.12 eq)         Ph'           • NHSO ₂ C ₆ H ₄ NO ₂ -4         • NHSO ₂ C ₆ H ₄ NO ₂ -4         • NHSO ₂ C ₆ H ₄ NO ₂ -4			(<3)	
$Ph' \sim OR$ (0.12 eq) $Ph'$ NHSO ₂ C ₆ H ₄ NO ₂ -4		Tr	(~) —	
$\begin{array}{c} Ph^{\prime} & OR \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$		Tr	()	
$\begin{array}{c} \text{Ph} & \text{OR} & (0.12 \text{ eq}) & \text{Ph}' \\ & \text{NHSO}_2C_6H_4NO_2-4 \\ \\ \text{Et}_2\text{Zn} (1 \text{ eq}), \text{CH}_2I_2 (3 \text{ eq}), \\ \\ \text{PhMe/hexane, } -23^\circ, 1.5 \text{ h} \end{array}$		Tr	(-) -	
Ph $\sim$ OR $(0.12 \text{ eq})$ Ph $\sim$ NHSO ₂ C ₆ H ₄ NO ₂ -4 Et ₂ Zn (1 eq), CH ₂ I ₂ (3 eq), PhMe/hexane, -23°, 1.5 h H		Tr		
Ph $OR$ (0.12 eq) Ph NHSO ₂ C ₆ H ₄ NO ₂ -4 Et ₂ Zn (1 eq), CH ₂ I ₂ (3 eq), PhMe/hexane, -23°, 1.5 h H NHSO ₂ Bu-n		Tr		
Ph $OR$ $(0.12 eq)$ Ph $NHSO_2C_6H_4NO_2-4$ Et ₂ Zn (1 eq), CH ₂ I ₂ (3 eq), PhMe/hexane, -23°, 1.5 h	он	Tr (—) 76-84	()	206
Ph $OR$ (0.12 eq) Ph NHSO ₂ C ₆ H ₄ NO ₂ -4 Et ₂ Zn (1 eq), CH ₂ t ₂ (3 eq), PhMe/hexane, -23°, 1.5 h H NHSO ₂ Bu-n Ph	ОН	Tr (—) 76-84		206
Ph $OR$ $(0.12 eq)$ Ph $NHSO_2C_6H_4NO_2-4$ Et ₂ Zn (1 eq), CH ₂ I ₂ (3 eq), PhMe/hexane, -23°, 1.5 h $H$ $NHSO_2Bu-n$ $H$ $OH$ $HSO_2Bu-n$ Ph $HSO_2Bu-n$ Ph $HSO_2Bu-n$ Ph $HSO_2Bu-n$ Ph $H$ $OH$ $H$ $OH$ $HSO_2Bu-n$ Ph $H$ $OH$ $HSO_2Bu-n$ Ph $H$ $OH$ $H$ $H$ $OH$ $H$ $OH$ $H$ $H$ $OH$ $H$ $H$ $OH$ $H$ $H$ $H$ $OH$ $H$ $H$ $H$ $H$ $OH$ $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$	ОН	Tr (—) 76-84		206
Ph $OR$ (0.12 eq) Ph NHSO ₂ C ₆ H ₄ NO ₂ -4 Et ₂ Zn (1 eq), CH ₂ I ₂ (3 eq), PhMe/hexane, -23°, 1.5 h H NHSO ₂ Bu-n H (0.1 eq) 2,2'-Dipyridyl (0.1 eq),	ОН	Tr (—) 76-84		206
Ph OR $(0.12 \text{ eq})$ Ph NHSO ₂ C ₆ H ₄ NO ₂ -4 Et ₂ Zn (1 eq), CH ₂ f ₂ (3 eq), PhMe/hexane, -23°, 1.5 h H NHSO ₂ Bu- <i>n</i> H NHSO ₂ Bu- <i>n</i> H (0.1 eq) 2,2'-Dipyridyl (0.1 eq), Et ₂ Zn (1.1 eq)	ОН	Tr (—) 76-84		206
Ph OR $(0.12 \text{ eq})$ Ph NHSO ₂ C ₆ H ₄ NO ₂ -4 Et ₂ Zn (1 eq), CH ₂ I ₂ (3 eq), PhMe/hexane, -23°, 1.5 h H NHSO ₂ Bu- <i>n</i> H (0.1 eq) Ph OH 2,2'-Dipyridyl (0.1 eq), Et ₂ Zn (1.1 eq) 1. ZnI ₂ (1.0 eq),	ОН	Tr (—) 76-84		206
Ph OR $(0.12 \text{ eq})$ Ph NHSO ₂ C ₆ H ₄ NO ₂ -4 Et ₂ Zn (1 eq), CH ₂ f ₂ (3 eq), PhMe/hexane, -23°, 1.5 h H NHSO ₂ Bu-n H (0.1 eq) Ph OH 2.2'-Dipyridyl (0.1 eq), Et ₂ Zn (1.1 eq) 1. ZnI ₂ (1.0 eq), 2. Zn(CH ₂ I) ₂ (1.0 eq)	ОН	Tr (—) 76-84		206
Ph OR $(0.12 \text{ eq})$ Ph NHSO ₂ C ₆ H ₄ NO ₂ -4 Et ₂ Zn (1 eq), CH ₂ f ₂ (3 eq), PhMe/hexane, -23°, 1.5 h H NHSO ₂ Bu-n H (0.1 eq) 2,2'-Dipyridyl (0.1 eq), Et ₂ Zn (1.1 eq) 1. ZnI ₂ (1.0 eq), 2. Zn(CH ₂ I) ₂ (1.0 eq)	ОН	Tr (—) 76-84		206
Ph OR $(0.12 \text{ eq})$ Ph NHSO ₂ C ₆ H ₄ NO ₂ -4 Et ₂ Zn (1 eq), CH ₂ f ₂ (3 eq), PhMe/hexane, -23°, 1.5 h H NHSO ₂ Bu-n H (0.1 eq) 2,2'-Dipyridyl (0.1 eq), Et ₂ Zn (1.1 eq) 1. Znl ₂ (1.0 eq), 2. Zn(CH ₂ l) ₂ (1.0 eq) (2.2  response)	с. Он R	Tr (—) 76-84	<u>(%)</u> ec (%)	206
Ph OR $(0.12 \text{ eq})$ Ph NHSO ₂ C ₆ H ₄ NO ₂ -4 Et ₂ Zn (1 eq), CH ₂ f ₂ (3 eq), PhMe/hexane, -23°, 1.5 h H NHSO ₂ Bu-n H (0.1 eq) 2,2'-Dipyridyl (0.1 eq), Et ₂ Zn (1.1 eq) 1. Znl ₂ (1.0 eq), 2. Zn(CH ₂ I) ₂ (1.0 eq) (0.12 eq) "	ОН 	Tr (—) 76-84	(%) ec (%) 70) 65	206 897

TABLE XIV. CYCLOPROPANATION WITH CHIRAL CATALYSTS (Continued)

367

 $CH_2Cl_2$ , –70° to rt, 24 h

					Prod	uct(s) and	r ield(s	) (%), and		I.C.
		H NHSO-Me								
ph np			" 1	R	(%)	ee (%)				46
04		NHSO ₂ Me		н	(75)	26	-			.0
		Ĥ -		ZnEt	(100)	74				
		1. $Et_2Zn$ (1.1 eq)		LIILI	(100)	/4				
		2. Et ₂ Zn (1 cq), CH ₂ I ₂ (2 cq),								
		CH ₂ Cl ₂ = -23°								
		R.								
Р		$\sim$	Ph 1>	$\sim$	ЭН					89
		$R^2SO_2N$ NSO ₂ R ³								
		нн	$\mathbf{R}^1$	$\mathbb{R}^2$	R ³		(%)	ee l	(%)	
		(0.1 eq)	Me	Ph	Me		(100)	5	8	
		$Et_2Zn (2 eq), CH_2I_2 (3 eq),$	Me	Me	Ph		(100)	6	1	
		$CH_2Cl_2, -23^\circ$	i-Dr	Dh	Ma		(100)	5	0	
			(-1) ; p.,	1 11 M	DL		(100)		0	
			1-PT	IVIE	PH M		(100)	2	· ·	
			t-Bu	Ph	Me		(100)	4	·2	
			t-Bu	Me	Ph		(100)	4	0	
			Ph	Me	Me		(100)	-	6	
			Bn	Me	Me		(100)	7	4	
			Bn	Me	CF3		(100)	3	4	
			Bn	Me	4-Me	C6H4	(93)	8	2	
			Bn	Me	4-0 ₂ N	IC ₆ H ₄	(100)	8	5	
			Bn	Me	2,4,6-	Me ₃ C ₆ H ₂	(100)	7	5	
					DWG			(71)		
		NEWG		<u>.</u>	EWG	t _{1/2} (mi	n) e	<u>e (%)</u>		20
		NEWG	" J		COCF ₃	120		0		20
			1	Мe	SO ₂ Me	170		0		
		<ol> <li>Et₂Zn (1.1 eq)</li> <li>Et₂Zn (1 eq), CH₂I₂ (2 eq), CH₂Cl₂, -23°</li> <li>"Catabyst" Et₂Zn (1 l eq)</li> </ol>								
Ph $OH$ Ph $NHSO_2Me$ Ph $NHSO_2Me$ I	Ph NHSO ₂ Me Ph II II NHSO ₂ Me	1. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ 1. "Catalyst", $Et_2Zn (1.1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ NHSO ₂ Me Ph ⁻ OH R = C ₆ H ₄ NO ₂ -4 III IV NHSO ₂ Me	Ph R Ph'		DH ISO2Me Me	"Cataly I II IV V VI VII VIII	st" t ₁	(min) 110 180 110 180 150 80 90 >240 €2	ee (%) 14 17 14 29 0 5 79 	20
Ph $OH$ Ph $NHSO_2Me$ Ph $NHSO_2Me$ I J $O_2$ VI	Ph NHSO2Me Ph II NHSO2Me NHSO2Me VII	1. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ 1. "Catalyst", $Et_2Zn (1.1 eq), 2. Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ VHSO ₂ Me Ph ⁻ OH R = C ₆ H ₄ NO ₂ -4 HI IV NHSO ₂ Me (1) NHSO ₂ Me (1) NHS	Ph		DH 1SO2Me Me ISO2Me ISO2Me	"Cataly I II IV V VI VII VIII IX	st" t ₁	/2 (min) 110 180 110 180 150 80 90 >240 80	ee (%) 14 17 14 29 0 5 79  20	20
Ph $OH$ Ph $NHSO_2Me$ Ph $NHSO_2Me$ I J $O_2$ VI	Ph NHSO ₂ Me Ph II NHSO ₂ Me NHSO ₂ Me VII	1. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ 1. "Catalyst", $Et_2Zn (1.1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ VHSO ₂ Me Ph ^{-'} OH R = C ₆ H ₄ NO ₂ -4 HI IV NHSO ₂ Me VIII VIII	Ph R Ph'		DH HSO2Me Me SO2Me SO2Me	"Cataly I II IV V VI VII VII IX	st" ti	$\frac{1}{10}$ 110 180 110 180 150 80 90 >240 80	ee (%) 14 17 14 29 0 5 79  20 eee (%)	20
Ph $OH$ Ph $NHSO_2Me$ Ph $NHSO_2Me$ I J $O_2$ VI	Ph NHSO ₂ Me Ph II NHSO ₂ Me NHSO ₂ Me VII	1. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ 1. "Catalyst", $Et_2Zn (1.1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ V. $HSO_2Me$ NHSO_2Me NHSO_2Me NHSO_2Me NHSO_2Me NHSO_2Me VIII H NHSO_2Me VIII	Ph R Ph'		DH ISO2Me ISO2Me ISO2Me ISO2Me <u>R</u> Me	"Cataly I II IV V VI VII VII IX	<u>st" էլ</u>	(2 (min)) 110 180 110 180 150 80 90 >240 80 2 (min) 50	ee (%) 14 17 14 29 0 5 79 - 20 eee (%) 80	20
Ph $OH$ Ph $NHSO_2Me$ Ph $NHSO_2Me$ I J $O_2$ VI	Ph NHSO ₂ Me Ph II NHSO ₂ Me NHSO ₂ Me VII	1. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ 1. "Catalyst", $Et_2Zn (1.1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ VHSO ₂ Me Ph' OH R = C ₆ H ₄ NO ₂ -4 HI IV NHSO ₂ Me NHSO ₂ Me VIII H NHSO ₂ Me VIII	Ph R Ph'		DH 1SO2Me SO2Me SO2Me SO2Me Fr	"Cataly I II IV V VI VII VIII IX	<u>st" t</u> ر ۱ <u>۲</u>	(2 (min)) 110 180 110 180 150 80 90 >240 80 2 (min) 50 130	ee(%) 14 17 14 29 0 5 79 - 20 eee(%) 80 67	20
Ph $OH$ Ph $NHSO_2Me$ Ph $NHSO_2Me$ I J $O_2$ VI	Ph NHSO ₂ Me Ph II NHSO ₂ Me NHSO ₂ Me VII	1. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ 1. "Catalyst", $Et_2Zn (1.1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ VHSO2ME Ph' OH R = C_6H_4NO2-4 HI IV NHSO2ME NHSO2ME VIII H NHSO2ME VIII H NHSO2R HNHSO2R H	Ph R Ph'		DH ISO ₂ Me SO ₂ Me SO ₂ Me SO ₂ Me Et i.Pr	"Cataly I II IV V VI VII VIII IX	<u>st" էլ</u>	$\frac{1}{120}$ (min) 110 180 110 180 150 80 90 >240 80 2 (min) 50 130 140	ee(%) 14 17 14 29 0 5 79 - 20 ee(%) 80 67 49	20
Ph $OH$ Ph $NHSO_2Me$ Ph $NHSO_2Me$ I $\int_{O_2}$ VI	Ph NHSO ₂ Me Ph II NHSO ₂ Me NHSO ₂ Me VII	1. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ 1. "Catalyst", $Et_2Zn (1.1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ VHSO2ME Ph' OH R = C_6H_4NO2-4 HI IV NHSO2ME Ph' OH R = C_6H_4NO2-4 HI IV VIII H NHSO2ME VIII H NHSO2ME L Et_2Zn (1.1 eq)	Ph R Ph'		DH ISO2Me SO2Me SO2Me R Et i-Pr	"Cataly I II IV V VI VII VII IX	st" tr	<u>12 (min)</u> <u>110</u> 180     110     180     150     80     90     >240     80 <u>2 (min)</u> <u>50     130     140     150 </u>	ee (%) 14 17 14 29 0 5 79  20 ee (%) 80 67 49 15	20
Ph $OH$ Ph $NHSO_2Me$ Ph $NHSO_2Me$ I J $O_2$ VI	Ph NHSO ₂ Me Ph II NHSO ₂ Me NHSO ₂ Me VII	1. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ 1. "Catalyst", $Et_2Zn (1.1 eq), 2. Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ VH2CI_2, -23° VHSO_2Me Ph' OH R = C_6H_4NO_2-4 H IV NHSO_2Me NHSO_2Me VIII VIII H NHSO_2Re NHSO_2R H I IV 2. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1.1 eq), CH_2I_2 (2 eq), CH_$	Ph R Ph I		DH ISO2Me SO2Me SO2Me Et <i>i</i> -Pr CF3	"Cataly I II IV V VI VII VII IX	st" t ₁	(min) 110 180 110 180 150 80 90 >240 80 2 (min) 50 130 140 150 70	ee (%) 14 17 14 29 0 5 79  20 ee (%) 80 67 49 15 75.77	20
Ph $OH$ Ph $NHSO_2Me$ Ph $NHSO_2Me$ I VI VI	Ph NHSO ₂ Me Ph II NHSO ₂ Me NHSO ₂ Me VII	1. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ 1. "Catalyst", $Et_2Zn (1.1 eq), 2. Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ VHSO ₂ Me Ph ⁻ OH R = C ₆ H ₄ NO ₂ -4 H IV NHSO ₂ Me IV	Ph R Ph		DH ISO ₂ Me SO ₂ Me SO ₂ Me SO ₂ Me Et <i>i</i> -Pr CF ₃ Ph	"Cataly I II IIV V VI VII VIII IX	<u>st" էլ</u>	2 (min) 110 180 150 80 90 >240 80 2 (min) 50 130 140 150 70 140	ee (%) 14 17 14 29 0 5 79  20 ee (%) 80 67 49 15 75-77 22	20
Ph $OH$ Ph $NHSO_2Me$ Ph $NHSO_2Me$ I VI VI	Ph NHSO ₂ Me Ph II NHSO ₂ Me NHSO ₂ Me VII	1. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ 1. "Catalyst", $Et_2Zn (1.1 eq), 2. Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ WHSO ₂ Me Ph' OH R = C ₆ H ₄ NO ₂ -4 HI IV NHSO ₂ Me IV III IV CH ₂ CI ₂ , -23^{\circ} VIII IV CH ₂ CI ₂ , -23^{\circ} VIII	Ph R R		DH $ISO_2Me$ Me $ISO_2Me$ $ISO_2Me$ R Me Et i-Pr $CF_3$ Ph 2,4,	"Cataly I II IV V VI VII VII IX	st" t ₁	2 (min) 110 180 150 80 90 >240 80 2 (min) 50 130 140 150 70 140 50	ee (%) 14 17 14 29 0 5 79  20 ee (%) 80 67 49 15 75-77 32 12 12 12 12 12 12 12 13 14 14 14 14 14 14 15 15 15 16 16 16 16 16 16 16 16 16 16	20
Ph $OH$ Ph $NHSO_2Me$ Ph $NHSO_2Me$ I J $NHO_2VI$	Ph NHSO ₂ Me Ph II NHSO ₂ Me NHSO ₂ Me VII	1. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ 1. "Catalyst", $Et_2Zn (1.1 eq), 2. Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ WHSO ₂ Me Ph' OH R = C ₆ H ₄ NO ₂ -4 HI IV NHSO ₂ Me VIII VIII H NHSO ₂ Me VIII H NHSO ₂ R I. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$	Ph R Ph'		DH ISO2Me Me ISO2Me ISO2Me Et <i>i</i> -Pr CF3 Ph 2,4, 1-na	"Cataly I II IV V VI VII VII IX	<u>st"</u> էլ լլը։ 2	2 (min) 110 180 110 180 150 80 90 >240 80 2 (min) 50 130 140 150 70 140 50	ee (%) 14 17 14 29 0 5 79  20 ee (%) 80 67 49 15 75-77 32 48	20
Ph $OH$ Ph $NHSO_2Me$ Ph $NHSO_2Me$ I J $NHO_2VI$	Ph NHSO ₂ Me Ph II NHSO ₂ Me NHSO ₂ Me VII	1. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ 1. "Catalyst", $Et_2Zn (1.1 eq), 2. Et_2Zn (1.1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ WHSO ₂ Me Phr OH R = C ₆ H ₄ NO ₂ -4 HI IV NHSO ₂ Me VIII VIII H NHSO ₂ Me VIII H NHSO ₂ R 1. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1.1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$	Ph R Ph		DH 1SO ₂ Me Me SO ₂ Me SO ₂ Me Et <i>i</i> -Pr CF ₃ Ph 2,4, 1-na 4-O	^{"Cataly} I II IV V VI VII VII IX	<u>st"</u> էլ լոչ	2 (min) 110 180 110 180 150 80 90 >240 80 2 (min) 50 130 140 150 70 140 50 70	ee (%) 14 17 14 29 0 5 79  20 ee (%) 80 67 49 15 75-77 32 48 76	20
Ph $OH$ Ph $NHSO_2Me$ Ph $NHSO_2Me$ I J $O_2$ VI	Ph NHSO ₂ Me Ph II NHSO ₂ Me NHSO ₂ Me VII	1. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ 1. "Catalyst", $Et_2Zn (1.1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ WHSO ₂ Me Phr OH R = C ₆ H ₄ NO ₂ .4 H IV WHSO ₂ Me VIII H NHSO ₂ Me VIII H NHSO ₂ R 1. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1.1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$	Ph R Ph'		DH ISO2Me Ke SO2Me SO2Me Et <i>i</i> -Pr CF3 Ph 2,4, 1-na 4-O 2-O	"Cataly I II IV V VI VII VII VII IX 6-Me ₃ C ₆ H aphthyl 2NC ₆ H₄ 2N-4-CF ₃ C	<u>st"</u> t ₁ 4 <u>1</u> 2 2	2 (min) 110 180 110 180 150 80 90 >240 80 2 (min) 50 130 140 150 70 140 50 70 70 70	ee (%) 14 17 14 29 0 5 79  20 ee (%) 80 67 49 15 75-77 32 48 76 63	20
Ph $OH$ Ph $NHSO_2Me$ Ph $NHSO_2Me$ I J $O_2$ VI	Ph NHSO2Me Ph II NHSO2Me NHSO2Me VII	1. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ 1. "Catalyst", $Et_2Zn (1.1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$ WHSO ₂ Me Phr OH R = C ₆ H ₄ NO ₂ -4 H NHSO ₂ Me VIII H NHSO ₂ Me H NHSO ₂ Me L Et ₂ Zn (1.1 eq) 2. $Et_2Zn (1.1 eq)$ 2. $Et_2Zn (1.1 eq), CH_2I_2 (2 eq), CH_2CI_2, -23^{\circ}$	Ph R Ph'		DH ISO ₂ Me ISO ₂ Me SO ₂ Me R Me Et <i>i</i> -Pr CF ₃ Ph 2,4, 1-na 4-O 2-O 4-M	"Cataly I II IV V VI VII VII IX 6-Me ₃ C ₆ H aphthyl 2NC ₆ H ₄ 2N-4-CF ₃ ( ieOC ₆ H ₄	<u>st"</u> t ₁ <u>4</u> 2 2 2 2 6 H ₃	$r_{2} (min)$ 110 180 110 180 150 80 90 >240 80 2 (min) 50 130 140 150 70 140 50 70 60	ee (%) 14 17 14 29 0 5 79  20 ee (%) 80 67 49 15 75-77 32 48 76 63 74	20

	Floduct(s) and Fleid(s) (%), and ee	Refs.
NHSO ₂ C ₆ H ₄ NO ₂ -2	Solvent Time (h) (%) ee (%)	
(0.12 eq) "	PhMe 9 (81) 69	30
NHSO ₂ C ₆ H₄NO ₂ -2	CH ₂ Cl ₂ 5.5 (92) 75	
EtaZn (2 eq) CHala (3 eq).	THF 8.5 (~0) —	
solvent/bexane -23°, time	Et ₂ O 8.5 (~0) —	
Ĥ		
NHSO ₂ Me	Additive $t_{1/2}$ (min) ee (%)	20
(U.I eq)	- a au 7nl -2 94	20
H	ZnBr. <3 80	
1. Et ₂ Zn (1.1 eq), additive (1 eq)	$Z_{1}D_{12}$ $(3 - 30)$	
2. $Et_2Zn$ (1 eq), $CH_2I_2$ (2 eq),	$Z_{n}E_{r} = 10 - 72$	
CH ₂ Cl ₂ , 0°	7n(OAc) = 10 45	
	CdCh 11 83	
	MgIn 50 23	
	PbI ₂ 8 72	
	MnI ₂ 12 32	
	Hgl ₂ 15 39	
	Gal ₃ Dec —	
$\bigvee$	-	
0 0		
Ph. Ph		
Ph-Y - Ph		21
o pri	OH (80) 90	51
i-PrO OPr-i		
$Zn(CH_2I)_2$ (1 eq),		
CH ₂ Cl ₂ , 0°, 1.5 h		
	~ ~	
$H = \frac{1}{30^2 R^2}$	С У ОН	204
$H = \frac{1}{3} $	$R^1 = R^2$ Time (h) (%) ee (%)	204
$H_{2Cl}^{AI-K} F_{II}$	$R^1 = R^2$ Time (h) (%) ee (%) Me CF ₃ 18 (100) 14	204
$H_{SO_2R^2}^{AI=K}$ Et ₂ Zn (2 eq), CH ₂ I ₂ (3 eq). $H_{CH_2CI_2/hexane, -20^\circ, time}$	$\frac{R^{1}}{R^{2}} = \frac{R^{2}}{160} = \frac{100}{14}$ Me CF ₃ 18 (100) 14 Me 4-0 ₂ NC ₆ H ₄ 3 (100) 70	204
$\begin{array}{c} \begin{array}{c} & & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & $	$\frac{R^{1}}{R^{2}} = \frac{R^{2}}{100} = \frac{100}{14}$ Me CF ₃ 18 (100) 14 Me 4-0 ₂ NC ₆ H ₄ 3 (100) 70 Et 4-0 ₂ NC ₆ H ₄ 3 (100) 66	204
$ \begin{array}{c}                                     $	R ¹ R ² Time (h)       (%)       ee (%)         Me       CF ₃ 18       (100)       14         Me       4-O ₂ NC ₆ H ₄ 3       (100)       70         Et       4-O ₂ NC ₆ H ₄ 3       (100)       66         -Bu       4-O ₂ NC ₆ H ₄ 12       (100)       71	204
$H_{SO_2R^2}^{N-K}$ Et ₂ Zn (2 eq), CH ₂ I ₂ (3 eq), $H_{SO_2R^2}^{1-K}$ CH ₂ Cl ₂ /hexane, -20°, time	R ¹ R ² Time (h)       (%)       ee (%)         Me       CF ₃ 18       (100)       14         Mc       4-O ₂ NC ₆ H ₄ 3       (100)       70         Et       4-O ₂ NC ₆ H ₄ 3       (100)       66         ····································	204
$H = \frac{1}{SO_2R^2}$ Et ₂ Zn (2 eq), CH ₂ I ₂ (3 eq), $\frac{1}{2}$ CH ₂ Cl ₂ /hexane, -20°, time	R^1       R^2       Time (h) $(\%)$ ee $(\%)$ Me       CF ₃ 18 $(100)$ 14         Me       4-O ₂ NC ₆ H ₄ 3 $(100)$ 70         Et       4-O ₂ NC ₆ H ₄ 3 $(100)$ 66         Bu       4-O ₂ NC ₆ H ₄ 12 $(100)$ 71         Bu       4-O ₂ NC ₆ H ₄ 12 $(100)$ 73         EBu       4-CF ₃ C ₆ H ₄ 18 $(100)$ 66	204
$H_{SO_2R^2}^{N-K}$ Et ₂ Zn (2 eq), CH ₂ I ₂ (3 eq), $H_{SO_2R^2}^{I}$ CH ₂ Cl ₂ /hexane, -20°, time	R^1       R^2       Time (h) $(\%)$ ee $(\%)$ Me       CF ₃ 18       (100)       14         Me       4-O ₂ NC ₆ H ₄ 3       (100)       70         Et       4-O ₂ NC ₆ H ₄ 3       (100)       66         Bu       4-O ₂ NC ₆ H ₄ 12       (100)       71         Bu       4-O ₂ NC ₆ H ₄ 12       (100)       73         Bu       4-CF ₃ C ₆ H ₄ 18       (100)       66         Bu       3.5-(CF ₃ ) ₂ C ₆ H ₃ 18       (96)       17	204
$ \begin{array}{c}                                     $	R ¹ R ² Time (h)       (%)       ee (%)         Me       CF ₃ 18       (100)       14         Me       4-O ₂ NC ₆ H ₄ 3       (100)       70         Et       4-O ₂ NC ₆ H ₄ 3       (100)       66         ····································	204
$H = SO_2R$ $H = SO_2R$ $H = SO_2R$ $H = SO_2R$	R ¹ R ² Time (h)       (%)       ee (%)         Me       CF ₃ 18       (100)       14         Mc       4-O ₂ NC ₆ H ₄ 3       (100)       70         Et       4-O ₂ NC ₆ H ₄ 3       (100)       66         ····································	204
$H = SO_2R$	R ¹ R ² Time (h)       (%)       ee (%)         Me       CF ₃ 18       (100)       14         Me       4-O ₂ NC ₆ H ₄ 3       (100)       70         Et       4-O ₂ NC ₆ H ₄ 3       (100)       66         Bu       4-O ₂ NC ₆ H ₄ 12       (100)       71         Bu       4-O ₂ NC ₆ H ₄ 12       (100)       73         Bu       4-CF ₃ C ₆ H ₄ 18       (100)       66         Bu       3,5-(CF ₃ ) ₂ C ₆ H ₃ 18       (96)       17         Eu       Ph       14       (100)       76         R       Time (h)       (%)       cc (%)         α-naphthyl       10       (70)       7	204
$H = SO_2R^2$ Et ₂ Zn (2 eq), CH ₂ I ₂ (3 eq). CH ₂ Cl ₂ /hexane, -20°, time I H = SO ₂ R (1) H = SO ₂ R	R ¹ R ² Time (h)       (%)       ee (%)         Me       CF ₃ 18       (100)       14         Me       4-O ₂ NC ₆ H ₄ 3       (100)       70         Et       4-O ₂ NC ₆ H ₄ 3       (100)       66         Bu       4-O ₂ NC ₆ H ₄ 12       (100)       71         Bu       4-O ₂ NC ₆ H ₄ 12       (100)       73         Bu       4-CF ₃ C ₆ H ₄ 18       (100)       66         Bu       3,5-(CF ₃ ) ₂ C ₆ H ₃ 18       (96)       17         Eu       Ph       14       (100)       76 $\frac{R}{\alpha-naphthyl}$ Time (h)       (%)       cc (%)         QCF ₃ 9       (82)       16	204
$H = \begin{cases} N^{1} - K & F_{H} \\ SO_{2}R^{2} \\ Et_{2}Zn (2 eq), CH_{2}I_{2} (3 eq), \\ CH_{2}CI_{2}/hexane, -20^{\circ}, time \\ H = 1 \\ $	R^1       R^2       Time (h)       (%)       ee (%)         Me       CF ₃ 18       (100)       14         Me       4-O ₂ NC ₆ H ₄ 3       (100)       70         Et       4-O ₂ NC ₆ H ₄ 3       (100)       66         4-O ₂ NC ₆ H ₄ 12       (100)       71         4-O ₂ NC ₆ H ₄ 12       (100)       73         4-O ₂ NC ₆ H ₄ 18       (100)       66         4-O ₂ NC ₆ H ₄ 18       (100)       66         Bu       4-CF ₃ C ₆ H ₄ 18       (100)       73         4-Bu       3,5-(CF ₃ ) ₂ C ₆ H ₃ 18       (96)       17         Bu       Ph       14       (100)       76 $\frac{R}{\alpha-naphthyl}$ 10       (70)       7         CF ₃ 9       (82)       16         n-C ₄ F ₉ 9       (58)       ~0	204
$H = \begin{cases} SO_2R^2 \\ SO_2R^2 \\ SO_2R^2 \\ SO_2R^2 \\ SO_2R^2 \\ SO_2R^2 \\ CH_2Cl_2/hexane, -20^\circ, time \\ H \\ SO_2R \\ H \\ SO_2R \\ H \\ SO_2R \\$	R ¹ R ² Time (h)       (%)       ee (%)         Me       CF ₃ 18       (100)       14         Me       4-O ₂ NC ₆ H ₄ 3       (100)       70         Et       4-O ₂ NC ₆ H ₄ 3       (100)       66         -Bu       4-O ₂ NC ₆ H ₄ 12       (100)       71         -Bu       4-O ₂ NC ₆ H ₄ 12       (100)       73         -Bu       4-O ₂ NC ₆ H ₄ 18       (100)       66         -Bu       3,5-(CF ₃ ) ₂ C ₆ H ₃ 18       (96)       17         -Bu       9       14       (100)       76 $\frac{R}{\alpha-naphthyl}$ 10       (70)       7         CF ₃ 9       (82)       16 <i>n</i> -C ₄ F ₉ 9       (58)       ~0	204
$H = \begin{cases} SO_2R^2 \\ SO_2R^2 \\ SO_2R^2 \\ SO_2R^2 \\ SO_2R^2 \\ SO_2R \\ H = \begin{cases} SO_2R \\ I \\ SO_2R \\ I \\ SO_2R \\ I \\ SO_2R \\ SO$	R ¹ R ² Time (h)       (%)       ee (%)         Me       CF ₃ 18       (100)       14         Me       4-O ₂ NC ₆ H ₄ 3       (100)       70         Et       4-O ₂ NC ₆ H ₄ 3       (100)       66         Bu       4-O ₂ NC ₆ H ₄ 12       (100)       71         Et       4-O ₂ NC ₆ H ₄ 12       (100)       73         EBu       4-O ₂ NC ₆ H ₄ 18       (100)       66         Bu       3,5-(CF ₃ ) ₂ C ₆ H ₃ 18       (96)       17         EBu       Ph       14       (100)       76         Me       Time (h)       (%)       cc (%)         CF ₃ 9       (82)       16         n-C ₄ F ₉ 9       (58)       ~0	204
$H = \frac{SO_2R^2}{SO_2R^2}$ Et ₂ Zn (2 eq), CH ₂ I ₂ (3 eq), CH ₂ Cl ₂ /hexane, -20°, time H = \frac{SO_2R}{SO_2R} $H = \frac{SO_2R}{Ti(OPr-i)_2}$ Et ₂ Zn (2 eq), CH ₂ I ₂ (3 eq), PhMe/hexane, -23°, time	R1       R2       Time (h)       (%)       ee (%)         Me       CF3       18       (100)       14         Me       4-O2NC6H4       3       (100)       70         Et       4-O2NC6H4       3       (100)       66         Bu       4-O2NC6H4       12       (100)       71         Bu       4-O2NC6H4       12       (100)       73         EBu       4-O2NC6H4       18       (96)       17         Bu       3.5-(CF3)2C6H3       18       (96)       17         EBu       Ph       14       (100)       76 $\frac{R}{\alpha$ -maphthyl}       10       (70)       7         CF3       9       (82)       16 $n-C_4F_9$ 9       (58)       ~0	204
$H = \begin{bmatrix} SO_2 R^2 \\ FI_2 ZI_1 (2 eq), CH_2 I_2 (3 eq), \\ CH_2 CI_2 / hexane, -20^\circ, time \end{bmatrix}$	R ¹ R ² Time (h)       (%)       ee (%)         Me       CF3       18       (100)       14         Me       4-O2NC6H4       3       (100)       70         Et       4-O2NC6H4       3       (100)       66         Bu       4-O2NC6H4       12       (100)       71         Bu       4-O2NC6H4       12       (100)       73         Bu       4-O2NC6H4       12       (100)       66         Bu       4-O2NC6H4       12       (100)       73         Bu       4-O2NC6H4       18       (96)       17         Bu       3.5 (CF3)2C6H3       18       (96)       17         Bu       Ph       14       (100)       76         R       Time (h)       (%)       cc (%) $\alpha$ -naphthyl       10       (70)       7         CF3       9       (58)       ~0         n-C4F9       9       (58)       ~0	204
$H = \frac{SO_2R}{I}$ Et ₂ Zn (2 eq), CH ₂ I ₂ (3 eq), CH ₂ Cl ₂ /hexane, -20°, time I H = \frac{SO_2R}{I} $H = \frac{SO_2R}{I}$ $H = \frac{SO_2R}{I}$ Et ₂ Zn (2 eq), CH ₂ I ₂ (3 eq), PhMe/hexane, -23°, time I H = \frac{H}{I} NHSO ₂ Me	R ¹ R ² Time (h)       (%)       ee (%)         Me       CF3       18       (100)       14         Me       4-O2NC6H4       3       (100)       70         Et       4-O2NC6H4       3       (100)       71         Bu       4-O2NC6H4       12       (100)       73         Ebu       4-O2NC6H4       12       (100)       73         Ebu       4-CF3C6H4       18       (96)       17         Ebu       3.5 (CF3)2C6H3       18       (96)       17         Ebu       3.5 (CF3)2C6H3       18       (96)       17         Ebu       9       (38)       20       16 $\alpha$ -naphthyl       10       (70)       7       CF3       9       (58)       ~0	204
$H = SO_2R^2$ Et ₂ Zn (2 eq), CH ₂ I ₂ (3 eq), CH ₂ Cl ₂ /hexane, -20°, time $H = SO_2R$ $H = SO_2$	R ¹ R ² Time (h)       (%)       ee (%)         Me       CF3       18       (100)       14         Me       4-O2NC6H4       3       (100)       70         Et       4-O2NC6H4       3       (100)       70         Et       4-O2NC6H4       12       (100)       71         Ebu       4-O2NC6H4       12       (100)       73         Ebu       4-O2NC6H4       18       (96)       17         Ebu       4-CF3C6H4       18       (96)       17         Ebu       3,5 (CF3)2C6H3       18       (96)       17         Ebu       9       (38)       96       16 $\alpha$ -naphthyl       10       (70)       7         CF3       9       (82)       16 $n-C_4F_9$ 9       (58)       ~0	204 30 464
$H = SO_2R^2$ Et ₂ Zn (2 eq), CH ₂ I ₂ (3 eq), CH ₂ Cl ₂ /hexane, -20°, time I H = SO ₂ R H = SO ₂ R Ti(OPr- <i>i</i> ) ₂ " H = SO ₂ R Et ₂ Zn (2 eq), CH ₂ I ₂ (3 eq), PhMe/hexane, -23°, time I H = NHSO ₂ Me (0.1 eq) (0.1	$\frac{R^{1}}{I} = \frac{R^{2}}{CF_{3}} = \frac{Time(h)(\%)}{18} = \frac{ee(\%)}{14}$ Mc 4-O_2NC_{6}H_{4} 3 (100) 70 Et 4-O_2NC_{6}H_{4} 3 (100) 66 E-Bu 4-O_2NC_{6}H_{4} 12 (100) 71 E-Bu 4-O_2NC_{6}H_{4} 12 (100) 73 E-Bu 4-CF_{3}C_{6}H_{4} 18 (100) 66 E-Bu 3,5-(CF_{3})_{2}C_{6}H_{3} 18 (96) 17 E-Bu 9h 14 (100) 76 $\frac{R}{\alpha-naphthyl} = \frac{Time(h)(\%)}{\alpha-naphthyl} \frac{cc(\%)}{10} 7$ CF ₃ 9 (82) 16 n-C_{4}F_{5} 9 (58) ~0 $\frac{R}{I} = \frac{1}{I} + \frac{1}{I}$	204 30 464
$H = SO_2R^2$ Et ₂ Zn (2 eq), CH ₂ I ₂ (3 eq), CH ₂ Cl ₂ /hexane, -20°, time H = SO ₂ R H = SO ₂ R Ti(OPr- <i>i</i> ) ₂ " H = SO ₂ R Et ₂ Zn (2 eq), CH ₂ I ₂ (3 eq), PhMe/hexane, -23°, time H = NHSO ₂ Me (0.1 eq) (0.1 e	R ¹ R ² Time (h)       (%)       ee (%)         Me       CF3       18       (100)       14         Mc       4-O2NC6H4       3       (100)       70         Et       4-O2NC6H4       3       (100)       70         Et       4-O2NC6H4       12       (100)       71         Ebu       4-O2NC6H4       12       (100)       73         E-Bu       4-CF3C6H4       18       (100)       66         E-Bu       3.5-(CF3)2C6H3       18       (96)       17         E-Bu       3.5-(CF3)2C6H3       18       (96)       17         E-Bu       9       (32)       16 $\alpha$ -naphthyl       10       (70)       7         CF3       9       (82)       16 $n-C_4F_9$ 9       (58)       ~0         I       OH       H       Ph       II         I2% ce       61% ee       et	204 30 464
$H = SO_2R^2$ Et ₂ Zn (2 eq), CH ₂ I ₂ (3 eq), CH ₂ CI ₂ /hexane, -20°, time H = SO ₂ R H = SO ₂ R Ti(OPr- <i>i</i> ) ₂ " H = SO ₂ R Et ₂ Zn (2 eq), CH ₂ I ₂ (3 eq), PhMe/hexane, -23°, time H = VHSO ₂ Me (0.1 eq) (0.1 e	R ¹ R ² Time (h)       (%)       ee (%)         Me       CF3       18       (100)       14         Mc       4-O2NC6H4       3       (100)       70         Et       4-O2NC6H4       3       (100)       70         Et       4-O2NC6H4       12       (100)       71         Ebu       4-O2NC6H4       12       (100)       73         E-Bu       4-CF3C6H4       18       (96)       17         E-Bu       3.5-(CF3)2C6H3       18       (96)       17         E-Bu       3.5-(CF3)2C6H3       18       (96)       17         E-Bu       9       (82)       16 $\alpha$ -naphthyl       10       (70)       7         CF3       9       (82)       16 $n-C_4F_9$ 9       (58)       ~0         I       OH       H       Ph       II         I2% ce       61% ce       61% ce         (58)       I:II = 65:35	204 30 464

TABLE XIV. CYCLOPROPANATION WITH CHIRAL CATALYSTS (Continued)



TABLE XIV. CYCLOPROPANATION WITH CHIRAL CATALYSTS (Continued)

Substrate Conditions Product(s) and Yield(s) (%) Refs.  $\overline{C_2}$ HN^{-CO₂R} HN^{-CO₂R} H№_^{CO2R} Et₂Zn, CHFl₂, 548 conditions,  $CH_2Cl_2$ / \ ∎ F п Ĩ R Conditions (%) I:II -40° then rt (<10) Bn _ Bn MS (4Å), DME, π (25) 64:36 t-Bu MS (4Å), DME, 0° (30) 60:40 CO₂Bn _CO₂Bn [∼]N[−]CO₂Bn Ph ⁄ Et₂Zn, CHFI₂, Ph Ph 548 + conditions - F  $\bigtriangleup$ I п Conditions (%) I:П (79) 65:35 hexane, --20° (63) 65:35 cyclohexane, -20° PhMe, -20° (64) 65:35 THF, -20° then rt (0) _ Et₂O, -20° (73) 63:37 CCl₄, -20° (75) 60:40 CHCl3, -20° 63:37 (81)  $CH_2Cl_2, -20^{\circ}$ (79) 69:31 CH₂Cl₂, -40° (78) 71:29 CH₂Cl₂, -78° (68) 76:24

TABLE XV. CYCLOPROPANATION OF ALKENES USING A SUBSTITUTED DIHALIDE



TABLE XV. CYCLOPROPANATION OF ALKENES USING A SUBSTITUTED DIHALIDE (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		$\begin{tabular}{ c c c c c c c c c c c c c c c c } \hline R^1 & R^2 & R^3 & (\%) & I:II & ee (\%) \\ \hline H & Ph & H & (96) & >50:1 & 98 \\ H & Ph & Me & (83) & 14:1 & 90 \\ \hline BnOCH_2 & H & H & (80) & >50:1 & 94 \\ \hline \end{tabular}$	
		H H H (>84) 20:1 90 Et H H (>87) 15:1 94 H <i>n</i> -Pr H (>80) 10:1 93	
	Zn, CF ₂ Br ₂ , I ₂ (cat.), THF, $\pi$	F. (17)	74
DOH	Et ₂ Zn, McCHI ₂ , Et ₂ O	D OH I + OH II (74) I:II = 1:2	395
$\downarrow$	N ₂ CH ZnBr ₂ , Et ₂ O	(62)	399
	CHBr ₃ , Et ₂ Zn (3:2), dry air (10 mL/min)	Br (85)	73, 103
	Et ₂ Zn, CHI ₃ , olefin (xs), 0 to 20°	(55)	274
	CHBr ₃ , Et ₂ Zn (3:2), dry air (10 mL/min)	(85) Br	73, 103
	Et ₂ Zn, CHI ₃ , olefin (xs), 0 to 20°	(63) syn:anti = 69:31	274
	Zn, $CF_2Br_2$ , $I_2$ (cat.), THF, rt	(7) F F	74
	N ₂ CH ZnBr ₂ , Et ₂ O	(43)	399
	CHBr ₃ , Et ₂ Zn (3:2), dry air (10 mL/min)	Br (84)	73, 103
	Zn, CF ₂ Br ₂ , I ₂ (cat.), THF, rt	F. F (4)	74
ОН	Zn anode, -2e, CHX ₃ , CH ₂ Cl ₂ /DMF (9:1)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\$	70
		$\begin{array}{c ccccc} CHX_3 & I(\%) & III(\%) & III(\%) \\ \hline CHCl_3 & (10) & (10) & () \\ CHBrCl_2 & (7) & (27) & (5) \\ CHBr_2Cl & (5) & (20) & (7) \\ \end{array}$	
	Zn anode, $-2e$ , Me ₂ CBr ₂ , ZnBr ₂ present initially, CH CL (DMF ( $(0,1)$ )	(51)	70

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Zn, $CF_2Br_2$ , $I_2$ (cat.), THF, rt	F (21)	74
OTMS	Zn/Cu, MeCHI ₂ , Et ₂ O, reflux	TMSO -H I + (70) I:II = 2.9:1	332
OZnEt	Zn/Cu, MeCHBr ₂ , Et ₂ O, reflux	н 	68
$\bigcirc$	Et ₂ Zn, MeCHI ₂	(40) syn:anti = 1.6/1	71
	Et ₂ Zn, Me ₂ Cl ₂	(45)	71
OH OH	Zn/Cu, MeCHBr ₂ , Et ₂ O, reflux	$H \to H \to H + H \to H \to H $	68
	Zinc reagent, MeCHI ₂ , Et ₂ O, reflux	I + II <u>Zinc reagent</u> (%) I:II Zn/Cu (30 mesh) (62) 78:22 Zn/Ag (30 mesh) (78) 76:24 Zn/Cu (dust) (71) 76:24 Et22n (60) 76:24 EtZnI (67) 73:27	66 66 66 120 66
	Zn/Cu, MeCHI ₂ , Et ₂ O, reflux	$H \qquad H \qquad$	700
$\downarrow$	Et ₂ Zn (0.67 eq), CHBr ₃ (1 dry air (10 mL/min), olefin (xs), 0-10°	eq), Br ^{5^r} (61)	103
	Zn, $CF_2Br_2$ , $l_2$ (cat.), THF, rt	F F F (72)	74
ОН	Zn anode, 2e ⁻ , Me ₂ CBr ₂ , ZnBr ₂ present initially, CH ₂ Cl ₂ /DMF (9:1)	ОН (53)	70
·	Zn, CF ₂ Br ₂ , I ₂ (cat.), THF, rt	F (7)	74
OTMS	Zn source, MeCHI ₂ , solvent, reflux	$\begin{array}{c c} \text{OTMS} & \frac{\text{Zn source Solvent (\%)}}{\text{Zn/Cu} & \text{Et}_2\text{O} & (76)} \\ \text{OTMS} & \text{Et}_2\text{Zn} & \text{C}_6\text{H}_6 & (79) \end{array}$	352

Substrate	Conditions	Product(s) and Yield(s) (%) R
	Et ₂ Zn (2 eq), MeCHI ₂ (2.5 eq), solvent	$\begin{array}{c} R \\ R \\ H \\ H \\ H \\ R \\ H \\ H \\ H \\ H \\$
OTMS	Et ₂ Zn (2 eq), McCHI ₂ (2.5 eq), hexane	Me (84) DME 81:2:17:0 TMSO $H$ I + $H$ II (63) 18 I:II = 29:71
	Zn/Cu, MeCHI ₂ , Et ₂ O, reflux	I + II (65) I:II = 24:76 33
$\bigcirc$	Zn*, MeCHBr ₂ , Et ₂ O, reflux	(24) 1:1 40
	Zn/Cu, MeCHI ₂ , Et ₂ O	" (5) 55:45 66
	Et ₂ Zn, MeCHI ₂ , cyclohexane	" (62) syn:anti = 1.6:1 7
	Et ₂ Zn (0.8 eq), CHBr ₃ (1 eq) dry air (10 mL/min), olefin (xs), 0-10°	H = H = 1.9:1
	Et₂Zn (x eq), CHBr₃ (1 eq), dry air (y mĽ/min), solvent, 50°	x         y         Solvent         (%)         L:II           i         0         olefin         (9)         2.6:1         11           1         10         olefin         (52)         1.3:1         1         1           1         10         olefin         (59)         1.6:1         0.28         10         hexane         (18)         1.8:1           0.52         10         hexane         (30)         1.6:1         0.74         10         hexane         (36)         1.6:1           1         10         hexane         (39)         1.4:1         1.4:1           1.4         10         hexane         (32)         1.1:1
	$Et_2Zn$ (x eq), $CHI_3$ (y eq), olefin (xs), temp	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Zn, $CF_2Br_2$ , $I_2$ (cat.), THF, rt	F (7)
	Zn, $CF_2Br_2$ , solvent, additive	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$Et_{2}O = 1,4-(O_{2}N)_{2}C_{6}H_{4} = (0)$

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	$Et_2Zn, Mc_2CI_2$	(59)	71
OH	EtZnI, MeCHI ₂ , Et ₂ O, reflux	$\bigcup_{H}^{OH} H I + \bigcup_{H}^{OH} H I (67)$	708
	Zn reagent, MeCHI ₂ , Et ₂ O	$ \begin{array}{c cccc} I + II & \underline{Zinc \ reagent} & (\%) & I:II \\ \hline Zn/Cu & (84) & 72:28 \\ Et_2Zn (1 \ eq) & (79) & 62:38 \\ Et_2Zn (2 \ eq) & (60) & 63:37 \\ \end{array} $	120 119 119
	Sm, MeCHI ₂ , THF,78° to rt	I + II (100) I:II = 5:1	57, 58
· · · · · · · · · · · · · · · · · · ·	Et ₂ Zn (x eq), CHBr ₃ (y eq), dry air (10 mL/min), olefin (xs), temp	x/y         Temp         (%)         syn:anti           Br         0.65         0-10°         (68)         2.5:1           1         50°         (42)         2.4:1	73, 103 103
	Et ₂ Zn, CHI ₃ , olefin (xs), 50°	(34) syn:anti = 67:33	274
	Zn, CF ₂ Br ₂ , I ₂ (cat.), THF, π	F. (6)	74
	Zn, CF ₂ Br ₂ , I ₂ (cat.). THF, $rt$	F (40)	74
$\geq \langle$	Zn, $CF_2Br_2$ , $I_2$ (cat.), THF, rt	(96) F F	74
C ₆₋₁₁ N R ¹ OMe N N OH OH OMe	$Et_2Zn$ , $R^2CHI_2$ , hexane, 0°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	889, 890
c,	Zn, CF ₂ Br ₂ , I ₂ (cat.), THF, π	F = F $F = F$	74
ОМе	Et ₂ Zn (1.5 eq), RCHI ₂ (1.5 eq), Et ₂ O, rt	$ \begin{array}{c}                                     $	553
OH	Sm/Hg, MeCHI ₂ , THF, -78° to rt	OH OTBDPS (45)	714, 715
	Zn/Cu, MeCHI ₂ , Et ₂ O	(31)	66
$\bigcirc$	Zn/Cu, MeCHI ₂ , Et ₂ O	(13) 55:45	66

TABLE XV. CYCLOPROPANATION OF ALKENES USING A SUBSTITUTED DIHALIDE (Continued)

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
$\bigcirc$	Et ₂ Zn, MeCHI ₂ , cyclohexane	(71) syn:anti = 1.4:1	71
OTMS	Zn/Cu, MeCHI ₂ , Et ₂ O, reflux	TMSO $H$ I + $H$ II (88) I:II = 3.1:1	332
OH J	Zinc source, MeCHI ₂ , Et ₂ O		
		H $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$ $H$	
		$\frac{\text{Zinc source}}{\text{Zn/Cu}} (\%) \qquad 1:11:111:1V}$	120
		$Et_2Zn$ (72) 20:10:49:21	120
		$Et_2Zn (1 eq)$ (74) 0:49:0:51	119
		$Et_2Zn (2 eq)$ (79) 0:52:0:48	119
ОМе	$Et_2Zn$ (1.5 eq),	OMe	_
PhOTMS	MeCHI₂ (1.5 eq). Et₂O, π	сти (86) ²² 2, (86)	553
OTMS	Et ₂ Zn (1.5 eq),	OTMS	
Ph.	PhCHI ₂ (1.5 eq),	Ph OMe (68)	553
OMe	Εt ₂ Ο, π	^ч _z Рh	
Ph	Et ₂ Zn (1 eq), CHBr ₃ (1 eq), dry air (10 mL/min), olefin (xs), 50°	Ph (trace)	73, 103
	$Et_2Zn$ , CHI ₃ , olefin (xs), 50°	$s^{s^{I}}$ (44) syn: anti = -	274
	Zn, CF ₂ Br ₂ , I ₂ (cat.), THF, rt	F (15)	74
	Me3Al (3 eq), MeCHI2 (3 eq), CH2Cl2, rt	(92) <i>cis:trans</i> = 6.3:1	59
	Et ₂ Zn, MeCHI ₂ , cyclohexane	" (72) <i>syn:anti</i> = 1.3:1	71
	Et ₂ Zn (x eq), CHBr ₃ (1 eq), dry air (10 mL/min), clefin (xc) temp	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	73,
	ocon (xs), comp	1 50° (63) 6.4:1	103
	Et ₂ Zn (0.67 eq), CDBr ₃ (1 eq dry air (10 mL/min), olefin (xs), 0-10°	$\mathbf{Br} = \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C}$	103
	Zn anode, $2e^-$ , $R^1R^2CX_2$ , ZnBr ₂ present initially, CH ₂ Cl ₂ /DMF (9:1)	$R^{1} = \frac{R^{1}R^{2}CX_{2}  (\%)}{Me_{2}CBr_{2}  (46)}$ $R^{2} = \frac{PhCHCl_{2}  (20)}{PhCHBr_{2}  (27)}$	70
ОН	Zn/Cu, MeCHI ₂ . Et ₂ O, reflux	OH I + OH II (88) H I:II = 28:77	700 2

TABLE XV. CYCLOPROPANATION OF ALKENES USING A SUBSTITUTED D	DIHALIDE (Continue	ed)
-------------------------------------------------------------	--------------------	-----

Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	Zinc source		
	MeCHIa EtaO	H IT H II	
	Meenin ₂ , Bi ₂ 0		
		Н	
		Zinc source (%) I:II	
		Zn/Cu (88) 28:72	66
		$Et_2Zn (1 eq)$ (60) 52:48	119
		$Et_2Zn (2 eq)$ (76) 29:71	119
20		он	
OH (	Ft7nL MeCHIa	(34)	65
	$Et_{2}O$ , reflux	<u> </u>	05
		n 5	
	Zn, CF ₂ Br ₂ , I ₂ (cat.),	F (29)	74
Ph	THF, rt	Dh	
		rii -	
	Zn, CF ₂ Br ₂ , I ₂ (cat.),	$\mathbf{F}$ (71)	74
Ph	THF, rt		
		Phi 1	
<b>N</b>	$Et_2Zn$ (x eq),	1	
Ph	MeCHI ₂ (y eq),		69
	CH ₂ Cl ₂ , 0°	Ph Ph	
		x y (%) I:II	
		1.5 2.0 (85) 93:7	
		2.2 4.4 (82) 89:11	
		5 5.0 (58) 93:7	
	1. Et ₂ Zn (1.1 eq)		
	2. Znl ₂	I + II (62) I:II = 71:29	464
	3. $Zn(CHIMe)_2$ , $CH_2Cl_2$ , 0°		
	H		
	(0.1  eq)	, I+ , П	464
	NHSO ₂ Me	Phr OH Phr OH	
	H	12% ee 61% ee	
	1. $Et_2Zn$ (1.1 eq)	(50) 1.11 (5-25	
	2. $ZnI_2$ , $Zn(CHIMe)_2$ ,	(38) $1:11 = 65:35$	
	$CH_2CI_2, 0$		
9-15 R ¹		$\mathbf{R}^{1}$ $\mathbf{F}$ $\mathbf{R}^{1}$ $\mathbf{F}$	01
Ph N	$Et_2Zn (2 eq), CHFI_2 (2 eq),$		91, 548
$\int_{1}^{1} CO_{2}R^{2}$	$CH_2CI_2, -40$	$\Gamma_{\rm II}$ $\Gamma_{\rm III}$ $\Gamma_{\rm II}$ $\Gamma_{\rm II}$ $\Gamma_{\rm II}$ $\Gamma_{\rm II}$ $\Gamma_{\rm III$	540
		$R^1 = R^2$ (%) I:II	
		H Bn (68) 76:24	
		H t-Bu (69) 62:38	
		Me Bn (97) 89:11	
		Mc t-Bu (67) 91:9	
		Ph Bn (90) 93:7	
		Ph t-Bu (87) 93:7	
10		. I I	
$\wedge$	Et ₂ Zn, MeCHI ₂ , O ₂ ,	(93) + (unchange	d) 852
	Et ₂ O, π	но	
OMe OMe	-	MeO	
OTBDMS		Ph Ph	
	Et ₂ Zn, MeCHI ₂	TBDMSO	573
	· · · · · · ·	X X ``	
Ph			—

TABLE XV. CYCLOPROPANATION OF ALKENES USING A SUBSTITUTED DIHALIDE (Continued)



TABLE XV. CYCLOPROPANATION OF ALKENES USING A SUBSTITUTED DIHALIDE (Continued)

^a The solvent was diethyl ether.

388

~	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
2	Et Bu-n	Zn/Hg, TMSCl, HC(OMe) ₃ , Et ₂ O, reflux	MeO. $(46)$ trans: cis = 3:1	77
3	OAc	MeO-CHO Zn/Hg, (ClMe ₂ SiCH ₂ ) ₂ , Et ₂ O, reflux	OMc (89) cis:trans = 2:1	76
	O Bu-n Et	Zn/Hg, TMSCl, HC(OMe) ₃ , Et ₂ O, reflux	$MeO_{n} \xrightarrow{O}_{Et} Bu n \qquad (43) 3:1$	77
;	OAc	MeO-CHO Zrı/Hg, (ClMe ₂ SiCH ₂ ) ₂ , Ei ₂ O, reflux	OAc $H$ $OMe$ $(53) endo:exo = 1:1$	76
		Zn/Hg, TMSCI, Et ₂ O, reflux	$(15) \ cis:trans = 2:1$	77
I	$\bigcirc$	Zn/Hg, TMSCl, ZnCl ₂ , Et ₂ O, reflux	(43) endo:exo = 3.5:1	276
		R-CHO Zn/Hg, (ClMc ₂ SiCH ₂ ) ₂ , Et ₂ O, reflux	$\begin{array}{c c} H \\ H $	76
		R-OMe Zn/Hg, TMSCl, ZnCl ₂ , Et Q, reflux	R         (%)         endo:exo           "         Me         (34)         5.6:1           OMe         (65)         23.5:1	276
		$R \longrightarrow 0$ Zn/Hg, TMSCl, ZnCl ₂ ,	R         (%)         endo:exo           Me         (38)         6.1:1           H         (51)         3.3:1           C1         (30)         2.9:1	276
		$R \longrightarrow O$ Zn/Hg, TMSCl, ZnCl ₂ , Et ₂ O, reflux	$\frac{R}{H} = \frac{(\%) endo:exo}{4:1}$ OMc (20) 5:1	276
,		Zn/Hg, (ClMe ₂ SiCH ₂ ) ₂ , Et ₂ O, reflux	(34)	76
3	Ph	United States of the states of	Ph (53)	76

## TABLE XVI. CYCLOPROPANATION OF ALKENES USING IN SITU FORMATION OF THE CARBENOID

390

Cs



	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
		Zn/Hg, (ClMe ₂ SiCH ₂ ) ₂ , Et ₂ O, reflux	Ph (44) endo:exo = 1:1	76
		MeO-CHO Zn/Hg, (ClMe ₂ SiCH ₂ ) ₂ , Et ₂ O, reflux	OMe (99) endo:exo = 25:1	76
		Zn/Hg, (ClMe ₂ SiCH ₂ ) ₂ , Et ₂ O, reflux	Ph (19) endo: $exo = 1:1$	76
		Zn/Hg, (ClMc ₂ SiCH ₂ ) ₂ , Et ₂ O, reflux	(59) endo:exo = 11:1	76
		Zn/Hg, (ClMe ₂ SiCH ₂ ) ₂ , Et ₂ O, reflux	Ph (55) endo:exo = 20:1	76
C9	Ph	Zn/Hg, TMSCl, HC(OMe) ₃ , Et ₂ O, reflux	$Ph \underbrace{\qquad \qquad }_{(56) cis:trans = 2:1}^{OMe}$	77
C ₁₀	Ph	Zn/Hg, TMSCI, HC(OR) ₃ . Et ₂ O, retlux Zn/Hg, TMSCI.	Ph OR $\frac{R}{Me} \qquad (\%) \qquad cis:trans}{n-Pr} \qquad (43) \qquad 2:1$	77
		$(EtO)_2$ CH(OPh). Et ₂ O, reflux	$Ph \qquad \qquad OEt \qquad (67) \qquad cis:trans = 2:1$	77
		$ \overbrace{0}^{\frown} OMe $ $ Zn/Hg, TMSCl, $ $ Et_2O, reflux $	$Ph \longrightarrow O \longrightarrow OTMS \qquad (55)  cis:trans = 3:1$	77
		Zn/Hg, TMSCl, Et ₂ O, reflux	Ph $OH$ (23) cis:trans = 5:2	77
	CO ₂ Et	Zn/Hg, TMSCl, HC(OEt) ₃ , Et ₂ O, reflux	CO ₂ Et (44) 2:1	77
	H	Zn/Hg, TMSCl, HC(OMe) ₃ , Et ₂ O, reflux	MeO $H$ (65) cis:trans = 5:2	77
	СНО	ClMe2Si SiMe2Cl Zn/Hg	(66)	112

TABLE XVI. CYCLOPROPANATION OF ALKENES USING IN SITU FORMATION OF THE CARBENOID (Continued)

_____
	Substrate	Conditions	Product(s) and Yield(s) (%)	Refs.
	СНО	CIMe ₂ Si SiMe ₂ Cl Zn/Hg	(57) H	112
	n-Bu Bu-n	Zn/Hg, TMSCl, HC(OMe) ₃ , Et ₂ O, reflux	OMe (56) n-Bu-n	77
		PhCHO, Zn/Hg, (ClMe ₂ SiCH ₂ ) ₂ , Et ₂ O, reflux	n-Bu Ph (29) Bu-n	76
	n-Bu Bu-n	Zn/Hg, TMSCl, HC(OMe) ₃ , Et ₂ O, reflux	OMe (53) cis:trans = 10:1	77
C ₁₃	Ph N Me	Sm/Sml ₂ , THF, reflux	Ph N (41)	78
C ₁₄	Ph Me	Sm/SmI ₂ , THF, reflux	Ph- $N$ (41) endo:exo = 9:1 Me	78
	Ph N Me	$Sm/SmI_2$ , THF, reflux	$\begin{array}{c} \begin{array}{c} & (41) \ endo:exo = 1:8 \\ & Me \end{array} \end{array}$	78
C ₁₅	OHC	ClMe ₂ Si SiMe ₂ Cl Zn/Hg	H (41)	112
	СНО	ClMe ₂ Si SiMe ₂ Cl Zn/Hg	H H (47)	112
C ₂₀	CHO	CIMe ₂ Si SiMe ₂ Cl Zn/Hg	(47)	112
	СНО	ClMe ₂ Si SiMe ₂ Cl Zn/Hg	H (46) + H (30)	112

TABLE XVI. CYCLOPROPANATION OF ALKENES USING IN SITU FORMATION OF THE CARBENOID (Continued)

## 8. Acknowledgements

This work was supported by the E. W. R. Steacie Fund, the National Science and Engineering Research Council (NSERC) of Canada, Merck Frosst Canada, Boehringer Ingelheim (Canada), F.C.A.R. (Québec) and the Université de Montréal. A.B. is grateful to NSERC (PGS B) and F.C.A.R. (B2) for postgraduate fellowships.

We wish to thank members of the research group who kindly proofread the manuscript (A. Ratemi, G. M. Sametz) and corrected the tables (J. Bouchard, J.-F. Fournier, M. K. Janes, É. Jolicoeur, C. Lauzon, C. Legault, A. Lemire, J.-S. Leclerc, S. Nolet, T. Ollevier, M. Pourashraf, R. Wurz). We gratefully acknowledge the guidance and assistance of the editorial staff of Organic Reactions, in particular Robert Joyce and Professor Scott E. Denmark, during the preparation of the chapter.

## References

- 1. Emschwiller, G. C. R. Hebd. Seance Acad. Sci. 1929, 188, 1555.
- 2. Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323.
- 3. Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256.
- 4. Furukawa, J.; Kawabata, N. Adv. Organomet. Chem. 1974, 12, 83.
- 5. Wender, P. A.; Eck, S. L. Tetrahedron Lett. 1982, 23, 1871.
- 6. Motherwell, W. B.; Nutley, C. J. Contemp. Org. Synth. 1994, 1, 219.
- Winstein, S.; Sonnenberg, J.; de Vries, L. J. Am. Chem. Soc. 1959, 81, 6523.
- 8. Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307.
- 9. Charette, A. B.; Marcoux, J.-F. Synlett 1995, 1197.
- Charette, A. B.; Lebel, H. in *Comprehensive Asymmetric Catalysis*, Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds., Springer-Verlag, Berlin, 1999, Vol. 2, pp. 581–603.
- Kawabata, N.; Naka, M.; Yamashita, S. J. Am. Chem. Soc. 1976, 98, 2676.
- 12. Furukawa, J.; Kawabata, N.; Fujita, T. Tetrahedron 1970, 26, 243.
- 13. Seyferth, D.; Eisert, M. A.; Todd, L. J. J. Am. Chem. Soc. 1964, 86, 121.
- 14. Maeda, T.; Tada, H.; Yasuda, K.; Okawara, R. J. Organomet. Chem. 1971, **27**, 13.
- Simmons, H. E.; Cairns, T. L.; Vladuchick, S. A.; Hoiness, C. M. Org. React. 1973, **20**, 1.
- Denmark, S. E.; Edwards, J. P.; Wilson, S. R. J. Am. Chem. Soc. 1991, 113, 723.
- Denmark, S. E.; Edwards, J. P.; Wilson, S. R. J. Am. Chem. Soc. 1992, 114, 2592.
- Charette, A. B.; Marcoux, J.-F.; Bélanger-Gariépy, F. J. Am. Chem. Soc. 1996, **118**, 6792.
- 19. Charette, A. B.; Marcoux, J.-F. J. Am. Chem. Soc. 1996, **118**, 4539.
- 20. Denmark, S. E.; O'Connor, S. P. J. Org. Chem. 1997, 62, 3390.
- 21. Dessy, R. E.; Coe, G. R. J. Org. Chem. 1963, 28, 3592.
- 22. Evans, D. F.; Wharf, I. J. Chem. Soc. A 1968, 783.
- 23. Evans, D. F.; Fazakerley, G. V. J. Chem. Soc. A 1971, 182.
- 24. Fabisch, B.; Mitchell, T. N. J. Organomet. Chem. 1984, 269, 219.
- 25. Mareda, J.; Rondan, N. G.; Houk, K. N.; Clark, T.; Schleyer, P. v. R. J. Am. Chem. Soc. 1983, **105**, 6997.
- 26. Bernardi, F.; Bottoni, A.; Miscione, G. P. J. Am. Chem. Soc. 1997, **119**, 12300.

- 27. Hirai, A.; Nakamura, M.; Nakamura, E. Chem. Lett. 1998, 927.
- 28. Dargel, T. K.; Koch, W. J. Chem. Soc., Perkin Trans. 2 1996, 877.
- 29. Nakamura, E.; Hirai, A.; Nakamura, M. J. Am. Chem. Soc. 1998, **120**, 5844.
- Takahashi, H.; Yoshioka, M.; Shibasaki, M.; Ohno, M.; Imai, N.; Kobayashi, S. Tetrahedron 1995, **51**, 12013.
- 31. Charette, A. B.; Brochu, C. J. Am. Chem. Soc. 1995, 117, 11367.
- 32. Erdik, E. Tetrahedron 1987, 43, 2203.
- 33. Howard, F. L. J. Res. Nat. Bur. Stand., A 1940, 24, 677.
- 34. Shank, R. S.; Shechter, H. J. Org. Chem. 1959, 24, 1825.
- 35. Smith, R. D.; Simmons, H. E. Org. Synth. Coll. Vol. V, 1973, 855.
- 36. LeGoff, E. J. Org. Chem. 1964, 29, 2048.
- 37. Rawson, R. J.; Harrison, I. T. J. Org. Chem. 1970, 35, 2057.
- Schuchardt, U.; Nery, J. H. S.; Zuiani, M. A. J. Braz. Chem. Soc. 1991, 2, 61.
- 39. Denis, J. M.; Girard, C.; Conia, J. M. Synthesis 1972, 549.
- 40. Takai, K.; Kakiuchi, T.; Utimoto, K. J. Org. Chem. 1994, 59, 2671.
- 41. Friedrich, E. C.; Lewis, E. J. J. Org. Chem. 1990, 55, 2491.
- 42. Picotin, G.; Miginiac, P. J. Org. Chem. 1987, 52, 4796.
- 43. Friedrich, E. C.; Lunetta, S. E.; Lewis, E. J. J. Org. Chem. 1989, **54**, 2388.
- 44. Stenstrøm, Y. Synth. Commun. 1992, 22, 2801.
- 45. Repic, O.; Vogt, S. Tetrahedron Lett. 1982, 23, 2729.
- Rieke, R. D.; Li, P. T.-J.; Burns, T. P.; Uhm, S. T. J. Org. Chem. 1981, 46, 4323.
- 47. Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron Lett. 1966, 3353.
- 48. Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron 1968, 24, 53.
- 49. Miyano, S.; Hashimoto, H. J. Chem. Soc., Chem. Commun. 1971, 1418.
- 50. Miyano, S.; Hashimoto, H. Bull. Chem. Soc. Jpn. 1973, 46, 892.
- 51. Denmark, S. E.; Edwards, J. P. J. Org. Chem. 1991, 56, 6974.
- 52. Sawada, S.; Inouye, Y. Bull. Chem. Soc. Jpn. 1969, 42, 2669.
- 53. Yang, Z.; Lorenz, J. C.; Shi, Y. Tetrahedron Lett. 1998, 39, 8621.
- 54. Sawada, S.; Oda, J.; Inouye, Y. J. Org. Chem. 1968, **33**, 2141.
- 55. Wittig, G.; Schwarzenbach, K. Angew. Chem. 1959, 71, 652.
- 56. Wittig, G.; Wingler, F. Chem. Ber. 1964, 97, 2146.
- 57. Molander, G. A.; Etter, J. B. J. Org. Chem. 1987, 52, 3942.
- 58. Molander, G. A.; Harring, L. S. J. Org. Chem. 1989, 54, 3525.

- 59. Maruoka, K.; Fukutani, Y.; Yamamoto, H. J. Org. Chem. 1985, 50, 4412.
- 60. Miller, D. B. Tetrahedron Lett. 1964, 989.
- 61. Hoberg, H. Liebigs Ann. Chem. 1962, 656, 1.
- 62. Charette, A. B.; Beauchemin, A. Unpublished results.
- 62a. Imamoto, A.; Takeyama, T.; Koto, H. Tetrahedron Lett. 1986, 3243.
- 63. Lautens, M.; Ren, Y. J. Org. Chem. 1996, 61, 2210.
- 64. Simmons, H. E.; Blanchard, E. P.; Smith, R. D. J. Am. Chem. Soc. 1964, **86**, 1347.
- 65. Friedrich, E. C.; Taggart, D. B.; Saleh, M. A. J. Org. Chem. 1977, **42**, 1437.
- 66. Friedrich, E. C.; Biresaw, G. J. Org. Chem. 1982, 47, 1615.
- 67. Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron Lett. 1968, 3495.
- Mariano, P. S.; Bay, E.; Watson, D. G.; Rose, T.; Bracken, C. J. Org. Chem. 1980, 45, 1753.
- 69. Charette, A. B.; Lemay, J. Angew. Chem., Intl. Ed. Engl. 1997, 36, 1090.
- 70. Durandetti, S.; Sibille, S.; Périchon, J. J. Org. Chem. 1991, 56, 3255.
- 71. Stahl, K.-J.; Hertzsch, W.; Musso, H. Liebigs Ann. Chem. 1985, 1474.
- 72. Nishimura, J.; Furukawa, J. J. Chem. Soc., Chem. Commun. 1971, 1375.
- 73. Miyano, S.; Matsumoto, Y.; Hashimoto, H. J. Chem. Soc., Chem. Commun. 1975, 364.
- 74. Dolbier, W. R.; Wojtowicz, H.; Burkholder, C. R. J. Org. Chem. 1990, **55**, 5420.
- 75. Altman, L. J.; Kowerski, R. C.; Laungani, D. R. J. Am. Chem. Soc. 1978, 100, 6174.
- 76. Motherwell, W. B.; Roberts, L. R. J. Chem. Soc., Chem. Commun. 1992, 1582.
- 77. Fletcher, R. J.; Motherwell, W. B.; Popkin, M. E. J. Chem. Soc., Chem. Commun. 1998, 2191.
- 78. Ogawa, A.; Takami, N.; Sekiguchi, M.; Ryu, I.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1992, **114**, 8729
- 79. Ryu, I.; Aya, T.; Otani, S.; Murai, S.; Sonoda, N. J. Organomet. Chem. 1987, **321**, 279.
- 80. Morisson, V.; Barnier, J. P.; Blanco, L. Tetrahedron 1998, 54, 7749.
- 81. Conia, J. M.; Girard, C. Tetrahedron Lett. 1973, 2767.
- 82. Le Goaller, R.; Pierre, J.-L. Bull. Soc. Chim. Fr. 1973, 1531.
- 83. Murai, S.; Aya, T.; Sonoda, N. J. Org. Chem. 1973, 38, 4354.
- 84. Rubottom, G. M.; Lopez, M. I. J. Org. Chem. 1973, 38, 2097.

- 85. Whitlock, H. W.; Overman, L. E. J. Org. Chem. 1969, 34, 1962.
- Ireland, R. E.; Kowalski, C. J.; Tilley, J. W.; Walba, D. M. J. Org. Chem. 1975, 40, 990.
- 87. Imamoto, T.; Takeyama, T.; Koto, H. Tetrahedron Lett. 1986, 27, 3243.
- 88. Imamoto, T.; Takiyama, N. Tetrahedron Lett. 1987, 28, 1307.
- Vallgarda, J.; Arvidsson, L. E.; Svensson, B. E.; Fowler, C. J.; Hacksell, U. Eur. J. Med. Chem. 1993, 28, 399.
- 90. Gagnon, J. L.; Zajac, W. W. Synth. Commun. 1996, 26, 837.
- Tamura, O.; Hashimoto, M.; Kobayashi, Y.; Katoh, T.; Nakatani, K.; Kamada, M.; Hayakawa, I.; Akiba, T.; Terashima, S. Tetrahedron Lett. 1992, **33**, 3483.
- 92. Morikawa, T.; Sasaki, H.; Mori, K.; Shiro, M.; Taguchi, T. Chem. Pharm. Bull. 1992, **40**, 3189.
- 93. Yong, W.; Vandewalle, M. Synlett 1996, 911.
- 94. Piers, E.; Coish, P. D. Synthesis 1995, 47.
- 95. Fontani, P.; Carboni, B.; Vaultier, M.; Maas, G. Synthesis 1991, 605.
- 96. Zweifel, G.; Clark, G. M.; Whitney, C. C. J. Am. Chem. Soc. 1971, **93**, 1305.
- 97. Yachi, K.; Shinokubo, H.; Oshima, K. Angew. Chem., Int. Ed. Engl. 1998, **37**, 2515.
- 98. Mitchell, T. N.; Kowall, B. J. Organomet. Chem. 1995, 490, 239.
- 99. Von Dolhaine, H.; Hägele, G. Phosphorus Sulfur 1978, 4, 123.
- Shcherbinin, V. V.; Pavlov, K. V.; Shvedov, I. P.; Korneva, O. S.; Menchikov, L. G.; Nefedov, O. M. Izv. Akad. Nauk., Ser. Khim. 1997, 46, 1711.
- 101. Wells, G. J.; Yan, T.-H.; Paquette, L. A. J. Org. Chem. 1984, 49, 3604.
- 102. Rahman, N. A.; Fleming, I. Synth. Commun. 1993, 23, 1583.
- 103. Miyano, S.; Hashimoto, H. Bull. Chem. Soc. Jpn. 1975, 48, 3665.
- 104. Friedrich, E. C.; Niyati-Shirkhodaee, F. J. Org. Chem. 1991, 56, 2202.
- 105. Rickborn, B.; Chan, J. H.-H. J. Org. Chem. 1967, 32, 3576.
- 106. Chan, J. H.-H.; Rickborn, B. J. Am. Chem. Soc. 1968, 90, 6406.
- 107. Girard, C.; Conia, J.-M. J. Chem. Res. (S) 1978, 182.
- 108. Lee, J.; Kim, H.; Cha, J. K. J. Am. Chem. Soc. 1995, **117**, 9919.
- Winkler, J. D.; Bhattacharya, S. K.; Batey, R. A. Tetrahedron Lett. 1996, 37, 8069.
- 110. Imamoto, T.; Hatajima, T.; Takiyama, N.; Takeyama, T.; Kamiya, Y.; Yoshizawa, T. J. Chem. Soc., Perkin Trans. 1 1991, 3127.
- 111. Corey, E. J.; Virgil, S. C. J. Am. Chem. Soc. 1990, **112**, 6429.
- 112. Motherwell, W. B.; Roberts, L. R. Tetrahedron Lett. 1995, 36, 1121.

- 113. Hudlicky, T.; Ranu, B. C.; Naqvi, S. M.; Srnak, A. J. Org. Chem. 1985, **50**, 123.
- 114. Dauben, W. G.; Berezin, G. H. J. Am. Chem. Soc. 1963, 85, 468.
- 115. Poulter, C. D.; Friedrich, E. C.; Winstein, S. J. Am. Chem. Soc. 1969, **91**, 6892.
- Cope, A. C.; Keough, A. H.; Peterson, P. E.; Simmons, H. E.; Wood, G. W. J. Am. Chem. Soc. 1957, **79**, 3900.
- 117. Oppolzer, W.; Radinov, R. N. J. Am. Chem. Soc. 1993, **115**, 1593.
- 118. Moss, R. A.; Chen, E. Y.; Banger, J.; Matsuo, M. Tetrahedron Lett. 1978, **19**, 4365.
- 119. Kawabata, N.; Nakagawa, T.; Nakao, T.; Yamashita, S. J. Org. Chem. 1977, **42**, 3031.
- 120. Friedrich, E. C.; Biresaw, G. J. Org. Chem. 1982, 47, 2426.
- 121. Sawada, S.; Takehana, K.; Inouye, Y. J. Org. Chem. 1968, 33, 1767.
- 122. Russ, P.; Ezzitouni, A.; Marquez, V. E. Tetrahedron Lett. 1997, 38, 723.
- 123. Avramoff, M. Eur. J. Med. Chem. 1981, 16, 199.
- 124. Hanessian, S.; Reinhold, U.; Saulnier, M.; Claridge, S. Bioorg. Med. Chem. Lett. 1998, **8**, 2123.
- 125. Swenton, J. S.; Burdett, K. A.; Madigan, D. M.; Johnson, T.; Rosso, P. D. J. Am. Chem. Soc. 1975, **97**, 3428.
- 126. Takano, S.; Yamane, T.; Takahashi, M.; Ogasawara, K. Synlett 1992, 410.
- 127. Hoberg, J. O.; Bozell, J. J. Tetrahedron Lett. 1995, **36**, 6831.
- 128. Albano-Garcia, E. L.; Arbolario, E. M.; Lorica, R. G. Nat. Appl. Sci. Bull. 1979, **31**, 61.
- 128a Kirmse, W.; Hartmann, M.; Siegfried, R.; Wroblowsky, H. J.; Zang, B.; . Zellmer, V. Chem. Ber. 1981, **114**, 1793.
- 129. Johnson, C. R.; Barbachyn, M. R. J. Am. Chem. Soc. 1982, 104, 4290.
- 130. Wang, T.-Z.; Pinard, E.; Paquette, L. A. J. Am. Chem. Soc. 1996, **118**, 1309.
- 131. Corey, E. J.; Lee, J. J. Am. Chem. Soc. 1993, 115, 8873.
- 132. Schreiber, S. L.; Smith, D. B.; Schulte, G. J. Org. Chem. 1989, 54, 5994.
- 133. Oh, J.; Cha, J. K. Synlett 1994, 967.
- 134. Momose, T.; Nishio, T.; Kirihara, M. Tetrahedron Lett. 1996, 37, 4987.
- 135. Ratier, M.; Castaing, M.; Godet, J.-Y.; Pereyre, M. J. Chem. Res. (S) 1978, 179.
- 136. Charette, A. B.; Lebel, H. J. Org. Chem. 1995, 60, 2966.
- 136a Lebel, H., Ph. D. Thesis, Université de Montréal.

- 137. Yamazaki, T.; Lin. J. T.; Takeda, M.; Kitazume, T. Tetrahedron: Asymmetry 1990, **1**, 351.
- 138. Professor S. E. Denmark, Univ. Illinois, personal communication.
- 139. Lautens, M.; Delanghe, P. H. M. J. Org. Chem. 1992, 57, 798.
- 140. Lautens, M.; Delanghe, P. H. M. J. Org. Chem. 1995, 60, 2474.
- 141. Hoffmann, R. W. Chem. Rev. 1989, 89, 1841.
- 142. Lautens, M.; Delanghe, P. H. M. J. Am. Chem. Soc. 1994, **116**, 8526.
- 143. Paddon-Row, M. N.; Rondan, N. G.; Houk, K. N. J. Am. Chem. Soc. 1982, **104**, 7162.
- 144. Houk, K. N.; Rondan, N. G.; Wu, Y.-D.; Metz, J. T.; Paddon-Row, M. N. Tetrahedron 1984, **40**, 2257.
- 145. Mohr, P. Tetrahedron Lett. 1995, 36, 7221.
- 145a Charette, A. B.; Lebel, H.; Gagnon, A. Tetrahedron 1999, 55, 8845.
- 146. Zhao, Y.; Yang, T.; Lee, M.; Lee, D.; Newton, M. G.; Chu, C. K. J. Org. Chem. 1995, **60**, 5236.
- 147. Morikawa, T.; Sasaki, H.; Hanai, R.; Shibuya, A.; Taguchi, T. J. Org. Chem. 1994, **59**, 97.
- 148. Fukuyama, Y.; Hirono, M., Kodama, M. Chem. Lett. 1992, 167.
- 149. Barrett, A. G. M.; Kasdorf, K.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1994, 1781.
- 150. Onoda, T.; Shirai, R.; Koiso, Y.; Iwasaki, S. Tetrahedron Lett. 1996, **37**, 4397.
- 151. Pilar de Frutos, M.; Dolores Fernández, M.; Fernández-Alvarez, E.; Bernabé, M. Tetrahedron Lett. 1991, **32**, 541.
- 152. Iguchi, K.; Fujita, M.; Nagaoka, H.; Mitome, H.; Yamada, Y. Tetrahedron Lett. 1993, **34**, 6277.
- 153. Panek, J. S.; Garbaccio, R. M.; Jain; N. F. Tetrahedron Lett. 1994, **35**, 6453.
- 154. Landais, Y.; Parra-Rapado, L. Tetrahedron Lett. 1996, **37**, 1205.
- 155. Barrett, A. G. M.; Tustin, G. J. J. Chem. Soc., Chem. Commun. 1995, 355.
- 156. Kunz, H.; Rück, K. Angew. Chem., Int. Ed. Engl. 1993, 32, 336.
- 157. Charette, A. B.; Côté, B.; Marcoux, J.-F. J. Am. Chem. Soc. 1991, **113**, 8166.
- 158. Charette, A. B.; Turcotte, N.; Marcoux, J.-F. Tetrahedron Lett. 1994, **35**, 513.
- 159. Charette, A. B.; Marcoux, J.-F. Tetrahedron Lett. 1993, 34, 7157.
- 159a Charette, A. B.; Côté, B. J. Org. Chem. 1993, 58, 933.

- 160. Arai, I.; Mori, A.; Yamamoto, H. J. Am. Chem. Soc. 1985, **107**, 8254.
- 161. Mori, A.; Arai, I.; Yamamoto, H.; Nakai, H.; Arai, Y. Tetrahedron 1986, **42**, 6447.
- 162. Barrett, A. G. M.; Doubleday, W. W.; Kasdorf, K.; Tustin, G. J. J. Org. Chem. 1996, 61, 3280.
- 163. Mash, E. A.; Nelson, K. A. J. Am. Chem. Soc. 1985, 107, 8256.
- 164. Mash, E. A.; Nelson, K. A. Tetrahedron 1987, 43, 679.
- 165. Mash, E. A.; Math, S. K.; Arterburn, J. B. J. Org. Chem. 1989, 54, 4951.
- 166. Mash, E. A.; Hemperly, S. B.; Nelson, K. A.; Heidt, P. C.; Van Deusen, S. J. Org. Chem. 1990, **55**, 2045.
- 167. Armstrong, R. W.; Maurer, K. W. Tetrahedron Lett. 1995, 36, 357.
- 168. Yeh, S.-M.; Huang, L.-H.; Luh, T.-Y. J. Org. Chem. 1996, 61, 3906.
- 169. Ebens, R.; Kellogg, R. M. Recl. Trav. Chim. Pays-Bas 1990, 109, 552.
- 170. Kang, J.; Lim, G. J.; Yoon, S. K.; Kim, M. Y. J. Org. Chem. 1995, **60**, 564.
- 171. Kaye, P. T.; Molema, W. E. J. Chem. Soc., Chem. Commun. 1998, 2479.
- 172. Ambler, P. W.; Davies, S. G. Tetrahedron Lett. 1988, 29, 6979.
- 173. Tanaka, K.; Uno, H.; Osuga, H.; Suzuki, H. Tetrahedron: Asymmetry 1994, **5**, 1175.
- 174. Sugimura, T.; Futagawa, T.; Yoshikawa, M.; Tai, A. Tetrahedron Lett. 1989, **30**, 3807.
- 175. Sugimura, T.; Futagawa, T.; Tai, A. Tetrahedron Lett. 1988, **29**, 5775.
- 176. Sugimura, T.; Yoshikawa, M.; Futagawa, T.; Tai, A. Tetrahedron 1990, 46, 5955.
- 177. Sugimura, T.; Futagawa, T.; Tai, A. Chem. Lett. 1990, 2291.
- 178. Imai, T.; Mineta, H.; Nishida, S. J. Org. Chem. 1990, 55, 4986.
- 179. Hildebrand, J. P.; Marsden, S. P. Synlett 1996, 893.
- 180. Sugimura, T.; Katagiri, T.; Tai, A. Tetrahedron Lett. 1992, **33**, 367.
- 181. Akiba, T.; Tamura, O.; Hashimoto, M.; Kobayashi, Y.; Katoh, T.; Nakatani, K.; Kamada, M.; Hayakawa, I.; Terashima, S. Tetrahedron 1994, **50**, 3905.
- 182. Denmark, S. E.; Edwards, J. P. Synlett 1992, 229.
- 183. Ukaji, Y.; Nishimura, M.; Fujisawa, T. Chem. Lett. 1992, 61.
- 184. Ukaji, Y.; Sada, K.; Inomata, K. Chem. Lett. 1993, 1227.
- 185. Charette, A. B.; Juteau, H. J. Am. Chem. Soc. 1994, **116**, 2651.
- 186. Charette, A. B.; Prescott, S.; Brochu, C. J. Org. Chem. 1995, 60, 1081.
- 187. Charette, A. B.; Juteau, H.; Lebel, H.; Molinaro, C. J. Am. Chem. Soc.

1998, **120**, 11943.

- 188. Falck, J. R.; Mekonnen, B.; Yu, J.; Lai, J.-Y. J. Am. Chem. Soc. 1996, 118, 6096.
- 189. Charette, A. B.; Juteau, H.; Lebel, H.; Deschênes, D. Tetrahedron Lett. 1996, **37**, 7925.
- 190. Charette, A. B.; Lebel, H. Org. Synth. 1999, 76, 86.
- 191. White, J. D.; Kim, T.-S.; Nambu, M. J. Am. Chem. Soc. 1995, 117, 5612.
- 192. Barrett, A. G. M.; Kasdorf, K. J. Am. Chem. Soc. 1996, **118**, 11030.
- 193. Barrett, A. G. M.; Hamprecht, D.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1996, **118**, 7863.
- 194. Charette, A. B.; Lebel, H. J. Am. Chem. Soc. 1996, 118, 10327.
- 195. Charreau, P.; Julia, M.; Verpeaux, J. N. Bull. Soc. Chim. Fr. 1990, **127**, 275.
- 196. Martínez, A. G.; Fernández, A. H.; Alvarez, R. M.; Barcina, J. O.; Gómez, C. G.; Subramanian, L. R. Synthesis 1993, 1063.
- 197. Charette, A. B.; Lebel, H.; Gagnon, A. Tetrahedron 1999, 55, 8845.
- 198. Kitajima, H.; Aoki, Y.; Ito, K.; Katsuki, T. Chem. Lett. 1995, 1113.
- 199. Kitajima, H.; Ito, K.; Aoki, Y.; Katsuki, T. Bull. Chem. Soc. Jpn. 1997, **70**, 207.
- 200. Takahashi, H.; Yoshioka, M.; Ohno, M.; Kobayashi, S. Tetrahedron Lett. 1992, **33**, 2575.
- 201. Denmark, S. E.; O'Connor, S. P. J. Org. Chem. 1997, 62, 584.
- 202. Denmark, S. E.; Christenson, B. L.; O'Connor, S. P. Tetrahedron Lett. 1995, **36**, 2219.
- 202a Denmark, S. E.; Christenson, B. L.; O'Connor, S. P.; Murase, N. Pure . Appl. Chem. 1996, **68**, 23.
- 203. Imai, N.; Sakamoto, K.; Takahashi, H.; Kobayashi, S. Tetrahedron Lett. 1994, **35**, 7045.
- 204. Imai, N.; Takahashi, H.; Kobayashi, S. Chem. Lett. 1994, 177.
- 205. Denmark, S. E.; Christenson, B. L.; Coe, D. M.; O'Connor, S. P. Tetrahedron Lett. 1995, **36**, 2215.
- 206. Denmark, S. E.; O'Connor, S. P.; Wilson, S. R. Angew. Chem., Int. Ed. 1998, **37**, 1149.
- 207. Dahinden, R.; Beck, A. K.; Seebach, D. in *Encyclopedia of Reagents for Organic Synthesis*, Paquette, L., Ed., J. Wiley & Sons, Chichester, 1995, Vol. 3, p. 2167–2170.
- 208. Corey, E. J.; Eckrich, T. M. Tetrahedron Lett. 1984, 25, 2415.
- 209. Takakis, I. M.; Rhodes, Y. E. J. Org. Chem. 1978, 43, 3496.
- 210. Wittig, G.; Schwarzenbach, K. Justus Liebigs Ann. Chem. 1962, 650. 1.

- 211. Kosarych, Z.; Cohen, T. Tetrahedron Lett. 1982, 23, 3019.
- 212. Seyferth, D. Angew. Chem. 1960, 72, 36.
- 213. Dumont, C.; Zoukal, M.; Vidal, M. Tetrahedron Lett. 1981, 22, 5267.
- 214. Patai, S., Rappoport, Z. *The Chemistry of the cyclopropyl Group*, Wiley and Sons, New York, 1987.
- Reissig, H.-U. in Stereoselective Synthesis of Organic Compounds, Methods of Organic Chemistry (Houben-Weyl), Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds., Thieme, Stuttgart, 1995, Vol. 2, 3179.
- 216. Doyle, M. P. in *Catalytic Asymmetric Synthesis*, Ojima, I. Ed., VCH: Weinheim, 1993, 63.
- 217. Koert, U. Nachr. Chem. Tech. Lab. 1995, 43, 435.
- 218. Reissig, H.-U. Angew. Chem., Int. Ed. Engl. 1996, 35, 971.
- 219. Aratani, T. Pure Appl. Chem. 1985, 57, 1839.
- 220. Salaün, J. Chem. Rev. 1989, 89, 1247.
- 221. Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49.
- 222. Stork, G.; Nair, V. J. Am. Chem. Soc. 1979, 101, 1315.
- 223. Nair, V. in *Comprehensive Organic Synthesis*, Trost, B. M., Fleming, I., Semmelhack, M. F., Eds., Pergamon Press, Oxford, 1991, Vol. **4**, 999.
- 224. Doyle, M. P.; Protopopova, M. N. Tetrahedron 1998, 54, 7919.
- 225. Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911.
- 225a Davies, H. M. L.; Antoulinakis, E. G. Org. React., 2001, 57, 1.
- 226. Pfaltz, A. in *Comprehensive Asymmetric Catalysis*, Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds., Springer-Verlag, Berlin, 1999, Vol **II**, pp. 513–538.
- 227. Evans, D. A.; Woerpel, K. A.; Hinman, M. M.; Faul, M. M. J. Am. Chem. Soc. 1991, **113**, 726.
- 228. Lo, M. M.-C.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 10270.
- 229. Davies, H. M. L.; Bruzinski, P. R.; Lake, D. H.; Kong, N.; Fall, M. J. J. Am. Chem. Soc. 1996, **118**, 6897.
- 230. Fritschi, H.; Leutenegger, U.; Pfaltz, A. Helv. Chim. Acta. 1988, **71**, 1553.
- Doyle, M. P.; Winchester, W. R.; Protopopova, M. N.; Müller, P.; Bernardinelli, G.; Ené, D.; Motallebi, S. Helv. Chim. Acta 1993, 76, 2227.
- 232. Müller, P.; Baud, C.; Ené, D.; Motallebi, S.; Doyle, M. P.; Brandes, B. D.; Dyatkin, A. B.; See, M. M. Helv. Chim. Acta 1995, **78**, 459.
- 233. Ishitani, H.; Achiwa, K. Synlett 1997, 781.
- 234. Tomilov, Y. V.; Dokitchev, V. A.; Dzhemilev, U. M.; Nefedov, O. M. Usp.

Khim. 1993, **62**, 847.

- 235. Pfaltz, A. in *Modern Synthetic Methods 1989*, Scheffold, R., Ed., Springer, Berlin, 1989, pp. 199–248.
- 236. Pfaltz, A. Acc. Chem. Res. 1993, 26, 339.
- 237. Denmark, S. E.; Stavenger, R. A.; Faucher, A.-M.; Edwards, J. P. J. Org. Chem. 1997, 62, 3375.
- Lydon, K. M.; McKervey, M. A. in *Comprehensive Asymmetric Catalysis*, Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds., Springer-Verlag, Berlin, 1999, Vol. II, pp. 539–580.
- 239. Doyle, M. P.; Austin, R. E.; Bailey, A. S.; Dwyer, M. P.; Dyatkin, A. B.; Kalinin, A. V.; Kwan, M. M. Y.; Liras, S.; Oalmann, C. J.; Pieters, R. J.; Protopopova, M. N.; Raab, C. E.; Roos, G. H. P.; Zhou, Q.-L.; Martin, S. F. J. Am. Chem. Soc. 1995, **117**, 5763.
- 240. Krief, A.; Dumont, W.; Pasau, P. Tetrahedron Lett. 1988, 29, 1079.
- 241. Krief, A.; Dumont, W. Tetrahedron Lett. 1988, 29, 1083.
- 242. Romo, D.; Romine, J. L.; Midura, W.; Meyers, A. I. Tetrahedron 1990, **46**, 4951.
- 243. Aggarwal, V. K.; Smith, H. W.; Jones, R. V. H.; Fieldhouse, R. J. Chem. Soc., Chem. Commun. 1997, 1785.
- 244. Li, A.-H.; Dai, L.-X.; Aggarwal, V. K. Chem. Rev. 1997, 97, 2341.
- 245. Hanessian, S.; Andreotti, D.; Gomtsyan, A. J. Am. Chem. Soc. 1995, **117**, 10393.
- 246. Hanessian, S.; Andreotti, D.; Gomtsyan, A. J. Am. Chem. Soc. 1996, **118**, 2537.
- 247. Katsuki, T.; Martin, V. S. Org. React. 1996, 48, 1.
- 248. Burgess, K.; Ho, K.-K. J. Org. Chem. 1992, 57, 5931.
- 249. Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, **94**, 2483.
- 250. Burgess, K.; Ho, K.-K.; Ke, C.-Y. J. Org. Chem. 1993, 58, 3767.
- 251. Aldrich Technical Information Bulletin Number AL-134, Handling Air-Sensitive Reagents.
- 252. Kramer, G. W.; Levy, A. B.; Midland, M. M. in Brown, H. C. Organic Syntheses via Boranes, John Wiley and Sons, Inc., New York, 1975.
- 253. Shriver, D. F. *The Manipulation of Air-Sensitive Compounds*, McGraw-Hill Book Company, New York, 1969.
- 254. Hock, H.; Kropf, H.; Ernst, F. Angew. Chem. 1959, 71, 541.
- 255. Abraham, M. H. J. Chem. Soc. 1960, 4130.
- 256. Limasset, J.-C.; Amice, P.; Conia, J.-M. Bull. Soc. Chim. Fr. 1969, 3981.
- 257. Konopelski, J. P.; Sundararaman, P.; Barth, G.; Djerassi, C. J. Am. Chem. Soc. 1980, **102**, 2737.

- 257a Friedrich, E. C.; Domek, J. M.; Pong, R. Y. J. Org. Chem. 1985, **50**, . 4640.
- 258. Maruoka, K.; Sakane, S.; Yamamoto, H. Org. Synth. 1989, 67, 176.
- 259. Dauben, W. G.; Laug, P.; Berezin, G. H. J. Org. Chem. 1966, 31, 3869.
- 259a Fleming, I.; Lawrence, N. J.; Sarkar, A. K.; Thomas, A. P. J. Chem. Soc., . Perkin Trans. 1 1992, 3303.
- 260. Mash, E. A.; Torok, D. S. J. Org. Chem. 1989, 54, 250.
- 261. Barbachyn, M. R.; Johnson, C. R.; Glick, M. D. J. Org. Chem. 1984, **49**, 2746.
- 261a Charette, A. B.; Côté, B. J. Am. Chem. Soc. 1995, 117, 12721.
- 261b Barrett, A. G. M.; Doubleday, W. W.; Tustin, G. J. Tetrahedron 1996, **52**, . 15325.
- 262. Professor W. B. Motherwell, University College London, personal communication
- 263. Wiberg, K. B.; Kass, S. R.; de Meijere, A.; Bishop, K. C. J. Am. Chem. Soc. 1985, **107**, 1003.
- 264. Trautmann, W.; Musso, H. Chem. Ber. 1981, 114, 982.
- 265. Pitea, D.; Moro, G.; Favini, G. J. Chem. Soc., Perkin Trans. 2 1987, 313.
- 266. Engelhard, M.; Lüttke, W. Chem. Ber. 1977, 110, 3759.
- 267. Girard, C.; Conia, J. M. Tetrahedron Lett. 1974, 3333.
- 268. Mil'vitskaya, E. M.; Kovner, O. Ya.; Platé, A. F.; Binebskaya, L. I. Zh. Org. Khim. 1977, **13**, 54.
- 269. Gassman, P. G.; Proehl, G. S. J. Am. Chem. Soc. 1980, 102, 6862.
- 270. Friedrich, E. C.; Domek, J. M.; Pong, R. Y. J. Org. Chem. 1985, **50**, 4640.
- 271. Klabunde, K. J.; Murdock, T. O. J. Org. Chem. 1979, 44, 3901.
- 272. Fabisch, B.; Mitchell, T. N. J. Organomet. Chem. 1984, 269, 219.
- 273. Miyano, S.; Hashimoto, H. Bull. Chem. Soc. Jpn. 1973, 46, 1895.
- 274. Miyano, S.; Hashimoto, H. Bull. Chem. Soc. Jpn. 1974, 47, 1500.
- 275. Wu, S. H.; Liu, W. Z.; Jiang, X. K. J. Org. Chem. 1994, 59, 854.
- 276. Motherwell, W. B.; O'Mahony, D. J. R.; Popkin, M. E. Tetrahedron Lett. 1998, **39**, 5285.
- 277. Manuel, G.; Faucher, A.; Mazerolles, P. J. Organomet. Chem. 1984, **264**, 127.
- 278. Grignon-Dubois, M.; Dunogues, J.; Calas, R. J. Organomet. Chem. 1979, **181**, 285.
- 279. Culshaw, P. N.; Dalton, M.; MacCorquodale, F.; Walton, J. C. J. Chem. Soc., Perkin Trans. 2 1990, 531.

- 280. Brookhart, M.; Dedmond, R. E.; Lewis, B. F. J. Organomet. Chem. 1974, **72**, 239.
- 281. Cheng, A. K.; Stothers, J. B. Org. Magn. Res. 1977, 9, 355.
- 282. Freeman, P. K.; Ziebarth, T. D.; Raghavan, R. S. J. Am. Chem. Soc. 1975, **97**, 1875.
- 283. Katz, T. J.; Yang, G. X. Q. Tetrahedron Lett. 1991, 32, 5895.
- 284. Kopecky, K. R.; Gomez, R. R. Can. J. Chem. 1981, 59, 1607.
- 285. Prakash, G. K. S.; Fung, A. P.; Olah, G. A.; Rawdah, T. N. Proc. Natl. Acad. Sci. USA 1987, 84, 5092.
- 286. Gassman, P. G.; Valcho, J. J.; Proehl, G. S.; Cooper, C. F. J. Am. Chem. Soc. 1980, **102**, 6519.
- 287. Gassman, P. G.; Valcho, J. J.; Proehl, G. S. J. Am. Chem. Soc. 1979, **101**, 231.
- 288. Klärner, F.-G.; Kleine, A. E.; Oebels, D.; Scheidt, F. Tetrahedron: Asymmetry 1993, **4**, 479.
- 289. Paquette, L. A.; Carmody, M. J. J. Am. Chem. Soc. 1976, 98, 8175.
- 290. Chenier, P. J.; Christie, D. M.; Goettl, V. M. J. Org. Chem. 1985, **50**, 3213.
- 291. Kaufmann, D.; Fick, H.-H.; Schallner, O.; Spielmann, W.; Meyer, L.-U.; Gölitz, P.; de Meijere, A. Chem. Ber. 1983, **116**, 587.
- 292. Staley, S. W.; Linkowski, G. E.; Heyn, A. S. Tetrahedron 1975, **31**, 1131.
- 293. Takakis, I. M.; Agosta, W. C. J. Am. Chem. Soc. 1979, **101**, 2383.
- 294. Williams, B.; Jennings, P. W. Inorg. Chim. Acta 1997, 265, 23.
- 295. Takakis, I. M.; Agosta, W. C. J. Org. Chem. 1979, 44, 1294.
- 296. Takakis, I. M.; Agosta, W. C. Tetrahedron Lett. 1978, 2387.
- 297. De Meijere, A.; Schallner, O.; Weitemeyer, C. Tetrahedron Lett. 1973, 3483.
- 298. De Meijere, A.; Weitemeyer, C.; Schallner, O. Chem. Ber. 1977, **110**, 1504.
- 299. Takakis, I. M.; Agosta, W. C. J. Org. Chem. 1978, 43, 1952.
- 300. Lipa, W. J.; Crawford, H. T.; Radlick, P. C.; Helmkamp, G. K. J. Org. Chem. 1978, 43, 3813.
- 301. Golzke, V.; Rüchardt, C. Chem. Ber. 1977, 110, 3464.
- 302. de Meijere, A.; Schallner, O.; Weitemeyer, C.; Spielmann, W. Chem. Ber. 1979, **112**, 908.
- 303. Detty, M. R.; Paquette, L. A. J. Am. Chem. Soc. 1977, 99, 821.
- 304. Bigley, D. B.; Fetter, C. L. J. Chem. Soc., Perkin Trans. 2 1979, 122.
- 305. Balenkova, E. S.; Anfilogova, S. N. Zh. Org. Khim. 1973, 9, 524.
- 306. Reger, D. L.; Gabrielli, A. J. Am. Chem. Soc. 1975, 97, 4421.

- 307. Reger, D. L.; Gabrielli, A. J. Organomet. Chem. 1980, 187, 243.
- 308. Duguid, R. J.; Morrison, H. J. Am. Chem. Soc. 1991, **113**, 1265.
- 309. Perkins, M. J.; Ward, P. J. Chem. Soc., Perkin Trans. 1 1974, 66.
- 310. Bosse, D.; de Meijere, A. Tetrahedron Lett. 1975, 871.
- 311. Pizzala, L.; Bodot, H.; Fruchier, A. Org. Magn. Res. 1977, 9, 260.
- 312. Paquette, L. A.; Ham, W. H.; Dime, D. S. Tetrahedron Lett. 1985, **26**, 4983.
- 313. Terunuma, D.; Hatta, S.; Araki, T.; Ueki, T.; Okazaki, T.; Suzuki, Y. Bull. Chem. Soc. Jpn. 1977, **50**, 1545.
- 314. Dawson, M. I.; Hobbs, P. D.; Chan, R. L.-S.; Chao, W.-R. J. Med. Chem. 1981, **24**, 1214.
- 315. Roth, H. D.; Schilling, M. L. M.; Schilling, F. C. J. Am. Chem. Soc. 1985, 107, 4152.
- 316. Bloch, R.; Bortolussi, M. Tetrahedron Lett. 1976, 309.
- 317. Tamao, K.; Nakajima, T.; Kumada, M. Organometallics 1984, 3, 1655.
- 318. Dodd, J. R.; Pagni, R. M.; Watson, C. R. J. Org. Chem. 1981, 46, 1688.
- 319. Volz, W. E.; Paquette, L. A. J. Org. Chem. 1976, 41, 57.
- 320. Kitahonoki, K.; Sakurawi, K.; Tori, K.; Ueyama, M. Tetrahedron Lett. 1976, 263.
- 321. Balsamo, A.; Battistini, C.; Crotti, P.; Macchia, B.; Macchia, F. J. Org. Chem. 1975, 40, 3233.
- 322. Langlois, M.; Rapin, M.; Meingan, J.-P.; Vo Van, T.; Maillard, J.; Guillonneau, C.; Maloizel, C.; Nguyen, H. N.; Morin, R.; Manuel, C.; Mazmanian, C. Eur. J. Med. Chem. Chim. Ther. 1976, **11**, 493.
- 323. Nelson, P. H.; Bartsch, G. A.; Untch, K. G.; Fried, J. H. J. Med. Chem. 1975, **18**, 583.
- 324. Osawa, E.; Tahara, Y.; Togashi, A.; Iizuka, T.; Tanaka, N.; Kan, T.; Farcasiu, D.; Kent, G. J.; Engler, E. M.; Schleyer von R., P. J. Org. Chem. 1982, 47, 1923.
- 325. Battistini, C.; Crotti, P.; Macchia, B.; Macchia, F.; DePuy, C. H. J. Org. Chem. 1978, **43**, 1400.
- 326. Meinwald, J.; Dunkerton, L. V.; Gruber, G. W. J. Am. Chem. Soc. 1975, **97**, 681.
- 327. Highton, A. J.; Majid, T. N.; Simpkins, N. S. Synlett 1999, 237.
- 328. Lamberts, J. J. M.; Laarhoven, W. H. J. Org. Chem. 1983, 48, 2202.
- 329. Kawashima, K.; Kawano, Y. Chem. Pharm. Bull. 1976, 24, 2751.
- 330. Peijnenburg, W. J. G. M.; Dormans, G. J. M.; Bezemer, G. J.; Buck, H. M. Tetrahedron 1984, 40, 4959.
- 331. Cristol, S. J.; Noreen, A. L. J. Org. Chem. 1976, 41, 4016.

- 331a Magnus, P.; Schultz, J.; Gallagher, T. J. Am. Chem. Soc. 1985, **107**, . 4984.
- 332. Rubottom, G. M.; Beedle, E. C.; Kim, C. W.; Mott, R. C. J. Am. Chem. Soc. 1985, **107**, 4230.
- 333. Yamamoto, K.; Murata, I. Angew. Chem., Int. Ed. Engl. 1976, 15, 240.
- 334. Hildenbrand, P.; Plinke, G.; Oth, J. F. M.; Schröder, G. Chem. Ber. 1978, **111**, 107.
- 335. Kano, S.; Yokomatsu, T.; Shibuya, S. Chem. Pharm. Bull. 1977, **25**, 2875.
- 336. McMurry, J. E.; Haley, G. J.; Matz, J. R.; Clardy, J. C.; Van Duyne, G.; Gleiter, R.; Schäfer, W.; White, D. H. J. Am. Chem. Soc. 1986, **108**, 2932.
- 337. Farmer, L. J.; Jeong, S.; Kallel, E. A.; Koch, S. S. C.; Croston, G. E.; Flatten, K. S.; Heyman, R. A.; Nadzan, A. M. Bioorg. Med. Chem. Lett. 1997, 7, 2393.
- 338. Dyker, G.; Körning, J.; Bubenitschek, P.; Jones, P. G. J. Chem. Res. (S) 1997, 132.
- 339. Mohler, D. L.; Vollhardt, K. P. C.; Wolff, S. Angew. Chem., Int. Ed. Engl. 1995, 34, 563.
- 340. Osterodt, J.; Vögtle, F. J. Chem. Soc., Chem. Commun. 1996, 547.
- 341. Mitani, M.; Tachizawa, O.; Takeuchi, H.; Koyama, K. J. Org. Chem. 1989, **54**, 5397.
- 342. Bredikhin, A. A.; Plemenkov, V. V. Zh. Org. Khim. 1976, **12**, 1001.
- 343. Kirmse, W.; Alberti, J. Chem. Ber. 1973, 106, 236.
- 344. Le Goaller, R.; Pierre, J.-L. Can. J. Chem. 1977, 55, 757.
- 345. Davis, B. R.; Rewcastle, G. W.; Woodgate, P. D. J. Chem. Soc., Perkin Trans. 1 1979, 2815.
- 346. Gassman, P. G.; Burns, S. J. J. Org. Chem. 1988, 53, 5576.
- 347. Ito, Y.; Fujii, S.; Nakatsuka, M.; Kawamoto, F.; Saegusa, T. Org. Synth. Coll. Vol. 6, 1988, 327.
- 348. Ryu, I.; Murai, S.; Otani, S.; Sonoda, N. Chem. Lett. 1976, 93.
- 349. Ryu, I.; Murai, S.; Sonoda, N. Tetrahedron Lett. 1977, 4611.
- 350. Girard, C.; Conia, J. M. Tetrahedron Lett. 1974, 3327.
- 351. Ito, Y.; Saegusa, T. J. Macromol. Sci., Chem. 1979, A13, 503.
- 352. Lewicka-Piekut, S.; Okamura, W. H. Synth. Commun. 1980, 10, 415.
- 353. Blanco, L.; Mansouri, A. Tetrahedron Lett. 1988, 29, 3239.
- 354. Miyano, S.; Izumi, Y.; Fujii, H.; Hashimoto, H. Synthesis 1977, 700.
- 355. Balenkova, E. S.; Karamysheva, L. A. Zh. Org. Khim. 1973, 9, 2310.
- 356. Ryu, I.; Murai, S.; Sonoda, N. Chem. Lett. 1976, 1049.

- 357. Hirabayashi, K.; Takahisa, E.; Nishihara, Y.; Mori, A.; Hiyama, T. Bull. Chem. Soc. Jpn. 1998, **71**, 2409.
- 358. Barnier, J. P.; Blanco, L.; Rousseau, G.; Guibejampel, E.; Fresse, I. J. Org. Chem. 1993, **58**, 1570.
- 359. Schiehser, G. A.; White, J. D. J. Org. Chem. 1980, 45, 1864.
- 360. Booker-Milburn, K. I.; Dainty, R. F. Tetrahedron Lett. 1998, 39, 5097.
- 361. Sraga, J.; Hrnciar, P. Acta F. R. N. Univ. Comen., Chim. 1981, 29, 105.
- 362. Paquette, L. A.; Watson, T. J.; Friedrich, D.; Bishop, R.; Bacque, E. J. Org. Chem. 1994, **59**, 5700.
- 363. Baldwin, J. E.; Broline, B. M. J. Org. Chem. 1982, 47, 1385.
- 364. Wenkert, E.; Arrhenius, T. S.; Bookser, B.; Guo, M.; Mancini, P. J. Org. Chem. 1990, **55**, 1185.
- 365. Booker-Milburn, K. I.; Thompson, D. F. Tetrahedron Lett. 1993, **34**, 7291.
- 366. Wenkert, E.; Berges, D. A.; Golob, N. F. J. Am. Chem. Soc. 1978, 100, 1263.
- 367. Lundkvist, J. R. M.; Arvidsson, L. E.; Hacksell, U.; Johansson, A. M. Acta Chem. Scand. B 1986, 40, 508.
- 368. Johansson, A. M.; Mellin, C.; Hacksell, U. J. Org. Chem. 1986, 51, 5252.
- 369. Marchand, A. P.; Rajapaksa, D.; Vidyasagar, V.; Watson, W. H.; Kashyap, R. P. Synth. Commun. 1996, 26, 819.
- 370. Brown, R. S.; Traylor, T. G. J. Am. Chem. Soc. 1973, 95, 8025.
- 371. Ito, S.; Shinokubo, H.; Oshima, K. Tetrahedron Lett. 1998, 39, 5253.
- 372. Donovalova, J.; Hrnciar, P.; Sraga, J. Chem. Zvesti 1983, 37, 809.
- 373. Dent, B. R.; Halton, B. Aust. J. Chem. 1987, 40, 925.
- 374. Ito, Y.; Saegusa, T. J. Org. Chem. 1977, 42, 2326.
- 375. Lie Ken Jie, M. S. F.; Lam, W. L. K. J. Am. Oil Chem. Soc. 1988, **65**, 118.
- 376. Ito, Y.; Sugaya, T.; Nakatsuka, M.; Saegusa, T. J. Am. Chem. Soc. 1977, **99**, 8366.
- 377. Marshall, J. A.; Peterson, J. C.; Lebioda, L. J. Am. Chem. Soc. 1984, **106**, 6006.
- 378. Keeports, D. D.; Eggers, D. F. Spectrochim. Acta, Part. A. 1984, 40, 7.
- 379. Mironov, V. F.; Sheludyakov, V. D.; Shcherbinin, V. V.; Viktorov, E. A. Zh. Obsh. Khim. 1975, 45, 1796.
- 380. Krongauz, V. V.; Rabinovitch, B. S. Chem. Phys. 1982, 67, 201.
- 381. Krongauz, V. V.; Rabinovitch, B. S. J. Chem. Phys. 1983, 78, 3872.
- 382. Pavlov, K. V.; Viktorov, N. A.; Mironov, V. F. Izv. Akad. Nauk., Ser. Khim. 1993, 42, 756.

- Schraml, J.; Grignon-Dubois, M.; Dunoguès, J.; Jancke, H.; Engelhardt, G.; Chvalovsky, V. Coll. Czech. Chem. Commun. 1983, 48, 3396.
- 384. Shaler, T. A.; Morton, T. H. J. Am. Chem. Soc. 1989, 111, 6868.
- 385. Moss, R. A.; Wilk, B.; Krogh-Jespersen, K.; Westbrook, J. D. J. Am. Chem. Soc. 1989, **111**, 6729.
- Durig, J. R.; Little, T. S.; Zhu, X.; Dakkouri, M. J. Mol. Struct. 1993, 293, 15.
- 387. Little, T. S.; Vaughn, C. A.; Zhu, X.; Dakkouri, M.; Durig, J. R. J. Raman Spectrosc. 1994, 25, 735.
- 388. Dakkouri, M. J. Mol. Struct. 1997, **413**, 133.
- 389. Khusid, A. Kh.; Kryshtal, G. V.; Dombrovsky, V. A.; Kucherov, V. F.; Yanovskaya, L. A.; Kadentsev, V. I.; Chizhov, O. S. Tetrahedron 1977, 33, 77.
- 390. Davies, A. G.; Sutcliffe, R. J. Chem. Soc., Perkin Trans. 2 1982, 1483.
- 391. Laurent, E.; Thomalla, M. Electrochim. Acta 1977, 22, 531.
- 392. Nijveldt, D.; Vos, A. Acta Crystallogr. 1988, B44, 281.
- 393. Havel, J. J.; Chan, K. H. J. Org. Chem. 1977, 42, 569.
- 394. Huhtasaari, M.; Schäfer, H. J.; Luftmann, H. Acta Chem. Scand. B. 1983, **37**, 537.
- 395. Mariano, P. S.; Bay, E. J. Org. Chem. 1980, 45, 1763.
- 396. Bowry, V. W.; Ingold, K. U. J. Am. Chem. Soc. 1991, **113**, 5699.
- Nechab, M.; Chavis, C.; Lucas, M.; Imbach, J.-L. Synth. Commun. 1992, 22, 1115.
- 398. Dupuy, W. E.; Goldsmith, E. A.; Hudson, H. R. J. Chem. Soc., Perkin Trans. 2 1973, 74.
- 399. Goh, S. H.; Chan, K. C.; Chong, H. L. Aust. J. Chem. 1976, 29, 1699.
- 400. Romero, A. G.; Darlington, W. H.; Piercey, M. F.; Lahti, R. A. Bioorg. Med. Chem. Lett. 1992, **2**, 1703.
- 401. Guerreiro, M. C.; Schuchardt, U. Synth. Commun. 1996, 26, 1793.
- 402. Laderoute, K. R.; Harrison, A. G. Org. Mass Spectrom. 1985, 20, 624.
- 403. Jacobs, R. T.; Bernstein, P. R.; Cronk, L. A.; Vacek, E. P.; Newcomb, L. F.; Aharony, D.; Buckner, C. K.; Kusner, E. J. J. Med. Chem. 1994, 37, 1282.
- 404. Denis, J. M.; Le Perchec, P.; Conia, J. M. Tetrahedron 1977, 33, 399.
- 405. Shono, T.; Nishiguchi, I. Tetrahedron 1974, 30, 2173.
- 406. Monti, H.; Bertrand, M. Tetrahedron 1973, 29, 2821.
- 407. Zimmerman, H. E.; Samuel, C. J. J. Am. Chem. Soc. 1975, 97. 4025.
- 408. Arai, Y.; Shimoji, K.; Konno, M.; Konishi, Y.; Okuyama, S.; Iguchi, S.; Hayashi, M.; Miyamoto, T.; Toda, M. J. Med. Chem. 1983, **26**, 72.

- 409. Barrett, A. G. M.; Tam, W. J. Org. Chem. 1997, 62, 4653.
- 410. Ostovic, D.; Kronja, O.; Borcic, S. Croat. Chem. Acta 1981, 54, 203.
- 411. Tomilov, Y. V.; Smit, V. A.; Nefedov, O. M. Izv. Akad. Nauk. SSSR, Ser. Khim. 1978, 2744.
- 412. Grignon-Dubois, M.; Dunoguès, J.; Calas, R. Synthesis 1976, 737.
- 413. Grignon-Dubois, M.; Dunoguès, J.; Calas, R. Tetrahedron Lett. 1976, 1197.
- 414. Bloodworth, A. J.; Korkodilos, D. Tetrahedron Lett. 1991, 32, 6953.
- 415. Delbaere, C. U. L.; Whitham, G. H. J. Chem. Soc., Perkin Trans. 1 1974, 879.
- 416. Gassman, P. G.; Bonser, S. M. J. Am. Chem. Soc. 1983, 105, 667.
- 417. Gassman, P. G.; Bonser, S. M.; Mlinaric-Majerski, K. J. Am. Chem. Soc. 1989, **111**, 2652.
- 418. Lautens, M.; Delanghe, P. H. M. J. Org. Chem. 1993, 58, 5037.
- 419. Corey, E. J.; Nagata, R. Tetrahedron Lett. 1987, 28, 5391.
- 420. Baldwin, J. E.; Ullenius, C. J. Am. Chem. Soc. 1974, 96, 1542.
- 421. Collins, P. W.; Gasiecki, A. F.; Perkins, W. E.; Gullikson, G. W.; Jones,
  P. H.; Bauer, R. F. J. Med. Chem. 1989, 32, 1001.
- 422. Ihara, M.; Taniguchi, T.; Tokunaga, Y.; Fukumoto, K. Synthesis 1995, 1405.
- 423. Touillaux, R.; Van Meerssche, M.; Dereppe, J. M.; Leroy, G.; Weiler, J.; Wilante, C. Org. Magn. Res. 1981, **16**, 71.
- 424. Wiberg, K. B.; Lupton, E. C.; Wasserman, D. J.; de Meijere, A.; Kass, S. R. J. Am. Chem. Soc. 1984, **106**, 1740.
- 425. Wiberg, K. B.; Kass, S. R. J. Am. Chem. Soc. 1985, 107, 988.
- 426. Bubnov, Y. N.; Nesmeyanova, O. A.; Rudashevskaya, T. Y.; Mikhailov, B. M.; Kazanskii, B. A. Zh. Org. Khim. 1973, 43, 127.
- 427. Law, K. Y.; de Mayo, P. J. Am. Chem. Soc. 1978, **101**, 325.
- 428. D'Auria, M. V.; Paloma, L. G.; Minale, L.; Riccio, R.; Zampella, A.; Debitus, C. J. Nat. Prod. 1993, **56**, 418.
- 429. Parziale, P. A.; Berson, J. A. J. Am. Chem. Soc. 1991, 113, 4595.
- 430. Grignon-Dubois, M.; Calas, R.; Dunoguès, J. Tetrahedron Lett. 1981, **22**, 2883.
- 431. Yan, T.-H.; Paquette, L. A. Tetrahedron Lett. 1982, 23, 3227.
- 432. Arai, Y.; Konno, M.; Shimoji, K.; Konishi, Y.; Niwa, H.; Toda, M.; Hayashi, M. Chem. Pharm. Bull. 1982, **30**, 379.
- 433. Arai, Y.; Toda, M.; Hayashi, M. Adv. Prost. Thromb. Leuk. 1983, 11, 169.
- 434. Kerber, R. C.; Hsu, C.-M. J. Am. Chem. Soc. 1973, 95, 3239.
- 435. Okazawa, N.; Sorensen, T. S. Can. J. Chem. 1978, 56, 2355.

- 436. Whitesides, G. M.; Hackett, M.; Brainard, R. L.; Lavalleye, J.-P. P. M.; Sowinski, A. F.; Izumi, A. N.; Moore, S. S.; Brown, D. W.; Staudt, E. M. Organometallics 1985, 4, 1819.
- 437. Mudryk, B.; Cohen, T. J. Am. Chem. Soc. 1993, 115, 3855.
- 438. Paquette, L. A.; Wells, G. J.; Horn, K. A.; Yan, T.-H. Tetrahedron 1983, **39**, 913.
- 439. Lee-Ruff, E.; Khazanie, P. Can. J. Chem. 1975, 53, 1708.
- 440. Wesener, J. R.; Moskau, D.; Günther, H. J. Am. Chem. Soc. 1985, **107**, 7307.
- 441. Dinnocenzo, J. P.; Zuilhof, H.; Lieberman, D. R.; Simpson, T. R.; McKechney, M. W. J. Am. Chem. Soc. 1997, **119**, 994.
- 442. Riley, P.; Hanzlik, R. P. Tetrahedron Lett. 1989, **30**, 3015.
- 443. Johnston, L. J.; Ingold, K. U. J. Am. Chem. Soc. 1986, **108**, 2343.
- 444. Dehmlow, S. S.; Dehmlow, E. V. Liebigs Ann. Chem. 1973, 1753.
- 445. Bee, L. K.; Beeby, J.; Everett, J. W.; Garratt, P. J. J. Org. Chem. 1975, **40**, 2212.
- 446. Ogawa, A.; Ohya, S.; Hirao, T. Chem. Lett. 1997, 275.
- 447. Tietze, L. F.; Raschke, T. Liebigs Ann. Chem. 1996, 1981.
- 448. Fahie, B. J.; Leigh, W. J. Can. J. Chem. 1989, 67, 1859.
- 449. Cohen, T.; Herman, G.; Chapman, T. M.; Kuhn, D. J. Am. Chem. Soc. 1974, **96**, 5627.
- 450. Dias, J. R.; Djerassi, C. Org. Mass. Spectrom. 1973, 7, 753.
- 451. Schlosser, M.; Fouquet, G. Chem. Ber. 1974, 107, 1171.
- 452. Kitatani, K.; Hiyama, T.; Nozaki, H. Bull. Chem. Soc. Jpn. 1977, **50**, 1600.
- 453. Davies, A. G.; Hawari, J. A.-A.; Grignon-Dubois, M.; Pereyre, M. J. Organomet. Chem. 1983, **255**, 29.
- 454. Crist, D. R.; Jordan, G. J.; Moore, D. W.; Hashmall, J. A.; Borsetti, A. P.; Turujman, S. A. J. Am. Chem. Soc. 1983, **105**, 4136.
- 455. Al-Essa, R. J.; Puddephatt, R. J.; Quyser, M. A.; Tipper, C. F. H. J. Am. Chem. Soc. 1979, **101**, 364.
- 456. Gramatica, P.; Ranzi, B. M.; Manitto, P. Bioorg. Chem. 1981, 10, 14.
- 457. Bhagat, S. D.; Mathur, R. K.; Siddhanta, N. N. J. Chem. Eng. Data 1982, **27**, 209.
- 458. Koch-Pomeranz, U.; Schmid, H.; Hansen, H.-J. Helv. Chim. Acta 1977, **60**, 768.
- 459. Charette, A. B.; Beauchemin, A.; Marcoux, J.-F. Tetrahedron Lett. 1999, **40**, 33.
- 460. Komatsu, K.; Takeuchi, K.; Abe, N.; Yasuda, K.; Okamoto, K. J. Chem.

Soc., Perkin Trans. 2 1979, 262.

- 461. Perkins, M. J.; Peynircioglu, N. B. Tetrahedron 1985, 41, 225.
- 462. Chum, P.-W.; Roth, J. A. J. Catal. 1975, 39, 198.
- 463. Miller, V. P.; Fruetel, J. A.; Ortiz de Montellano, P. R. Arch. Biochem. Biophys. 1992, **298**, 697.
- 464. Denmark, S. E.; Christenson, B. L.; O'Connor, S. P.; Murase, N. Pure Appl. Chem. 1996, **68**, 23.
- 465. Hirabayashi, K.; Mori, A.; Hiyama, T. Tetrahedron Lett. 1997, 38, 461.
- 466. Kim, C. U.; Misco, P. F.; Luh, B. Y. Heterocycles 1987, 26, 1193.
- 467. Peters, J. A.; Van Bekkum, H. Recl. Trav. Chim. Pays-Bas 1973, **92**, 379.
- 468. Barrett, A. G. M.; Tam, W. J. Org. Chem. 1997, 62, 7673.
- 469. Benedikt, G. M.; Cozens, R. J.; Goodall, B. L.; Rhodes, L. F.; Bell, M. N.; Kemball, A. C.; Starnes, W. H. Macromolecules 1997, **30**, 10.
- 470. Grignon-Dubois, M.; Pillot, J.-P.; Dunoguès, J.; Duffaut, N.; Calas, R.; Henner, B. J. Organomet. Chem. 1977, **124**, 135.
- 471. Grignon-Dubois, M.; Dunoguès, J. J. Organomet. Chem. 1986, **309**, 35.
- 472. Mazzocchi, P. H.; Lustig, R. S. J. Am. Chem. Soc. 1975, 97, 3707.
- 473. Perkins, M. J.; Peynircioglu, N. B.; Smith, B. V. J. Chem. Soc., Perkin Trans. 2 1978, 1025.
- 474. Wessel, J.; Crabtree, R. H. J. Mol. Catal. A 1996, 113, 13.
- 475. Sato, M.; Kitagawa, M.; Uchimaru, F.; Ueno, K.; Kojima, H.; Yamasaki, T. Chem. Pharm. Bull. 1979, **27**, 119.
- 476. WeidnerWells, M. A.; Oda, K.; Mazzocchi, P. H. Tetrahedron 1997, **53**, 3475.
- 477. Brown, H. C.; Cleveland, J. D. J. Org. Chem. 1976, 41, 1792.
- 478. Trahanovsky, W. S.; Fox, N. S. J. Am. Chem. Soc. 1974, 96, 7968.
- 479. De Smet, A.; Anteunis, M.; Tavernier, D. Bull. Soc. Chim. Belg. 1975, 84, 67.
- 480. Molander, G. A.; McKie, J. A. J. Org. Chem. 1991, 56, 4112.
- 481. Wenkert, E.; Rego de Sousa, J. Synth. Commun. 1977, 7, 457.
- 482. Saljoughian, M.; Morimoto, H.; Williams, P. G.; DeMello, N. J. Chem. Soc., Chem. Commun. 1990, 1652.
- 483. Ruzo, L. O.; Casida, J. E.; Gammon, D. W. Pesticide Biochem. Phys. 1984, **21**, 84.
- 484. Vig, B.; Kad, G. L.; Ram, B. J. Indian Chem. Soc. 1973, 557.
- 485. Beruben, D.; Marek, I.; Normant, J. F.; Platzer, N. J. Org. Chem. 1995, 60, 2488.
- 486. Beruben, D.; Marek, I.; Labaudiniere, L.; Normant, J. F. Tetrahedron

Lett. 1993, **34**, 2303.

- 487. Batchelor, J. G.; Cushley, R. J.; Prestegard, J. H. J. Org. Chem. 1974, **39**, 1698.
- 488. Fitjer, L.; Scheuermann, H.-J.; Klages, U.; Wehle, D.; Stephenson, D. S.; Binsch, G. Chem. Ber. 1986, **119**, 1144.
- 489. Wilson, S. R.; Prodan, K. A. Tetrahedron Lett. 1976, 4231.
- 490. Paquette, L. A.; Horn, K. A.; Wells, G. J. Tetrahedron Lett. 1982, **23**, 259.
- 491. Mashima, K.; Sakai, N.; Takaya, H. Bull. Chem. Soc. Jpn. 1991, **64**, 2475.
- 492. Miura, K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1989, 30, 4413.
- 493. Miura, K.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn. 1990, 63, 1665.
- 494. Konopelski, J. P.; Djerassi, C. J. Org. Chem. 1980, 45, 2297.
- 495. Grob, C. A.; Rich, R. Helv. Chim. Acta 1979, 62, 2802.
- 496. Demin, P. M.; Pace-Asciak, C. R. Tetrahedron Lett. 1993, 34, 4305.
- 497. Effenberger, F.; Kurtz, W. Chem. Ber. 1973, 106, 511.
- 498. Ford, W. T. J. Org. Chem. 1973, 38, 3614.
- 499. Duffault, J. M.; Hanoteau, P.; Parrilla, A.; Einhorn, J. Synth. Commun. 1996, **26**, 3257.
- 500. Hiyama, T.; Yamamoto, H.; Nishio, K.; Kitatani, K.; Nozaki, H. Bull. Chem. Soc. Jpn. 1979, **52**, 3632.
- 501. Ireland, R. E.; McKenzie, T. C.; Trust, R. I. J. Org. Chem. 1975, **40**, 1007.
- 502. Vig, O. P.; Trehan, I. R.; Kad, G. L.; Bedi, A. L. Ind. J. Chem. 1978, **16B**, 455.
- 503. Saba, J. A.; Fry, J. L. J. Am. Chem. Soc. 1983, 105, 533.
- 504. Edwards, G. J.; Jones, S. R.; Mellor, J. M. J. Chem. Soc., Perkin Trans. 2 1977, 505.
- 505. Vig, O. P.; Kad, G. L.; Bedi, A. L.; Kumar, S. D. Ind. J. Chem. 1978, **16B**, 452.
- 506. Bajgrowicz, J. A.; Frank, I.; Frater, G.; Hennig, M. Helv. Chim. Acta 1998, **81**, 1349.
- 507. Quast, H.; Heuschmann, M. Synthesis 1978, 547.
- 508. Jason, M. E. Tetrahedron Lett. 1982, 23, 1635.
- 509. Eisch, J. J.; Burlinson, N. E.; Boleslawski, M. J. Organomet. Chem. 1976, **111**, 137.
- 510. Waali, E. E.; Jones, W. M. J. Am. Chem. Soc. 1973, 95, 8114.
- 511. Fukuda, Y.; Yamamoto, Y.; Kimura, K.; Odaira, Y. Tetrahedron Lett. 1979, 877.

- 512. Huang, H.; Forsyth, C. J. J. Org. Chem. 1995, 60, 5746.
- 513. Vite, G. D.; Spencer, T. A. J. Org. Chem. 1988, 53, 2560.
- 514. Walia, S.; Kulshrestha, S. K.; Mukerjee, S. K. Tetrahedron 1986, **42**, 4817.
- 514a Hollis, R.; Hugues, L.; Bowry, V. W.; Ingold, K. U. J. Org. Chem. 1992, . **57**, 4284.
- 515. Casey, C. P.; Albin, L. D.; Burkhardt, T. J. J. Am. Chem. Soc. 1977, **99**, 2533.
- 516. Ho, K. W.; de Mayo, P. J. Am. Chem. Soc. 1979, 101, 5725.
- 517. Kocor, M.; Sobotka, W.; Sterzycki, R.; Styczynska, B. Rocz. Chem. 1976, **50**, 1337.
- 518. Piers, E.; Jean, M.; Marrs, P. S. Tetrahedron Lett. 1986, 28, 5075.
- 519. Witiak, D. T.; Allison, D. L.; Glaser, R.; Holliday, J. E.; Kamat, P. L.; Liebowitz, S. M.; Moeschberger, M. L.; Schaller, J. P. J. Med. Chem. 1983, **26**, 1679.
- 520. Newcomb, M.; Johnson, C. C.; Manek, M. B.; Varick, T. R. J. Am. Chem. Soc. 1992, **114**, 10915.
- 521. Beckhaus, H.-D.; Schoch, J.; Rüchardt, C. Chem. Ber. 1976, 109, 1369.
- 522. Okamoto, A.; Snow, M. S.; Arnold, D. R. Tetrahedron 1986, 42, 6175.
- 523. Nelson, P. H.; Eugui, E.; Wang, C. C.; Allison, A. C. J. Med. Chem. 1990, **33**, 833.
- 524. Fleming, I.; Sanderson, P. E. J.; Terrett, N. K. Synthesis 1992, 69.
- 525. Gensler, W. J.; Prasad, R. S.; Chaudhuri, A. P.; Alam, I. J. Org. Chem. 1979, **44**, 3643.
- 526. Silvius, J. R.; McElhaney, R. N. Chem. Phys. Lipids 1979, 25, 125.
- 527. Gaydou, E. M.; Ralaimanarivo, A.; Bianchini, J. P. J. Agric. Food Chem. 1993, **41**, 886.
- 528. Mcgarrity, J. T.; Armstrong, J. B. Biochim. Biophys. Acta 1981, 640, 544.
- 529. Camps, F.; Hospital, S.; Rosell, G.; Delgado, A.; Guerrero, A. Chem. Phys. Lipids 1992, **61**, 157
- 530. Shimazaki, M.; Hara, H.; Suzuki, K. Tetrahedron Lett. 1989, 30, 5447.
- 531. Donnelly, J. A.; Fox, M. J.; Hoey, J. G. J. Chem. Soc., Perkin Trans. 1 1979, 2629.
- 532. Farmer, L. J.; Zhi, L.; Jeong, S.; Kallel, E. A.; Croston, G.; Flatten, K. S.; Heyman, R. A.; Nadzan, A. M. Bioorg. Med. Chem. Lett. 1997, **7**, 2747.
- 533. Petrzilka, M.; Germann, A. Mol. Cryst. Liq. Cryst. 1986, 133, 85.
- 534. Vuligonda, V.; Lin, Y.; Chandraratna, R. A. S. Bioorg. Med. Chem. Lett. 1996, **6**, 213.
- 535. Greter, J.; Lindstedt, S.; Steen, G. J. Biol. Chem. 1979, 254, 2807.

- 536. Repic, O.; Lee, P. G.; Giger, U. Org. Prep. Proc. Int. 1984, 16, 25.
- 537. Tipton, C. L.; Al-Shathir, N. M. J. Biol. Chem. 1974, 249, 886.
- 538. Beach, D. H.; Holz, G. G.; Anekwe, G. E. J. Parasitol. 1979, 65, 203.
- 539. Sakurada, K.; Iwase, H.; Takatori, T.; Nagao, M.; Nakajima, M.; Niijima, H.; Matsuda, Y.; Kobayashi, M. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 1999, **1437**, 214.
- 540. Urbina, J.; Waugh, J. S. Ann. N. Y. Acad. Sci. 1973, 222, 733.
- 541. Jiao, Y.; Yoshihara, T.; Ishikuri, S.; Uchino, H.; Ichihara, A. Tetrahedron Lett. 1996, **37**, 1039.
- 542. Sheads, R. E.; Beroza, M.; Paszek, E. C. J. Agr. Food. Chem. 1975, **23**, 60.
- 543. Dickens, J. C.; Oliver, J. E.; Mastro, V. C. J. Chem. Ecol. 1997, **23**, 2197.
- 544. Streitwieser, A.; Harmon, C. A. Inorg. Chem. 1973, 12, 1102.
- 545. Berner, H.; Schneider, H.; Schulz, G.; Vyplel, H. Monatsh. Chem. 1986, **117**, 1073.
- 546. Angelaud, R.; Landais, Y.; Maignan, C. Tetrahedron Lett. 1995, **36**, 3861.
- 547. Moss, R. A.; Fujita, T.; Okumura, Y.; Hua, Z.; Mendelsohn, R.; Senak, L. Langmuir 1992, **8**, 1731.
- 548. Tamura, O.; Hashimoto, M.; Kobayashi, Y.; Katoh, T.; Nakatani, K.; Kamada, M.; Hayakawa, I.; Akiba, T.; Terashima, S. Tetrahedron 1994, **50**, 3889.
- 549. Wiering, P. G.; Steinberg, H. Recl. Trav. Chim. Pays-Bas 1986, **105**, 394.
- 550. Wiering, P. G.; Steinberg, H. J. Org. Chem. 1981, 46, 1663.
- 551. Nakamura, E.; Kuwajima, I.; Oshino, H. J. Am. Chem. Soc. 1986, **108**, 3745.
- 552. Imamoto, T.; Kamiya, Y.; Hatajima, T.; Takahashi, H. Tetrahedron Lett. 1989, **30**, 5149.
- 553. Rousseau, G.; Slougui, N. Tetrahedron Lett. 1983, 24, 1251.
- 554. Awan, I. A.; Flowers, M. C. J. Chem. Soc., Faraday Trans. 1 1985, **81**, 1415.
- 555. Girard, C.; Amice, P.; Barnier, J.-P.; Conia, J. M. Tetrahedron Lett. 1974, 3329.
- 556. Barnier, J. P.; Garnier, B.; Girard, C.; Denis, J. M.; Salaün, J.; Conia, J. M. Tetrahedron Lett. 1973, 1747.
- 557. Breitbeil, F. W.; Schranz, J. L. J. Org. Chem. 1979, 44, 4649.
- 558. Weber, W.; de Meijere, A. Synth. Commun. 1986, 16, 837.
- 559. Fitjer, L.; Conia, J.-M. Angew. Chem. 1973, **85**, 347.

- 560. Schmidt, A. H.; Schirmer, U.; Conia, J.-M. Chem. Ber. 1976, 109, 2588.
- 561. Fitjer, L.; Conia, J.-M. Angew. Chem., Int. Ed. Engl. 1973, 12, 332.
- 562. Kirmse, W.; Rode, J.; Rode, K. Chem. Ber. 1986, 119, 3672.
- 563. Cunico, R. F.; Kuan, C. P. J. Org. Chem. 1985, 50, 5410.
- 564. Kirmse, W.; Rode, K. Chem. Ber. 1987, 120, 839.
- 565. Ryu, I.; Murai, S.; Otani, S.; Sonoda, N. Tetrahedron Lett. 1977, 1995.
- 566. Brown, P.; Calvert, S. H.; Chapman, P. C. A.; Cosham, S. C.; Eglington, A. J.; Elliot, R. L.; Harris, M. A.; Hinks, J. D.; Lowther, J.; Merrikin, D. J.; Pearson, M. J.; Ponsford, R. J.; Syms, J. V. J. Chem. Soc., Perkin Trans. 1 1991, 881.
- 567. Zefirov, N. S.; Kozhushkov, S. I.; Kuznetsova, T. S. Zh. Org. Khim. 1988, **24**, 447.
- 568. Kiwus, R.; Schwarz, W.; Roxnagel, I.; Musso, H. Chem. Ber. 1987, **120**, 435.
- 569. Wiering, P. G.; Steinberg, H. Recl. Trav. Chim. Pays-Bas 1985, 104, 70
- 570. Tokoroyama, T.; Fukuyama, Y.; Kubota, T.; Yokotani, K. J. Chem. Soc., Perkin Trans. 1 1981, 1557.
- 571. Van der Vecht, J. R.; Steinberg, H.; de Boer, Th. J. Recl. Trav. Chim. Pays-Bas 1976, **95**, 149.
- 572. Rychnovsky, S. D.; Kim, J. Tetrahedron Lett. 1991, **32**, 7219.
- 573. Iwasawa, N.; Matsuo, T.; Iwamoto, M.; Ikeno, T. J. Am. Chem. Soc. 1998, **120**, 3903.
- 574. Prakash, G. K. S.; Buchholz, H.; Reddy, V. P.; de Meijere, A.; Olah, G. A. J. Am. Chem. Soc. 1992, **114**, 1097.
- 575. Gilbert, J. C.; Pinto, M. J. Org. Chem. 1992, 57, 5271.
- 576. Lindberg, P.; Bergman, R.; Wickberg, B. J. Chem. Soc., Perkin Trans. 1 1977, 684.
- 577. Biggs, T. N.; Swenton, J. S. J. Org. Chem. 1992, 57, 5568.
- 578. Gadwood, R. C.; Rubino, M. R.; Nagarajan, S. C.; Michel, S. T. J. Org. Chem. 1985, **50**, 3255.
- Williams, T. M.; Ciccarone, T. M.; MacTough, S. C.; Bock, R. L.; Conner, M. W.; Davide, J. P.; Hamilton, K.; Koblan, K. S.; Kohl, N. E.; Kral, A. M.; Mosser, S. D.; Omer, C. A.; Pompliano, D. L.; Rands, E.; Schaber, M. D.; Shah, D.; Wilson, F. R.; Gibbs, J. B.; Graham, S. L.; Hartman, G. D.; Oliff, A. I.; Smith, R. L. J. Med. Chem. 1996, **39**, 1345.
- 580. Hemmersbach, P.; Klessinger, M. Tetrahedron 1980, 36, 1337.
- 581. Russo, J. M.; Price, W. A. J. Org. Chem. 1993, 58, 3589.
- 582. Bruckmann, P.; Klessinger, M. Chem. Ber. 1974, 107, 1108.
- 583. Gaudino, J. J.; Wilcox, C. S. J. Am. Chem. Soc. 1990, **112**, 4374.

- 584. Beckhaus, H.-D.; Rüchardt, C.; Kozhushkov, S. I.; Belov, V. N.; Verevkin, S. P.; de Meijere, A. J. Am. Chem. Soc. 1995, **117**, 11854.
- 585. Roberts, C.; Walton, J. C. J. Chem. Soc., Perkin Trans. 2 1985, 841.
- 586. Ronald, R. C.; Ruder, S. M.; Lillie, T. S. Tetrahedron Lett. 1987, 28, 131.
- 587. Shibata, T.; Tsuji, T.; Nishida, S. Bull. Chem. Soc. Jpn. 1980, 53, 709.
- 588. Fitjer, L.; Conia, J.-M. Angew. Chem. 1973, 85, 832.
- 589. Fitjer, L.; Conia, J.-M. Angew. Chem., Int. Ed. Engl. 1973, 12, 761.
- 590. Tsuji, T.; Nishida, S. Chem. Lett. 1977, 631.
- 591. Bowry, V. W.; Lusztyk, J.; Ingold, K. U. J. Am. Chem. Soc. 1991, **113**, 5687.
- 592. Asmus, P.; Klessinger, M. Liebigs Ann. Chem. 1975, 2169.
- 593. Tsuji, T.; Shibata, T.; Hienuki, Y.; Nishida, S. J. Am. Chem. Soc. 1978, **100**, 1806.
- 594. Adam, W.; Crämer, E.; Peters, E.-M.; Peters, K.; von Schnering, H. G. Chem. Ber. 1987, **120**, 705.
- 595. Gream, G. E.; Pincombe, C. F. Aust. J. Chem. 1974, 27, 543.
- 596. Piers, E.; Karunaratne, V. Can. J. Chem. 1989, 67, 160.
- 597. Leonard, J.; Bennett, L.; Mahmood, A. Tetrahedron Lett. 1999, 40, 3965.
- 598. Reddy, V. P.; Olah, G. A.; Prakash, G. K. S. J. Org. Chem. 1993, **58**, 7622.
- 599. Franck-Neumann, M.; Miesch, M.; Barth, F. Tetrahedron Lett. 1989, **30**, 3537.
- 600. Franck-Neumann, M.; Miesch, M.; Barth, F. Tetrahedron 1993, **49**, 1409.
- 601. Roth, W. R.; Unger, C. Liebigs Ann. Chem. 1995, 1361.
- 602. De Meijere, A.; Wenck, H.; Kopf, J. Tetrahedron 1988, 44, 2427.
- 603. Piers, E.; Karunaratne, V. Can. J. Chem. 1984, 62, 629.
- 604. Piers, E.; Karunaratne, V. Tetrahedron 1989, 45, 1089.
- 605. Ciardelli, T.; Seeliger, A.; Stewart, C. J.; Wieland, T. Liebigs Ann. Chem. 1981, 828.
- 606. Fitjer, L.; Rissom, B.; Kanschik, A.; Egert, E. Tetrahedron 1994, **50**, 10879.
- 607. Piers, E.; Marais, P. C. Tetrahedron Lett. 1988, 29, 4053.
- 608. Hasegawa, T.; Niwa, H.; Yamada, K. Chem. Lett. 1985, 1385.
- 609. De Meijere, A.; Michelsen, K.; Gleiter, R.; Spanget-Larsen, J. Isr. J. Chem. 1989, **29**, 153.
- 610. Gais, H.-J.; Bülow, G.; Raabe, G. J. Am. Chem. Soc. 1993, **115**, 7215.
- 611. Herrmann, E.; Gais, H. J.; Rosenstock, B.; Raabe, G.; Lindner, H. J. Eur. J. Org. Chem. 1998, 27.

- 612. Proksch, E.; de Meijere, A. Tetrahedron Lett. 1976, 4851.
- 613. Oppolzer, W.; Godel, T. J. Am. Chem. Soc. 1978, 100, 2583.
- 614. Oppolzer, W.; Godel, T. Helv. Chim. Acta 1984, 67, 1154.
- 615. Suginome, H.; Nakayama, Y. Tetrahedron 1994, 50, 7771.
- 616. Toyota, M.; Nishikawa, Y.; Motoki, K.; Yoshida, N.; Fukumoto, K. Tetrahedron Lett. 1993, **34**, 6099
- 617. Toyota, M.; Nishikawa, Y.; Motoki, K.; Yoshida, N.; Fukumoto, K. Tetrahedron 1993, **49**, 11189.
- 618. Mehta, G.; Murthy, A. N.; Reddy, D. S.; Reddy, A. V. J. Am. Chem. Soc. 1986, **108**, 3443.
- 619. Smith, A. B.; Wexler, B. A.; Tu, C.-Y.; Konopelski, J. P. J. Am. Chem. Soc. 1985, **107**, 1308.
- 620. Pak, H.; Canalda, I. I.; Fraser-Reid, B. J. Org. Chem. 1990, 55, 3009.
- 621. Yamada, K.; Kyotani, Y.; Manabe, S.; Suzuki, M. Tetrahedron 1979, **35**, 293.
- 622. Trost, B. M.; Hiemstra, H. J. Am. Chem. Soc. 1982, **104**, 886.
- 623. Baker, R.; Keen, R. B. J. Organomet. Chem. 1985, 285, 419.
- 624. Archer, M.; Casanova, J.; Zahra, J.-P.; Waegell, B. J. Chim. Phys. Phys. Chim. Biol. 1982, **79**, 227.
- 625. Casanova, J.; Waegell, B. Bull. Soc. Chim. Fr. 1975, 598.
- 626. Tori, M.; Miyake, T.; Hamaguchi, T.; Sono, M. Tetrahedron Asymmetry 1997, **8**, 2731.
- 627. Inouye, Y.; Inomata, S.; Ishihara, Y.; Kakisawa, H. Bull. Chem. Soc. Jpn. 1982, **55**, 208.
- 628. Jasperse, C. P.; Curran, D. P. J. Am. Chem. Soc. 1990, **112**, 5601.
- 629. Horton, M.; Pattenden, G. Tetrahedron Lett. 1983, 24, 2125.
- 630. Kuo, D. L.; Money, T. J. Chem. Soc., Chem. Commun. 1986, 1691.
- 631. Kuo, D. L.; Money, T. Can. J. Chem. 1988, 66, 1794.
- 632. Horton, M.; Pattenden, G. J. Chem. Soc., Perkin Trans. 1 1984, 811.
- 633. Raveendranath, P. C.; Newcomb, L. F.; Ray, N. C.; Clark, D. S.; Spencer, T. A. Synth. Commun. 1990, **20**, 2723.
- 634. Fitjer, L.; Scheuermann, H.-J.; Wehle, D. Tetrahedron Lett. 1984, **25**, 2329.
- 635. Wehle, D.; Scheuermann, H.-J.; Fitjer, L. Chem. Ber. 1986, 119, 3127.
- 636. Roush, W. R.; Russo-Rodriguez, S. J. Org. Chem. 1987, 52, 603.
- 637. Trost, B. M.; Curran, D. P. J. Am. Chem. Soc. 1981, 103, 7380.
- 638. Piers, E.; Marais, P. C. J. Chem. Soc., Chem. Commun. 1989, 1222.
- 639. Lasne, M.-C.; Ripoll, J.-L. Bull. Soc. Chim. Fr. 1981, 340.
- 640. Rosenfeld, S.; Tingle, C. W.; Jasinski, J. P.; Whittum, J. E.;

Woudenberg, R. C.; Van Epp, J. J. Am. Chem. Soc. 1994, **116**, 12049.

- 641. Hamann, L. G.; Farmer, L. J.; Johnson, M. G.; Bender, S. L.; Mais, D. E.; Wang, M.-W.; Crombie, D.; Goldman, M. E.; Jones, T. K. J. Med. Chem. 1996, **39**, 1778
- 642. Burnell, R. H.; Dumont, N.; Théberge, N.; Desfossés, S. Synth. Commun. 1992, **22**, 2571.
- 643. Fitjer, L. Angew. Chem., Int. Ed. Engl. 1976, 15, 763.
- 644. Fitjer, L.; Kühn, W.; Klages, U.; Egert, E.; Clegg, W.; Schormann, N.; Sheldrick, G. M. Chem. Ber. 1984, **117**, 3075.
- 645. Fitjer, L.; Klages, U.; Kühn, W.; Stephenson, D. S.; Binsch, G.; Noltemeyer, M.; Egert, E.; Sheldrick, G. M. Tetrahedron 1984, 40, 4337.
- 646. Burnell, R. H.; Côté, C.; Théberge, N. J. Nat. Prod. 1993, 56, 1459.
- 647. Fitjer, L.; Giersig, M.; Wehle, D.; Dittmer, M.; Koltermann, G.-W.; Schormann, N.; Egert, E. Tetrahedron 1988, **44**, 393.
- 648. Mataka, S.; Taniguchi, M.; Mitroma, Y.; Sawada, T.; Tashiro, M. J. Chem. Res. (S) 1997, 48.
- 649. Mander, L. N.; Sherburn, M.; Camp, D.; King, R. W.; Evans, L. T.; Pharis, R. P. Phytochemistry 1998, 49, 2195.
- 650. Desai, U. R.; Trivedi, G. K. Liebigs Ann. Chem. 1990, 711.
- 651. Wulf, K.; Klages, U.; Rissom, B.; Fitjer, L. Tetrahedron 1997, **53**, 6011.
- 652. Schröer, W.-D.; Friedrichsen, W. Liebigs Ann. Chem. 1978, 1648.
- 653. Barrett, A. G. M.; Doubleday, W. W.; Kasdorf, K.; Tustin, G. J.; White, A. J. P.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1995, 407.
- 654. Barrett, A. G. M.; Doubleday, W. W.; Tustin, G. J. Tetrahedron 1996, **52**, 15325
- 655. Barrett, A. G. M.; Kasdorf, K. J. Chem. Soc., Chem. Commun. 1996, 325.
- 656. Paquette, L. A.; Detty, M. R. J. Am. Chem. Soc. 1977, 99, 828.
- 657. Onoda, T.; Shirai, R.; Kawai, N.; Iwasaki, S. Tetrahedron 1996, **52**, 13327.
- 658. Paquette, L. A.; Detty, M. R. J. Am. Chem. Soc. 1977, 99, 834.
- 659. Markarian, G.; Ragonnet, B.; Santelli, M.; Bertrand, M. Bull. Soc. Chim. Fr. 1975, 1407.
- 660. Cossy, J.; Blanchard, N.; Meyer, C. Synthesis 1999, 1063.
- McDonald, W. S.; Verbicky, C. A.; Zercher, C. K. J. Org. Chem. 1997, 62, 1215.
- 662. Barrett, A. G. M.; Hamprecht, D.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1997, **119**, 8608.
- 663. Barrett, A. G. M.; Gross, T.; Hamprecht, D.; Ohkubo, M.; White, A. J. P.; Williams, D. J. Synthesis 1998, 490.

- 664. Johnson, C. R.; Barbachyn, M. R.; Meanwell, N. A.; Stark, C. J.; Zeller, J. R. Phosphorus Sulfur 1985, 24, 531.
- 665. Dawson, B. A.; Ghosh, A. K.; Jurlina, J. L.; Ragauskas, A. J.; Stothers, J. B. Can. J. Chem. 1984, 62, 2521.
- 666. Molchanov, A. P.; Kostikov, R. R.; Chernyshev, V. A. Zh. Org. Khim. 1991, **27**, 1648.
- 667. Cox, O.; Rivera, L. A. Synth. Commun. 1978, **8**, 261.
- 668. Dehmlow, E. V.; Gröning, C. Tetrahedron 1992, 48, 111.
- 669. Iwasawa, N.; Funahashi, M.; Narasaka, K. Chem. Lett. 1994, 1697.
- 670. Asaoka, M.; Takenouchi, K.; Takei, H. Chem. Lett. 1988, 921.
- 671. Batey, R. A.; Harling, J. D.; Motherwell, W. B. Tetrahedron 1992, **48**, 8031.
- 672. Molander, G. A.; Alonso-Alija, C. Tetrahedron 1997, 53, 8067.
- 673. Molchanov, A. P.; Kostikov, R. R. Zh. Org. Khim. 1993, 29, 148.
- 674. Iwasawa, N.; Funahashi, M.; Hayakawa, S.; Ikeno, T.; Narasaka, K. Bull. Chem. Soc. Jpn. 1999, **72**, 85.
- 675. Barrett, A. G. M.; Doubleday, W. W.; Hamprecht, D.; Kasdorf, K.; Tustin, G. J.; White, A. J. P.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1997, 1693.
- 676. Hirai, G.; Oguri, H.; Hirama, M. Chem. Lett. 1999, 141.
- 677. Corey, E. J.; Balanson, R. D. Tetrahedron Lett. 1973, 3153.
- 678. Charette, A. B.; Juteau, H. Tetrahedron 1997, 53, 16277.
- 679. Marshall, J. A.; Ellison, R. H. J. Am. Chem. Soc. 1976, 98, 4312.
- 680. Kotani, E.; Miyazaki, F.; Tobinaga, S. J. Chem. Soc., Chem. Commun. 1974, 300.
- 681. Jarstfer, M. B.; Blagg, B. S. J.; Rogers, D. H.; Poulter, C. D. J. Am. Chem. Soc. 1996, **118**, 13089
- 682. Künzer, H.; Thiel, M. Tetrahedron Lett. 1994, 35, 2329.
- 683. Siemann, H.-J.; Droescher, P.; Undeutsch, B.; Schwarz, S. Steroids 1995, **60**, 308.
- 684. Morihira, K.; Hara, R.; Kawahara, S.; Nishimori, T.; Nakamura, N.; Kusama, H.; Kuwajima, I. J. Am. Chem. Soc. 1998, **120**, 12980.
- 685. Dawson, M. I.; Vasser, M. J. Org. Chem. 1977, 42, 2783.
- 686. Orr, J. C.; Templeton, J. F.; Majgier-Baranowska, H.; Marat, K. J. Chem. Soc., Perkin Trans. 1 1994, 2667.
- 687. Wiechert, R.; Bittler, D.; Hoyer, G.-A. Experientia 1974, 30, 15.
- 688. Kohout, L.; Sanda, V.; Fajkos, J. Collect. Czech. Chem. Commun. 1982, 47, 1503.
- 689. Wiechert, R.; Bittler, D.; Hoyer, G.-A. Chem. Ber. 1973, 106, 888.

- 690. Lenz, G. R.; Schulz, J. A. J. Org. Chem. 1978, 43, 2334.
- 691. Albrecht, H. P. Liebigs Ann. Chem. 1980, 886.
- 692. Aranda, G.; Fetizon, M.; Tayeb, N.; Guilhem, J.; Pascard, C. Tetrahedron 1986, **42**, 329.
- 693. Kuo, C. H.; Patchett, A. A.; Wendler, N. L. J. Org. Chem. 1983, 48, 1991.
- 694. Zhou, Q.; Weber, W. P. Polym. Bull. 1989, 21, 173.
- 695. Matsumoto, K.; Miyagawa, K.; Yamaoka, H. Macromolecules 1997, **30**, 2524.
- 696. Liao, X.; Lee, H. S. J.; Weber, W. P. Makromol. Chem. 1990, **191**, 2173.
- 697. Hummel, K.; Martl, M. G.; Chemelli, R.; Griexer, H.; Wukovnig, S.; Zekoll, H. Makromol. Chem. 1984, **185**, 2489.
- 698. Masamune, S.; Sakai, M.; Kemp-Jones, A. V.; Nakashima, T. Can. J. Chem. 1974, **52**, 855.
- 699. Friedrich, E. C.; Saleh, M. A. J. Am. Chem. Soc. 1973, 95, 2617.
- 700. Friedrich, E. C.; Biresaw, G.; Saleh, M. A. J. Org. Chem. 1983, 48, 1435.
- 700a Olah, G. A.; Prakash, G. K. S.; Rawdah, T. N. J. Org. Chem. 1980, **45**, . 965.
- 701. Kropp, P. J.; Pienta, N. J.; Sawyer, J. A.; Polniaszek, R. P. Tetrahedron 1981, **37**, 3229.
- 702. Maryanoff, B. E.; Costanzo, M. J.; Nortey, S. O.; Greco, M. N.; Shank, R. P.; Schupsky, J. J.; Ortegon, M. P.; Vaught, J. L. J. Med. Chem. 1998, 41, 1315.
- 703. Cossy, J.; Furet, N.; BouzBouz, S. Tetrahedron 1995, **51**, 11751.
- 704. Rodriguez, J. B.; Marquez, V. E.; Nicklaus, M. C.; Barchi, J. J. Tetrahedron Lett. 1993, **34**, 6233.
- 705. Rodriguez, J. B.; Marquez, V. E.; Nicklaus, M. C.; Mitsuya, H.; Barchi, J. J. Med. Chem. 1994, **37**, 3389.
- 706. Friedrich, E. C.; Delucca, G. J. Org. Chem. 1983, 48, 4563.
- 707. Lightner, D. A.; Pak, C. S.; Crist, B. V.; Rodgers, S. L.; Givens, J. W. Tetrahedron 1985, **41**, 4321.
- 708. Friedrich, E. C.; Jassawalla, J. D. C. J. Org. Chem. 1979, 44, 4224.
- 709. Steinmetz, M. G.; Chen, Q.; Zheng, Y. J. Organomet. Chem. 1996, **516**, 25.
- 710. Barnier, J. P.; Rayssac, V.; Morisson, V.; Blanco, L. Tetrahedron Lett. 1997, **38**, 8503.
- 711. Barnier, J. P.; Morisson, V.; Volle, I.; Blanco, L. Tetrahedron: Asymmetry 1999, **10**, 1107.
- 712. Kirmse, W.; Hartmann, M.; Siegfried, R.; Wroblowsky, H. J.; Zang, B.; Zellmer, V. Chem. Ber. 1981, **114**, 1793.

- 713. Fraser-Reid, B.; Holder, N. L.; Hicks, D. R.; Walker, D. L. Can. J. Chem. 1977, **55**, 3978.
- 714. Clive, D. L. J.; Daigneault, S. J. Chem. Soc., Chem. Commun. 1989, 332.
- 715. Clive, D. L. J.; Daigneault, S. J. Org. Chem. 1991, 56, 3801.
- 716. Demaison, C.; Hourioux, C.; Roingeard, P.; Agrofoglio, L. A. Tetrahedron Lett. 1998, **39**, 9175.
- 717. Agrofoglio, L. A.; Demaison, C.; Toupet, L. Tetrahedron 1999, 55, 8075.
- 718. Tardella, P. A.; Pellacani, L. Gazz. Chim. Ital. 1977, 107, 107.
- 719. Chenier, P. J.; Kiland, P. J.; Schmitt, G. D.; VanderWegen, P. G. J. Org. Chem. 1980, **45**, 5413.
- 720. House, H. O.; Snoble, K. A. J. Org. Chem. 1976, 41, 3076.
- 721. Lee, P. H.; Lee, J. Y. Tetrahedron Lett. 1998, 39, 7889.
- 722. Ronald, R. C.; Lillie, T. S. Tetrahedron Lett. 1986, 27, 5787.
- 723. Mash, E. A.; Gregg, T. M.; Kaczynski, M. A. J. Org. Chem. 1996, **61**, 2743.
- 724. Prinzbach, H.; Hunkler, D.; Schal, H.-P.; Fritz, H. Angew. Chem., Int. Ed. Engl. 1980, **19**, 567.
- 725. Casey, C. P.; Cesa, M. C. J. Am. Chem. Soc. 1979, 101, 4236.
- 726. Cossy, J.; BouzBouz, S.; Mouza, C. Synlett 1998, 621.
- 727. Traas, P. C.; Boelens, H.; Takken, H. J. Recl. Trav. Chim. Pays-Bas 1976, **95**, 57.
- 728. Monti, S. A.; McAninch, T. W. Tetrahedron Lett. 1974, 3239.
- 729. Terunuma, D.; Shibuya, N.; Nohira, H. Bull. Chem. Soc. Jpn. 1982, **55**, 2287.
- 730. Detert, H.; Meier, H. Liebigs Ann. Chem. 1997, 1557.
- 731. Wertheimer, V.; Glatz, A. M.; Razus, A. C. Rev. Roum. Chim. 1977, **22**, 11.
- 732. Banwell, M. G. Aust. J. Chem. 1988, 41, 1037.
- 733. Thies, R. W.; McRitchie, D. D. J. Org. Chem. 1973, 38, 112.
- 734. Hatem, J.; Waegell, B. Tetrahedron 1990, 46, 2789.
- 735. El Gaied, M. M.; Bessière-Chrétien, Y. Bull. Soc. Chim. Fr. 1973, 1351.
- 736. Cossy, J.; BouzBouz, S. Tetrahedron Lett. 1997, 38, 1931.
- 737. Kabat, M.; Kiegiel, J.; Cohen, N.; Toth, K.; Wovkulich, P. M.; Uskokovic,
  M. R. Tetrahedron Lett. 1991, **32**, 2343.
- 738. Kabat, M. M.; Kiegiel, J.; Cohen, N.; Toth, K.; Wovkulich, P. M.; Uskokovic, M. R. J. Org. Chem. 1996, **61**, 118.
- 739. Tori, M.; Hamaguchi, T.; Aoki, M.; Sono, M.; Asakawa, Y. Can. J. Chem. 1997, **75**, 634.

- 740. Chiche, L.; Christol, H.; Coste, J.; Plenat, F. Can. J. Chem. 1981, **59**, 2373.
- 741. Smith, III, A. B.; Wood, J. L.; Keenan, T. P.; Liverton, N.; Visnick, M. J. Org. Chem. 1994, **59**, 6652.
- 742. Banwell, M. G.; Ryan, J. H.; Winkler, D. A. Aust. J. Chem. 1991, 44, 593.
- 743. Paquette, L. A.; Wang, T. Z.; Pinard, E. J. Am. Chem. Soc. 1995, **117**, 1455
- 744. Paquette, L. A.; Ezquerra, J.; He, W. J. Org. Chem. 1995, 60, 1435.
- 745. Ezquerra, J.; Wei, H.; Paquette, L. A. Tetrahedron Lett. 1990, **31**, 6979.
- 746. Grieco, P. A.; Oguri, T.; Gilman, S.; DeTitta, G. T. J. Am. Chem. Soc. 1978, **100**, 1616.
- 747. Grieco, P. A.; Oguri, T.; Wang, C.-L. J.; Williams, E. J. Org. Chem. 1977, 42, 4113.
- 748. Grieco, P. A.; Collins, J. L.; Moher, E. D.; Fleck, T. J.; Gross, R. S. J. Am. Chem. Soc. 1993, **115**, 6078.
- 749. Marshall, J. A.; Ruth, J. A. J. Org. Chem. 1974, **39**, 1971.
- 750. Moss, R. A.; Chen, E. Y. J. Org. Chem. 1981, 46, 1466.
- 751. Ando, M.; Sayama, S.; Takase, K. Chem. Lett. 1981, 377.
- 752. Ando, M.; Sayama, S.; Takase, K. J. Org. Chem. 1985, 50, 251.
- 753. Asaoka, M.; Kobayashi, K.; Takei, H. Bull. Chem. Soc. Jpn. 1994, **67**, 1141.
- 754. Cristol, S. J.; Ilenda, C. S. J. Am. Chem. Soc. 1975, 97, 5862.
- 755. Kelly, D. P.; Leslie, D. R.; Smith, B. D. J. Am. Chem. Soc. 1984, **106**, 687.
- 756. Yamada, S.; Nagashima, S.; Takaoka, Y.; Torihara, S.; Tanaka, M.; Suemune, H.; Aso, M. J. Chem. Soc., Perkin Trans. 1 1998, 1269.
- 757. Smith, III, A. B.; Hartz, R. A.; Spoors, P. G.; Rainier, J. D. Isr. J. Chem. 1997, **37**, 69.
- 758. Marshall, J. A.; Conrow, R. E. J. Am. Chem. Soc. 1980, **102**, 4274.
- 759. Paquette, L. A.; Bellamy, F.; Wells, G. J.; Böhm, M. C.; Gleiter, R. J. Am. Chem. Soc. 1981, **103**, 7122.
- 760. Hunadi, R. J.; Helmkamp, G. K. J. Org. Chem. 1978, 43, 1586.
- 761. Deyrup, J. A.; Betkouski, M. F. J. Org. Chem. 1975, 40, 284.
- 762. Ando, M.; Sayama, S.; Takase, K. Chem. Lett. 1979, 191.
- 763. Packer, R. A.; Whitehurst, J. S. J. Chem. Soc., Chem. Commun. 1975, 757.
- 764. Packer, R. A.; Whitehurst, J. S. J. Chem. Soc., Perkin Trans. 1 1978, 110.
- 765. Feutrill, G. I.; Mirrington, R. N.; Nichols, R. J. Aust. J. Chem. 1973, 26,

345.

- 766. Mandelt, K.; Fitjer, L. Synthesis 1998, 1523.
- 767. Casares, A.; Maldonado, L. A. Synth. Commun. 1976, 6, 11.
- 768. Caine, D.; Chen, P.-C.; Frobese, A. S.; Gupton, J. T. J. Org. Chem. 1979, **44**, 4981.
- 769. Fan, W. M.; White, J. B. J. Org. Chem. 1993, 58, 3557.
- 770. Harling, J. D.; Motherwell, W. B. J. Chem. Soc., Chem. Commun. 1988, 1380.
- 771. Raeppel, F.; Weibel, J.-M.; Heissler, D. Tetrahedron Lett. 1999, **40**, 6377.
- 772. Paquette, L. A.; Friedrich, D.; Rogers, R. D. J. Org. Chem. 1991, **56**, 3841.
- 773. Joska, J.; Fajkos, J. Coll. Czech. Chem. Commun. 1977, 42, 1044.
- 774. Weibel, J. M.; Heissler, D. Tetrahedron Lett. 1994, 35, 473.
- 775. Wagner, H.; Römer, J.; Kasch, H. J. Labeled Comp. Radiopharm. 1981, **18**, 1611.
- 776. Prousa, R.; Schönecker, B.; Tresselt, D.; Ponsold, K. J. Prakt. Chem. 1986, **328**, 55.
- 777. Kasal, A.; Kohout, L. Collect. Czech. Chem. Commun. 1982, 47, 130.
- 778. Neef, G.; Cleve, G.; Ottow, E.; Seeger, A.; Wiechert, R. J. Org. Chem. 1987, **52**, 4143.
- 779. Han, M. C.; Zorumski, C. F.; Covey, D. F. J. Med. Chem. 1996, **39**, 4218.
- 780. Tochtermann, W.; Stubenrauch, G.; Reiff, K.; Schumacher, U. Chem. Ber. 1974, **107**, 3340.
- 781. Kohout, L.; Fajkos, J. Collect. Czech. Chem. Commun. 1973, 38, 1415.
- 782. Joska, J.; Fajkos, J. Collect. Czech. Chem. Commun. 1982, 47, 2423.
- 783. Fajkos, J.; Joska, J. Collect. Czech. Chem. Commun. 1989, 54, 751.
- 784. Kohout, L.; Kasal, A. Collect. Czech. Chem. Commun. 1994, 59, 649.
- 785. Piers, E.; Boulet, S. L. Tetrahedron Lett. 1997, 38, 8815.
- 786. Lefebvre, Y.; Marshall, D. J.; Revesz, C. J. Med. Chem. 1975, 18, 220.
- 787. Bittler, D.; Hofmeister, H.; Laurent, H.; Nickisch, K.; Nickolson, R.; Petzoldt, K.; Wiechert, R. Angew. Chem. 1982, **94**, 718.
- 788. Ziegler, F. E.; Wang, T.-F. J. Am. Chem. Soc. 1984, 106, 718.
- 789. Joska, J.; Fajkos, J. Collect. Czech. Chem. Commun. 1981, 46, 2751.
- 790. Templeton, J. F.; Kim, R.-S. S. Steroids 1976, 27, 581.
- 791. Mironowicz, A.; Kohout, L.; Fajkos, J. Collect. Czech. Chem. Commun. 1974, **39**, 1780.

- 792. Wieland, P. Helv. Chim. Acta 1979, 62, 2276.
- 793. Corey, E. J.; Hahl, R. W. Tetrahedron Lett. 1989, 30, 3023.
- 794. Kohout, L.; Kasal, A. Collect. Czech. Chem. Commun. 1983, 48, 2051.
- 794a Joska, J.; Fajkos, J.; Budesinsky, M. Collect. Czech. Chem. Commun. . 1974, **39**, 1914.
- 795. Templeton, J. F.; Wie, C. W. Can. J. Chem. 1974, **52**, 517.
- 796. Kohout, L.; Fajkos, J. Collect. Czech. Chem. Commun. 1975, 40, 3924.
- 797. Kohout, L.; Fajkos, J. Collect. Czech. Chem. Commun. 1979, 44, 3308.
- 798. Joska, J.; Fajkos, J. Collect. Czech. Chem. Commun. 1980, 45, 1850.
- 799. Kohout, L. Collect. Czech. Chem. Commun. 1986, 51, 429.
- 800. Fajkos, J.; Joska, J. Collect. Czech. Chem. Commun. 1979, 44, 251.
- 801. Kohout, L. Collect. Czech. Chem. Commun. 1981, 46, 1828.
- 802. Kohout, L.; Fajkos, J. Collect. Czech. Chem. Commun. 1974, 39, 1601.
- 803. Ishiguro, M.; Saito, H.; Ikekawa, N. J. Chem. Soc., Perkin Trans. 1 1980, 2507.
- 804. Schalley, C. A.; Schroder, D.; Schwarz, H. J. Am. Chem. Soc. 1994, 116, 11089.
- 805. Zhao, Y.; Yang, T.-F.; Lee, M.; Chun, B. K.; Du, J.; Schinazi, R. F.; Lee, D.; Newton, M. G.; Chu, C. K. Tetrahedron Lett. 1994, 35, 5405.
- 806. Shimamoto, K.; Ishida, M.; Shinozaki, H.; Ohfune, Y. J. Org. Chem. 1991, **56**, 4167.
- 807. Bellamy, A. J.; Campbell, E. A.; Hall, I. R. J. Chem. Soc., Perkin Trans. 2 1974, 1347.
- 808. Rocquet, F.; Sevin, A. Bull. Soc: Chim. Fr. 1974, 888.
- 809. Cossy, J.; Blanchard, N.; Meyer, C. J. Org. Chem. 1998, 63, 5728.
- 810. Ojima, I.; Lin, S. J. Org. Chem. 1998, 63, 224.
- 811. Zlokazov, M. V.; Veselovsky, V. V. Mendeleev Commun. 1999, 73.
- 812. Mitome, H.; Miyaoka, H.; Nakano, M.; Yamada, Y. Tetrahedron Lett. 1995, **36**, 8231.
- 813. Gurjar, M. K.; Kumar, P.; Rao, B. V. Tetrahedron Lett. 1996, **37**, 8617.
- 814. Gurjar, M. K.; Sharma, B.; Rao, B. V. J. Carbohydr. Chem. 1998, **17**, 1107.
- 815. Landais, Y.; Parra-Rapado, L. Tetrahedron Lett. 1996, 37, 1209.
- 816. Coxon, G. D.; Knobl, S.; Roberts, E.; Baird, M. S.; Al Dulayymi, J. R.; Besra, G. S.; Brennan, P. J.; Minnikin, D. E. Tetrahedron Lett. 1999, 40, 6689.
- 817. Wilson, S. R.; Davey, A. E.; Guazzaroni, M. E. J. Org. Chem. 1992, **57**, 2007.
- 818. Sele, A.; Baehler, B.; Tronchet, J. M. J. Helv. Chim. Acta 1979, 62, 866.

- 819. Theberge, C. R.; Verbicky, C. A.; Zercher, C. K. J. Org. Chem. 1996, 61, 8792.
- 820. Theberge, C. R.; Zercher, C. K. Tetrahedron Lett. 1994, 35, 9181.
- 821. Theberge, C. R.; Zercher, C. K. Tetrahedron Lett. 1995, 36, 5495.
- 822. Barrett, A. G. M.; Doubleday, W. W.; Tustin, G. J.; White, A. J. P.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1994, 1783.
- 823. Dinnocenzo, J. P.; Conlon, D. A. J. Am. Chem. Soc. 1988, 110, 2324.
- 824. Wilson, S. R.; Zucker, P. A. J. Org. Chem. 1988, 53, 4682.
- 825. Fleming, I.; Sarkar, A. K.; Thomas, A. P. J. Chem. Soc., Chem. Commun. 1987, 157.
- 826. Fleming, I.; Lawrence, N. J.; Sarkar, A. K.; Thomas, A. P. J. Chem. Soc., Perkin Trans. 1 1992, 3303.
- 827. Ahmad, M. S.; Osman, S. M. J. Am. Oil. Chem. Soc. 1980, 57, 363.
- 828. Ansari, F. H.; Osman, S. M.; Subbaram, M. R. Indian J. Chem. 1973, **11**, 1053.
- 829. Toshima, H.; Maru, K.; Jiao, Y.; Yoshihara, T.; Ichihara, A. Tetrahedron Lett. 1999, **40**, 935.
- 830. Pansare, S. V.; Jain, R. P. Tetrahedron Lett. 1999, 40, 2625.
- 831. Itoh, T.; Emoto, S.; Kondo, M. Tetrahedron 1998, 54, 5225.
- 832. Sheikh, Y. M.; Leclercq, J.; Djerassi, C. J. Chem. Soc., Perkin Trans. 1 1974, 909.
- 833. Gerber, P.; Vogel, P. Tetrahedron Lett. 1999, 40, 3165.
- 834. Boyer, F.-D.; Lallemand, J.-Y. Synlett 1992, 969.
- 835. Scott, R. W.; Heathcock, C. H. Carbohydr. Res. 1996, 291, 205.
- 836. Murali, R.; Ramana, C. V.; Nagarajan, M. J. Chem. Soc., Chem. Commun. 1995, 217.
- 837. Ramana, C. V.; Murali, R.; Nagarajan, M. J. Org. Chem. 1997, 62, 7694.
- 838. Wilson, S. R.; Walters, M. E.; Orbaugh, B. J. Org. Chem. 1976, 41, 378.
- 839. Hoberg, J. O. J. Org. Chem. 1997, 62, 6615.
- 840. Ragauskas, A. J.; Stothers, J. B. Can. J. Chem. 1985, 63, 2969.
- 841. Ainge, S. W.; Vogel, P. Tetrahedron Lett. 1998, 39, 4039.
- 842. Newcombe, N. J.; Simpkins, N. S. J. Chem. Soc., Chem. Commun. 1995, 831.
- 842a Piers, E.; Friesen, R. W. J. Org. Chem. 1986, 51, 3405.
- 843. Maurin, R.; Chorro, M.; Gilles, J. L. Tetrahedron 1982, 38, 1253.
- 844. Gadwood, R. C.; Lett, R. M.; Wissinger, J. E. J. Am. Chem. Soc. 1984, **106**, 3869.
- 845. Gadwood, R. C.; Lett, R. M.; Wissinger, J. E. J. Am. Chem. Soc. 1986,

**108**, 6343.

- 846. Ceccherelli, P.; Pellicciari, R.; Golob, N. F.; Smith, R. A. J.; Wenkert, E. Gazz. Chim. Ital. 1973, 103, 599.
- 847. Wenkert, E.; Buckwalter, B. L.; Sathe, S. S. Synth. Commun. 1973, **3**, 261.
- 848. Paquette, L. A.; Ross, R. J.; Shi, Y.-J. J. Org. Chem. 1990, 55, 1589.
- 849. Nishida, M.; Iseki, K.; Shibasaki, M.; Ikegami, S. Chem. Pharm. Bull. 1990, **38**, 3230.
- 850. Masjedizadeh, M. R.; Dannecker-Doerig, I.; Little, R. D. J. Org. Chem. 1990, **55**, 2742.
- 851. Jurlina, J. L.; Patel, H. A.; Stothers, J. B. Can. J. Chem. 1984, 62, 1159.
- 852. Wenkert, E.; Arrhenius, T. S. J. Am. Chem. Soc. 1983, 105, 2030.
- Bavidson, B. S.; Plavcan, K. A.; Meinwald, J. J. Org. Chem. 1990, 55, 3912.
- 854. Bertinato, P.; Sorensen, E. J.; Meng, D.; Danishefsky, S. J. J. Org. Chem. 1996, 61, 8000.
- 855. Meng, D.; Bertinato, P.; Balog, A.; Su, D.-S.; Kamenecka, T.; Sorensen,
  E. J.; Danishefsky, S. J. J. Am. Chem. Soc. 1997, **119**, 10073.
- 856. Asaoka, M.; Ohkubo, T.; Itahana, H.; Kosaka, T.; Takei, H. Tetrahedron 1995, **51**, 3115.
- 857. Snowden, R. L. Tetrahedron Lett. 1981, 22, 101.
- 858. Snowden, R. L. Tetrahedron 1986, 42, 3277.
- 859. Ireland, R. E.; Dawson, M. I.; Kowalski, C. J.; Lipinski, C. A.; Marshall, D. R.; Tilley, J. W.; Bordner, J.; Trus, B. L. J. Org. Chem. 1975, 40, 973.
- 860. Boeckman, Jr., R. K.; Charette, A. B.; Asberom, T.; Johnston, B. H. J. Am. Chem. Soc. 1991, **113**, 5337.
- Scheller, M. E.; Frei, B.; Mathies, P.; Petter, W. Helv. Chim. Acta 1984, 67, 1748.
- Boeckman, Jr., R. K.; Charette, A. B.; Asberom, T.; Johnston, B. H. J. Am. Chem. Soc. 1987, **109**, 7553.
- 863. Fetizon, M.; Ragoussis, N. Tetrahedron 1978, 34, 287.
- 864. Steinmeyer, A.; Neef, G.; Kirsch, G.; Schwarz, K.; Rach, P.; Haberey, M.; Thieroff-Ekerdt, R. Steroids 1992, 57, 447.
- 865. Templeton, J. F.; Paslat, V. G.; Wie, C. W. Can. J. Chem. 1978, **56**, 2058.
- 866. Ireland, R. E.; Walba, D. M. Tetrahedron Lett. 1976, 1071.
- 867. Bottini, A.; Christensen, J. E. Tetrahedron 1974, 30, 393.
- 868. Zefirov, N. S.; Lukin, K. A.; Politanskii, S. F.; Margulis, M. A. Zh. Org. Khim. 1987, 23, 1799.
- 869. Fitjer, L.; Conia, J.-M. Angew. Chem., Int. Ed. Engl. 1973, 12, 334.
- 870. Zefirov, N. S.; Kozhushkov, S. I.; Kuznetsova, T. S.; Lukin, K. A.; Kazimirchik, I. V. Zh. Org. Khim. 1988, 24, 673.
- 871. Wolinsky, J.; Clark, G. W.; Thorstenson, P. C. J. Org. Chem. 1976, **41**, 745.
- 872. Zöllner, S.; Buchholz, H.; Boese, R.; Gleiter, R.; de Meijere, A. Angew. Chem., Int. Ed. Engl. 1991, **30**, 1518.
- 873. Seebach, D.; Stucky, G. Angew. Chem., Int. Ed. Engl. 1988, 100, 1398.
- 874. Seebach, D.; Stucky, G.; Pfammatter, E. Chem. Ber. 1989, 122, 2377.
- 875. Mash, E. A. J. Org. Chem. 1987, 52, 4142.
- 876. Sugimura, T.; Yoshikawa, M.; Mizuguchi, M.; Tai, A. Chem. Lett. 1999, 831.
- 877. Sugimura, T.; Koguro, K.; Tai, A. Tetrahedron Lett. 1993, **34**, 509.
- 878. Mash, E. A.; Nelson, K. A. Tetrahedron Lett. 1986, 27, 1441.
- 879. Mash, E. A.; Nimkar, K. S.; Baron, J. A. Tetrahedron 1997, 53, 9043.
- 880. Mash, E. A.; Math, S. K.; Flann, C. J. Tetrahedron Lett. 1988, 29, 2147.
- 881. Mash, E. A.; Math, S. K.; Flann, C. J. Tetrahedron 1989, 45, 4945.
- 882. Mash, E. A.; Fryling, J. A. J. Org. Chem. 1987, 52, 3000.
- 883. Mash, E. A.; Hemperly, S. B. J. Org. Chem. 1990, 55, 2055.
- 884. Nelson, K. A.; Mash, E. A. J. Org. Chem. 1986, **51**, 2721.
- 885. Tamura, O.; Hashimoto, M.; Kobayashi, Y.; Katoh, T.; Nakatani, K.; Kamada, M.; Hayakawa, I.; Akiba, T.; Terashima, S. Tetrahedron Lett. 1992, **33**, 3487.
- 886. Luithle, J. E. A.; Pietruszka, J. J. Org. Chem. 1999, 64, 8287.
- 887. Kaye, P. T.; Molema, W. E. Synth. Commun. 1999, 29, 1889.
- 888. Charette, A. B.; Côté, B. J. Am. Chem. Soc. 1995, 117, 12721.
- 889. Schöllkopf, U.; Tiller, T.; Bardenhagen, J. Tetrahedron 1988, 44, 5293.
- 890. Groth, U.; Schöllkopf, U.; Tiller, T. Liebigs Ann. Chem. 1991, 857.
- 891. Pietruszka, J.; Widenmeyer, M. Synlett 1997, 977.
- 892. Cervinka, O.; Kriz, O. Coll. Czech. Chem. Commun. 1973, 38, 938.
- 893. Nagle, D. G.; Geralds, R. S.; Yoo, H.-D.; Gerwick, W. H.; Kim, T.-S.; Nambu, M.; White, J. D. Tetrahedron Lett. 1995, **36**, 1189.
- 894. White, J. D.; Kim, T.-S.; Nambu, M. J. Am. Chem. Soc. 1997, 119, 103.
- 895. Turnbull, M. D. J. Chem. Soc., Perkin Trans. 1 1997, 1241.
- 896. Imai, N.; Sakamoto, K.; Maeda, M.; Kouge, K.; Yoshizane, K.; Nokami, J. Tetrahedron Lett. 1997, **38**, 1423.
- 897. Halm, C.; Kurth, M. J. Angew. Chem., Int. Ed. Engl. 1998, 37, 510.